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Abstract: A person’s present mental state is closely associated with the frequency and temporal
domain features of spontaneous electroencephalogram (EEG) impulses, which directly reflect neuro-
physiological signals of brain activity. EEG signals are employed in this study to measure the mental
workload of drivers while they are operating a vehicle. A technique based on the quantum genetic
algorithm (QGA) is suggested for improving the kernel function parameters of the multi-class support
vector machine (MSVM). The performance of the algorithm based on the quantum genetic algorithm
is found to be superior to that of other ways when other methods and the quantum genetic algorithm
are evaluated for the parameter optimization of kernel function via simulation. A multi-classification
support vector machine based on the quantum genetic algorithm (QGA-MSVM) is applied to identify
the mental workload of oceanauts through the collection and feature extraction of EEG signals during
driving simulation operation experiments in a sea basin area, a seamount area, and a hydrothermal
area. Even with a limited data set, QGA-MSVM is able to accurately identify the cognitive burden
experienced by ocean sailors, with an overall accuracy of 91.8%.

Keywords: oceanauts; mental workload; EEG data; multi-class support vector machine; quantum
genetic algorithm

1. Introduction

Jiaolong’s deep-sea submarine voyages have been expanding, and there is a grow-
ing need for the workload evaluation of oceanauts due to China’s rapid development of
deep-sea resource exploration and development. An oceanaut operates manned subma-
rine equipment and works in a complex deep-sea environment; the main workload they
bear is mental workload [1]. The classification of mental burden is one of main topics
in investigations on the operating jobs of deep-sea manipulator oceanauts. In an effort
to categorize and forecast levels of mental burden, current research efforts often use the
subjective scale technique, primary task method, supported task method, and psychophysi-
ological measurements [2–4]. The four indexes—the accurate reaction time for a primary
task, the variation rate of the accurate reaction time for a subsidiary task, the weighted
subjective workload rating, and the variation rate of heart rate variance—were used and
tested [5] in Zhang’s two mathematical models of comprehensive mental workload indexes.
Hancock et al. put predictions from a model of mental effort to the test using the Time
Pools performance challenge. Data from the experiment showed that when perceived
distance from a task objective rises and the effective time for action decreases, mental
burden increases [6]. According to Noel et al.’s research, a tiny subset of integrated and
calibrated psycho-physiological variables obtained from a single pilot on a particular day
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may properly categorize the mental effort for a different pilot on a different day [7]. Cantin
et al. used the probing reaction time (RT) approach to quantify workload and looked at how
young and older active drivers’ mental effort changed depending on how challenging the
driving environment was [8]. To determine if subjective time perception might be utilized
as a gauge of cognitive effort during simulated automobile driving, Baldauf et al. employed
electrodermal activity and subjective assessments of mental workload (SWAT) [9].

To evaluate the mental workload related to agricultural spraying, Dey et al. compared
and chose the best variants of NASA-TLX and SSWAT. The study looked at the various
variants of two widely used workload rating scales in terms of their sensitivity and diagnos-
ticity and chose the best variants of each scale for upcoming mental workload research [10].
According to Jo et al.’s proposed mathematical model in relation to the activated time of
ACT-R modules, the participants’ average NASA-TLX ratings were highly correlated with
the predicted values of mental workload attained using the proposed method [11]. In order
to evaluate mental effort, Mouzé-Amady et al. devised a novel technique for calculating
weights from qualitative fuzzy integrals and applied it to the NASA-TLX subscales of
the National Aeronautics and Space Administration-Task load index [12]. To measure
mental workload, Klein et al. utilized the multiple resources questionnaire (MRQ) and the
Dundee stress state questionnaire (DSSQ) [13]. The results suggested a potentially applica-
ble method to brain computer interface systems that adapt to human mental workload [14].
In a municipal traffic control center, Majid et al. employed the NASA-Task load index (TLX)
to assess operators’ mental effort while observing traffic density. The findings revealed
that the operators had a greater mental burden during high traffic density than during
low traffic density [15]. These approaches have significant systematic mistakes, applica-
bility restrictions, and are often contaminated by the subjective preferences of decision
makers [16–18]. Different machine learning algorithms have been presented in this field in
an effort to find an appropriate way to measure mental strain and have shown competitive
performance [19–21]. Ke developed a comprehensive mental workload recognition model
using feature selection and regression modeling. The cross-task regression performance
was greatly improved [22] when the model was trained and evaluated using the most
robust feature subset chosen by cross-task RFE. According to the classification findings
(with the greatest five-class accurate classification rate of 88%), the location projection
preservation approach can retain high enough MWL classification accuracy [23]. In order
to evaluate operator workload, Grassmann et al. integrated physiological and self-report
measures of mental effort. The findings indicated that including individual characteristics
may minimize unexplained variance and boost the validity of workload assessments [24].
By repeatedly adding misclassified instances from the test set to the training set, Zhang et al.
developed an adaptive support-vector-machine-based technique to categorize operator
mental workload (MWL) into a few discrete levels to adjust the model’s performance to a
new participant [25].

So et al. looked into the viability of assessing the dynamic changes in mental effort
using short-term frontal EEG [26]. Despite the fact that the aforementioned studies have
examined and debated the mental workload and have produced many successes, they have
not yet been used to recognize the mental burden of oceanauts. In order to obtain the EEG
signals of the individuals while they were driving, feature extraction and analysis were
performed on deep-sea driving simulation trials. It was suggested to use QGA-MSVM to
efficiently categorize the mental burden experienced by drivers.

Currently, there is not much research on measuring mental strain for oceanauts; it
mostly focuses on application industries like pilots and drivers of cars. The manned
submersible simulation operating system is created using 3dsMax and Unity3D.

The remainder of this essay is structured as follows. EEG signal extraction and
data processing are described in Section 2. In Section 3, a kernel function parameter
optimization strategy based on a quantum evolutionary algorithm is suggested along with
a mathematical explanation of data categorization. The task is designed and the platform



Bioengineering 2023, 10, 1027 3 of 14

for the simulation experiment is built in Section 4. In Section 5, the findings are examined
and discussed. The key points of the text are outlined in Section 6.

In order to develop a reasonable operation process and to take action when the
mental load of the underwater crew is either too small or too large (man–machine function
redistribution, the responsibility redistribution of the chief and co-pilot, and task strategy
re-selection), physiological indicators are used to effectively assess the mental load of the
underwater crew.

2. EEG Signals and Processing
2.1. EEG Signals

EEG is a technique used to electrophysiologically record brain activity, including
mental effort during job activities. Thirty-two Ag/AgCl scalp electrodes were placed in
accordance with the worldwide 10/20 standard on a Neu-roscan Quik-Cap, which has
40 channels. A Neuroscan NuAmps device was used to collect EEG data at a sampling rate
of 1000 Hz. Initially, the electrodes were grounded to the vertex and referenced to the right
mastoid (A2 channel).

2.2. Data Processing

The amplitude of the high-frequency band increases and the amplitude of the low-
frequency band decreases. EEG signals reflect the activity state of the brain. The state of
the oceanaut’s mental burden may be indicated by variations in the amplitude of each
frequency band of EEG activity.

EEG Signal Processing: The EEG signals were filtered using a 0.5–35 Hz bandpass
digital filter, and the data were segmented into 2 s epochs with 50% overlap (1024 points
per epoch). The ocular artifact rejection method [27] was used to automatically eliminate
the eye blink artifacts, and the remaining epochs were manually rejected (see Figure 1).

f [m] =


N=1
∑

n=0
f [n]Wkn

N , 0 ≤ m ≤ N − 1

0, otherwise
(1)

where WN = cos(2π/N)− jsin(2π/N), and n is the sample size of EEG signal.
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Figure 1. Segmentation of EEG signals.

Delta (0.5–4 Hz), Theta (4–7 Hz), Alpha (7–13 Hz), and Beta (13–30 Hz) are the four
types of wave amplitude sequences extracted from f[k]. The amplitude of the four bands in
one time window was obtained; this average value was then used as the representative
value of the frequency band across fifty-nine time windows. Similarly, the EEG signals of the
q electrodes were all processed using the abovementioned method; then, the corresponding
4× q EEG parameters were obtained, denoted as xj (1 ≤ j ≤ 4× q).

3. Methodology
3.1. Support Vector Machine

An SVM training method [28–30] creates a model that categorizes fresh instances
according to one of two categories given a series of training examples that have each been
tagged as belonging to one of the categories. This makes the algorithm a non-probabilistic
binary linear classifier. An SVM model is a mapping of the instances as points in space with
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as much space between the examples of the various categories as feasible. Then, depending
on which side of the gap they fall, new samples are projected into that same area and
are predicted to belong to a category [31–33]. A linearly separable problem is shown in
Figure 2.
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Figure 2. The mapping of feature vectors from a low dimension to a higher dimension.

Given sample set A = {xi, yi|i = 1, · · · , n}, where xi ∈ Rn is the input vector,
yi ∈ {+1,−1}, m is the sample number.

The input data are mapped from the original space to high-dimensional feature space
via the nonlinear mapping function, and the optimal classification hyperplane is constructed
in high-dimensional feature space.

f (x) = wφ(x) + b = ∑n
k=1 wkφ(xk) + b = 0 (2)

where w is the normal vector to the hyperplane and b is the offset vector of the classification
hyperplane. To ensure the accuracy of the classification, the slack variable is introduced.
Then, the optimization problem can be expressed as: min 1

2‖w‖
2 + C∑n

i=1 εi (εi ≥ 0)

s.t.
{

yi(wxi + b) ≥ 1− εi
C ≥ 0

(i = 1, 2, · · ·, n)
(3)

where ε is the slack variable and C is the penalty factor.
Introducing kernel function k

(
xi, xj

)
, k
(

xi, xj
)

is satisfied with Mercer conditions, and
the original problem of solving the optimal hyperplane is transformed into solving the
quadratic optimization problem.

maxQ(a) = ∑n
i=1 ai −

1
2∑n

i,j=1 aiajyiyjk
(
xixj

)
(4)

The constraint condition is:

∑n
i=1 aiyi = 0, 0 ≤ ai ≤ C; i = 1, 2, · · · , n (5)

Then, the decision function can be written as:

f (x) = sign(∑n
i,j=1 aiyik(xi, yj) + b) (6)

K(xi, xj) = exp(
−
∥∥xi − xj

∥∥2

2σ2 ) = exp(
−
∥∥xi − xj

∥∥2

g
) (7)
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3.2. Multiclass Support Vector Machines

The SVM was initially intended to be a binary classifier. In the literature, one-versus-
one (OvO) and one-versus-all (OvA) are the most popular multiclass approaches [34].
By building N binary classifiers using the OvA technique, each classifier is trained to
differentiate between two of the N possible classes. In this method, a single classifier is
trained for each class, with the samples belonging to that class serving as positive samples
and the others serving as negative samples. The unknown sample is then categorized
as the sample with the highest classification function value. For an N-way multiclass
issue, the OvO builds binary classifiers that are N(N-1)/2 in size. Each classifier must
learn to differentiate between the positive and negative classifications after being trained
on two classes of data. At prediction time, a voting procedure is used: all N(N-1)/2
classifiers are applied to an unseen sample, and the combined classifier predicts the class
that received the most “+1” predictions. Graphical representations of OvA binarization and
OvO binarization are shown in Figure 3a,b, respectively. Typically, OvO outperforms OvA
in terms of categorization accuracy. OvO is utilized in this context to identify mental strain.
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3.3. Kernel Function Parameter Optimization Based on Quantum Genetic Algorithm
3.3.1. Procedure Description

Although the final classification accuracy is significantly influenced by the choice of
kernel function parameter, no comprehensive theory to address the issue has yet been
developed. The algorithm of swarm intelligent optimization is used to choose kernel
parameters. The best kernel function parameters, like GA and PSO, are adaptively chosen by
the swarm intelligence algorithm by using its superior optimization capabilities. Although
PSO also has certain drawbacks, such as weak local optimization capabilities, GA has
the problems of sluggish convergence and easy local optimum trapping [32,33]. A novel
method called QGA combines classical GA with the probability and workings of quantum
computing. Chromosome representation in QGA is carried out using quantum bit coding,
and the evolutionary search is finished using the quantum gate function and updates. Fast
convergence speed, powerful global optimization, and a small population size without
hurting algorithm performance are some of its characteristics. As a result, the QGA
technique is utilized to adaptively choose the best kernel parameters [35,36]. The specific
steps of kernel parameter optimization are as follows:

The kernel parameters are seen as a chromosome by QGA in step 1. The first pop-
ulation is created by generating N chromosomes at random and encoding the kernel
parameters using quantum bits.

Q(t) =
(
qt

1, qt
2, · · · , qt

N
)

(8)

qt
i =

[
αt

1 αt
2 · · · αt

m
βt

1 βt
2 · · · βt

m

]
(9)

where qt
i represents the i individual of the population that evolved to the t generation.
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One of the quantum bits is represented as:|ϕ〉 = α|0〉+ β|1〉, satisfying the normaliza-
tion condition:

|α|2 + |β|2 = 1

Step 2 entails measuring each member of the original population Q(t) in binary and
transforming it into a population P(t) made up of binary strings of length m.

Step 3 is to evaluate the population P(t)’s fitness. The kernel function is changed
to accommodate each kernel parameter value, and the MSVM is then used to categorize
the tested data set and assess the fitness. The values of the kernel parameters and the
corresponding fitness under the current optimal fitness (optimum classification accuracy)
are kept, i.e., the current ideal person.

Step 4. Q(t) is updated to create a fresh population using the quantum gate operation.
Choosing a quantum rotating gate directs the program to look in the right place for the best
answer. The quantum rotating gate’s updating procedure is as follows:[

αt+1
i

βt+1
i

]
= U(θi)

[
αt

i
βt

i

]
=

[
cosθi −sinθi
sinθi cosθi

][
αt

i
βt

i

]
=

[
αt

icosθi − βt
isinθi

αt
isinθi + βt

icosθi

]
(10)

U(θi) is the quantum revolving gate; it is expressed as follows:

U(θi) =

[
cosθi −sinθi
sinθi cosθi

]
(11)

θ is the rotation angle; its size and direction are determined by the rotation angle
adjustment strategy.

Step 5. Let the evolution algebra be t = t + 1 and return to step 3 to continue.
Step 6. Output the optimal parameters and test the test data with the optimal parameters.

3.3.2. Key Parameter Setting

Some important algorithmic parameters, such as the following ones, need to be
initialized before utilizing QGA to achieve the best MSVM kernel function settings. For
the initialization population, each

(
αt

i , βt
i
)

in Q(t) is initialized to
(

1/
√

2, 1/
√

2
)

, and
all states of a chromosome are superimposed with the same probability at the time of
initial evolution.

For the fitness function, the purpose of using QGA to optimize MSVM is to obtain the
optimal classification accuracy. Therefore, the accuracy of classification is selected as the
fitness function in the parameters of the QGA optimization kernel function.

Fitness = Acc
(
αt

i , βt
i
)

(12)

where Acc(αt
i , βt

i
)

is the final classification accuracy of MSVM.
For the quantum spinning gate’s angle, a general adjustment method is used to alter

the value of the rotation angle since it impacts how quickly the optimization algorithm
converges [37–39]. The data table of rotation angle adjustment is shown in Table 1. For the
algorithm’s final condition, the optimization procedure for the kernel parameter ends when
the maximum number of iterations exceeds the original set algebra or when the absolute
value of the difference between the best fitness (classification accuracy) for 10 successive
generations is less than 0.001.
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Table 1. Rotation angle adjustment strategy.

xj bestj f(x) > f(best) ∆θj
s
(

αj,βj

)
ajβj > 0 ajβj < 0 aj = 0 βj = 0

0 0 FALSE 0 0 0 0 0
0 0 TRUE 0 0 0 0 0
0 1 FALSE 0.01π +1 −1 0 ±1
0 1 TRUE 0.01π −1 +1 ±1 0
1 0 FALSE 0.01π −1 +1 ±1 0
1 0 TRUE 0.01π +1 −1 0 ±1
1 1 FALSE 0 0 0 0 0
1 1 TRUE 0 0 0 0 0

3.3.3. Simulation Analysis

Four standard data sets from the UCI standard database—wine, iris, appendicitis,
and glass—were chosen as experimental data in order to assess the efficacy of QGA in the
optimization of MSVM kernel parameters. The experimental data were categorized using
QGA, GA, and PSO, respectively. The quantity of samples, dimensions, and categories for
the four-test data in the UCI data sets are shown in Table 2.

Table 2. The UCI standard data sets for test.

Data Set Number of Samples The Sample
Dimensions

Number of
Categories

Wine 178 13 3
Iris 150 4 3

Appendicitis 106 7 2
Glass 214 9 6

The average classification accuracy after 50 classification simulations of four test data
from the UCI data sets is shown in Figure 4. Figure 4 shows the accuracy of the MSVM
classification optimized by the three distinct methods for the four test data sets of wine, iris,
appendicitis, and glass. While GA-MSVM and PSO-MSVM have varying test results for
various types of data, QGA-MSVM has the greatest average classification accuracy. This
result showed that, while the GA and PSO algorithms have some issues, such as kernel
function parameter values falling into the local optimum, premature convergence, which
do not converge to the optimal kernel parameter value, the QGA algorithm can adaptively
select the best kernel function parameters each and every time during the testing process.
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4. Experimental Method
4.1. Participants

Eight healthy people (eight men, mean age 24.8± 1.8 years, average height 171.8± 6.7 cm,
middleweight 651 ± 0.4 kg) took part in our research. All individuals had normal or
corrected-to-normal eyesight and were right-handed. None of them had a history of
neurological or mental illnesses [40,41]. In the experiment, the Ag-AgCI disc-like electrode
was applied using Neuroscan, and the EEG data were recorded using the worldwide
standard 10–20 system electrode insertion technique. The sampling rate was 1000 hertz
(Hz). The potential change on the scalp during the measurement traveled via the wire from
the electrode to the electroencephalograph through the conductive paste. The electrode put
on the body, such as the earlobe, served as the reference electrode. The working electrode
placed on the scalp served as the working electrode, and the difference value between the
working electrode and the reference electrode was the final EEG signal that was recorded
(see Figure 5).
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4.2. Design of the Task

Driving duties were split up into three separate scenarios throughout the experiment:
the sea basin region, the seamounts area, and the hydrothermal area. The hydrothermal
region requires additional hydrothermal vents and other impediments since the landscape
there is hilly with significant changes, unlike the sea basin area, which has a relatively level
plain topography (see Figure 6).
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Figure 6. Terrain of sea basin and hydrothermal field. (a) Terrain of sea basin; (b) terrain of
hydrothermal field.

Participants had to operate the submersible to avoid obstacles, arrive at the stated
location within the allotted time, and attempt to maintain a height above the ground
between 2 and 6 m. On the imaging sonar, the target’s position was dynamically presented.
The mission was completed when the indicated site was reached or after the allotted three
minutes. On the first day, the fifth day, and the tenth day, the same exam was given to
each participant three times. Figure 7 depicts the experiment platform for the driving
operation task.
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Figure 7. Experiment platform.

According to subjective assessments of the mental burden, task complexity levels
were categorized into three groups. The mental effort levels of the three conditions were
created using the three-task experiment. Driving in the sea basin region has a low workload,
driving near seamounts takes medium effort, and driving near hydrothermal areas has a
high workload.

5. Results and Discussion

EEG physiological data were obtained and evaluated for this investigation. Various
EEG workload indicators may be used to diagnose various elements of a participant’s
cognitive–energetic status. As a result, in order to employ EEG indices for assessing
operator state, it is necessary to understand what each indicator means in connection to
the relevant task. Before EEG indices may be routinely used for applications, the further
investigation of the fluctuation of diagnosticity with task demands is required (see Table 3).

Table 3. EEG changes before, during, and after simulated operation.

Frequency
Band Position Pre Workout 5 Days Out 10 Days Out

θ

Fz 29.3 ± 13.2 28.3 ± 12.1 20.2 ± 5.0 *#

Cz 26.5 ± 11.7 27.0 ± 11.7 19.0 ± 7.2 *#

Pz 23.8 ± 4.4 20.62 ± 6.8 19.2 ± 4.9 *

β

Fz 47.1 ± 14.7 49.2 ± 14.2 55.7 ± 6.2 *#

Cz 49.7 ± 14.3 49.1 ± 13.3 55.9 ± 6.1 *#

Pz 51.5 ± 9.9 57.8 ± 10.1 * 54.7 ± 6.4

Compared to before training * p < 0.05; compared to five days after training # p < 0.05.

Physiological index changes were measured before, during, and after the
simulated operation.

There is a statistically significant increase in the relative power of the wave of Fz in
the operation compared to both pre- and post-training levels (p < 0.05), an increase in
the relative power of the wave of Cz and Pz compared to pre-training levels (p < 0.05),
and a statistically significant decrease in the power of the wave of Fz and Pz compared to
pre-training levels (p < 0.05). The strength of the wave of Cz is substantially lower than
before the surgery after 5 days of training (p < 0.05), whereas the waves of Fz and Cz are
both significantly greater. After the operation, the relative power of the Pz wave is much
greater than it was before, and during the operation (p < 0.05), the relative power of the
wave is significantly higher than it was before. None of these modifications took place
after 10 days of training. With the help of the aforementioned analysis, we could classify
the mental burden of oceanauts using the EEG after five days of training. We then chose
the training and test data and used KNN, BP, Random Forest, SVM, and QGA-MSVM (see
Figure 8).
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Table 4 makes clear that there are obvious individual variances among the eight
patients. KNN has the greatest classification accuracy (73.6%), BP has the highest classi-
fication accuracy (80.2%), RF has the best classification accuracy (75.9%), and SVM has
the highest classification accuracy (73.6%). The average classification accuracy for each
model is SVM > BP > RF > KNN, with a classification accuracy rate of 79.6%. The SVM
classification impact is superior in terms of accuracy rate. Even if the SVM classification
model’s classification has improved, the average accuracy still needs to be raised. The
penalty parameter C and the kernel width g have a major role in the success of the SVM
algorithm. The proper C and g values are difficult to predict in advance. The findings show
that the QGA-MSVM model’s recognition accuracy is much better than that of KNN, BP,
RF, and SVM; the model’s average accuracy is 91.8%. As a result, the QGA-MSVM model is
better suited for identifying mental burden based on the data presented above.
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Table 4. Results based on EEG signals.

Participants
Driving Task

KNN BP Random Forest SVM QGA-MSVM

01 70.5% 79.2% 78.5% 78.7% 92.1%
02 72.9% 79.0% 69.6% 77.2% 92.3%
03 67.5% 69.2% 77.4% 79.4% 83.8%
04 80.1% 83.6% 82.4% 86.1% 86.5%
05 62.6% 77.8% 67.3% 81.8% 92.1%
06 72.7% 83.5% 80.8% 77.4% 84.9%
07 82.3% 89.3% 78.2% 79.2% 85.3%
08 79.8% 75.5% 72.7% 81.5% 80.5%

Mean 73.6% 79.6% 75.9% 80.2% 91.8%

6. Conclusions

This research proposes a QGA-based technique for MSVM kernel function parameter
optimization. QGA adaptively selects the best kernel parameters because of its great
global search capability, variety of population, quick convergence speed, and quick parallel
processing time. The simulation results demonstrate that the performance of QGA-MSVM
is superior to that of PSO and GA using the four data sets from the UCI standard data
set as measured data. Statistics were used to analyze EEG data from driving simulation
operating experiments conducted in sea basin, seamount, and hydrothermal areas. After
5 days of training, EEG data were chosen, and QGA-MSVM was used to determine the
mental burden of oceanauts. The findings demonstrate that the QGA-MSVM algorithm is
capable of accurately detecting the oceanauts’ mental workload while they are operating
a vehicle. The average accuracy of the QGA-MSVM model is 91.8%, and it serves as a
foundation for an intelligent evaluation of the oceanauts’ mental workload.

In addition to navigating past hazards and risky locations when diving, oceanauts
must also use complicated equipment within the manned compartment to carry out duties
like setting up markers and collecting sediment and water samples. Oceanauts must also
perform diving activities, create and modify dive plans depending on the topography of
the seabed, and continuously check system status.

During deep diving missions lasting more than 10 hours, Oceanauts dive many
kilometers down in a cramped and small workspace inside the manned compartment,
necessitating extended hours of observation and unbroken operating. They continue to
labor in a very stressful condition, mostly carrying cognitive burdens.

Time constraints, safety concerns (complicated deep-sea topography), environmental
considerations (abnormal temperature, vibration, acceleration, or noise), and the diffi-
culty of the jobs all affect how much cognitive work they must do. Their productivity
is greatly reduced when the cognitive load is too high or too low, which may result in a
variety of operational mistakes, neglect, disorder, physio-logical stress, and even serious
safety mishaps.

It is crucial to accurately gauge the cognitive load level of oceanauts in order to
minimize human mistakes, ensure diving safety, improve the design of human–machine
interfaces, and select and train oceanauts. Additionally, this offers helpful references for
the creation of portable oceanauts for the real-time cognitive load monitoring of divers.

Future research will include more thorough physiological data collection from subma-
rine divers during actual diving operations. This study may further our understanding of
the physiological, psychological, and cognitive demands placed on submarine divers in
real-world operational settings.

The more precise measurement and assessment of the cognitive load of submarine
divers in undersea robotic systems may be aided by the creation of an individual database
on submarine divers, which can be established; the Submarine Simulator Operating Sys-
tem’s improvement; the use of mechanical arms and submarine motion equations to more
accurately calculate their movements; increasing the visual effects’ realism by further opti-
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mizing them both inside and outside the submarine’s cabin; and making the simulation
operating system more realistic and immersive thanks to VR design. The following are
particular ways to improve the cognitive load recognition model: increasing the amount
of data and parameters used to quantify cognitive load and train the recognition model;
and increasing the precision of load categorization, considering and enhancing more com-
plicated machine learning techniques. Currently, the tasks in the simulated tests do not
completely cover all the execution processes since operating and driving mechanical arms
is a difficult undertaking. The cognitive burden of operators will vary depending on the
work; hence, more difficult tasks need additional research.

7. Contributions

In order to develop a reasonable operation process and to effectively intervene when
the mental load of the underwater crew is too small or too large (man–machine function
redistribution, the responsibility redistribution of the chief and co-pilot, and task strategy
reselection), physiological indicators are used. Preventing occupational illnesses and pilot
weariness, safeguarding their physical and mental health, lowering human mistake rates,
and enhancing the safety of underwater navigation are all very important aspects.
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