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Abstract: For robot-assisted dental implant surgery, it is necessary to feed the instrument into a speci-
fied position to perform surgery. To improve safety and efficiency, a preoperative planning frame-
work, including a finite-parameter surrogate model (FPSM) and an automatic instrument-placement
method, is proposed in this paper. This framework is implemented via two-stage optimization. In
the first stage, a group of closed curves in polar coordinates is used to represent the oral cavity. By
optimizing a finite number of parameters for these curves, the oral structure is simplified to form
the FPSM. In the second stage, the FPSM serves as a fast safety estimator with which the target
position/orientation of the instrument for the feeding motion is automatically determined through
particle swarm optimization (PSO). The optimized feeding target can be used to generate a virtual
fixture (VF) to avoid undesired operations and to lower the risk of collision. This proposed frame-
work has the advantages of being safe, fast, and accurate, overcoming the computational burden and
insufficient real-time performance of complex 3D models. The framework has been developed and
tested, preliminarily verifying its feasibility, efficiency, and effectiveness.

Keywords: dental implant surgery; surrogate model; virtual fixture; particle swarm optimization

1. Introduction
1.1. Background and Task

Tooth loss is one of the most common oral diseases, especially among middle-aged
and elderly people [1–3]. Tooth loss not only reduces life quality, but is also related to
other disorders [4,5]. Dental implant surgery, as one of the most powerful therapies [6],
can restore the function of teeth [7,8]. However, traditional dental implant surgery mainly
relies on manual operation by the surgeon, bringing more burden and a relatively lower
accuracy. Additionally, in many regions where medical resources are scarce, many patients
with tooth loss will not receive qualified medical treatment in time.

With the development of automation technology, robot-assisted dental implant surgery
provides new solutions [9], with great potential to provide better surgery, free dentists from
heavy work intensity, and alleviate the shortage of professional dentists in less-developed
regions [10]. Given these advantages, robot-assisted dental implant surgery is likely to
gradually become mainstream in the future [11].

This paper focuses on a new dental implant robot system (DIRS). To perform the
surgery, it is necessary to feed the instrument into the specified position inside the oral
cavity. For this task, our team has already proposed a virtual fixture (VF) for oral surgery in
previous work [12], in which its geometry and effect mode was designed. However, in our
previous work, the target should be defined manually, causing some uncertainty and risk
of collision. Also, manual definition can increase time expenses. Therefore, our previous
work is incomplete; an automatic preoperative placement method, which can define the

Bioengineering 2023, 10, 952. https://doi.org/10.3390/bioengineering10080952 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10080952
https://doi.org/10.3390/bioengineering10080952
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://doi.org/10.3390/bioengineering10080952
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10080952?type=check_update&version=1


Bioengineering 2023, 10, 952 2 of 24

target and VF without any participation by surgeons, is needed to expand the previously
proposed VF method to finish the task safely and efficiently.

1.2. Related Works

In recent years, robotics for oral and dental surgery has been studied. Sun et al. devel-
oped an implant robot system by introducing coordinate measurement equipment [13,14].
Yu et al. developed an image-based implant system. In their work, the artificial potential
field method was adopted for navigation [15]. From 2018 to 2020, a research team from the
University of Hong Kong designed a cable-driven robotic system for dental surgery [16],
built master-slave mapping, analyzed system stiffness [17], and proposed a compensation
strategy for the system [18]. Later, in 2021, researchers from Shanghai Jiaotong University
developed a dental implant system based on a hybrid serial-parallel mechanism, with
a real-time iterative trajectory-generating algorithm proposed [19]. The system is also
combined with a force-based dragging control strategy and a 3D navigating system [20].
Additionally, a trans-oral robot was developed for COVID-19 PCR testing [21]. Hence,
comprehensive works have been conducted for developing robot-assisted oral surgery
systems, making contributions to the emerging field.

Since most surgical robots are designed in the form of master-slave control or teleop-
eration, to perform safe guidance, VF is a key issue, including its definition, generation,
and application. The concept of VF was first proposed by Rosenberg [22]. Then, the main
framework of virtual fixture was established by defining different types of VFs [23,24],
and the admittance control strategy was combined [25,26]. Subsequently, some applica-
tion strategies were proposed by scholars. Tang et al. replaced the organs with a set of
bounding boxes, which were preoperatively defined through 3D measurement, and then
established the VF through collision detection and force feedback [27]. Their method can
improve safety during master-slave operations. Also, some novel geometry-based VF for
robot-assisted surgery were proposed, including the offset surface of CAD models [28], or
training a neural network to fit the geometry of the organ to build a virtual fixture [29].
Furthermore, force feedback control can be applied to VF. A team from Johns Hopkins
University established a VF by converting the contact force to the adjusting velocity of the
instrument for a leader-follower dual-arm surgical robot [30]. The above works include
the basic framework and different application strategies of VF, and are very helpful for the
work in this paper.

In terms of preoperative positioning and planning, although it is usually not the most
critical issue, it is still useful for safe operation. Some researchers were attracted and
developed some methods for preoperative positioning and planning. Yu et al. proposed an
automatic preoperative positioning method based on parameterization and reinforcement
learning [31] which built the model of the lesion and its spatial relationship with the
surgical robot, obtaining the best position and direction to intervene in the body and where
to place the surgical robot. A research team from Tianjin University assessed the motion
skill and kinematics of a surgical robot [32,33], which was used to optimize preoperative
planning. Preda et al. developed a preoperative planning software called iMTECH, which
can determine the optimal position for surgery [34]. Badani et al. optimized the placement
of the camera port for invasive surgery to minimize the risk of collision [35]. Banez
et al. conducted similar works to determine an optimal port placement [36]. In a word,
for preoperative positioning, safety, dexterity, and the workspace are typical items to be
considered, and optimization methods are often adopted to obtain a desirable setup before
the surgery.

Except for classic models or methods, some AI-based modern approaches can also
make sense in the field of medical robotics, especially for detecting [37,38], sensing [39],
and planning, which can provide a broader spectrum for dental implanting tasks. For ex-
ample, by exploiting the time-series predicting ability, a research team from Johns Hopkins
University proposed an RNN-based auxiliary framework to prevent dangerous operations
during surgery [40,41]. Lin et al. developed an evaluating method for surgical operation



Bioengineering 2023, 10, 952 3 of 24

based on a neural network [42]. Moreover, some advanced networks have great potential to
enhance the performance of data-driven applications, such as the EGNN network proposed
by Liu et al. [43], which can solve the problem of incomplete and noisy original data.
Similarly, a novel heterogeneous network representation learning method can improve
the accuracy of pattern classification [44], which can be useful for improving the safety
of robot-assisted surgery. In addition, at the hardware level, some advanced sensors can
endow mechatronics integration systems, especially medical robots, with more flexibility
and intelligence [45]. These studies are novel and insightful, having an optimistic prospect
for dental surgery.

A series of problems were solved by the above-mentioned research. However, from
a broader point of view on medical robotics, as Haidegger pointed out [46], due to the
complexity of the environment and task, most existing systems are implemented via master-
slave operations without sufficient cognitive ability and autonomy. For instance, a neural
network evaluating the surgical operation [42] still lacks decision-making intelligence,
meaning that a partial autonomy method and an array of standards or protocols for au-
tomation should be fulfilled, for which Nagy et al. have performed beneficial work on this
issue [47]. As mentioned before, VF is a key technology for master-slave surgery. How-
ever, current studies rarely involve VF focused on oral surgery. Automatic preoperative
placement methods and VF generation for oral surgery are also limited. For example, in the
study of Tang et al. [27], VF is still assigned by manual measurement. This condition lowers
the fault tolerance and safety under the geometric configuration of oral surgery, since some
unexpected faults may exist during manual planning. Therefore, this paper aims to propose
a fast but accurate collision-detection model, and then derive an automatic method for the
setup of the feeding target, as well as the previously proposed virtual fixture. The main
contributions of this paper can be listed as follows:

• A new finite-parameter surrogate model (FPSM) is proposed, in which the oral cavity
is replaced by a group of closed curves described in the polar coordinate system. All
the parameters of closed curves can be optimized to fit the oral structure. This can
significantly increase the real-time performance and reduce the computational burden
for most of the planning tasks in which complex 3D oral structures should be involved.

• Based on the FPSM, an efficient collision-detection method can be determined through
cylinder-to-line simplification of the instrument’s rod.

• The feeding target is automatically placed through the particle swarm optimization
(PSO) algorithm, which is the second stage of optimization, forming the preoperative
planning framework.

• The framework is an essential expansion of the previous work on VF. With the VF and
the planning framework combined, a full strategy is established.

The rest of this paper is organized as follows. Section 2 presents the DIRS and the
previously proposed VF. Section 3 introduces the FPSM, including closed curves and the
first stage of optimization. Section 4 describes the collision detection, safety estimation, and
the automatic placement of the feeding target based on the second stage of optimization.
Simulations and results are given in Section 5. Finally, conclusions are drawn in Section 6.

2. System, Task, and Framework
2.1. System Constitution

The DIRS consists of a universal manipulator (AUBO-i10), a master controller (PHAN-
TOM Omni), an implanting actuator (driven by a FAULHABER-2036B brush-less motor
and controlled by a BECKHOFF-CX2030 embedded controller), a laser drilling actuator,
and a vision system (HIKVISION’s camera). The universal manipulator, which has six
degrees of freedom (DOFs), carries the two actuators mounted on it. The laser drilling
device is responsible for drilling a hole in the jaw bone. The implant actuator is used to
place an implant into the hole. The vision system provides the position/ orientation of the
oral cavity. The DIRS is shown in Figure 1.
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Figure 1. The constitution of the DIRS.

2.2. Planning Task for Virtual Fixture

In our previously proposed work [12], the workspace is regarded as a conical space,
as the instruments are inserted into the oral cavity (Figure 2a); thus, the virtual fixture
consists of several conical segments (Figure 2b). Once the surgical instrument exceeds the
conical space, the VF will push the instrument back to the VF, which is the safety effect
of VFs. The last segment of the VF, which is mainly inside the oral cavity, is a cylinder
whose radius is usually set to be the surgical tool’s radius. When the tool is inside the
oral cavity, this condition makes it move along a straight line, which is the axis of the
VF, and any movements beyond the VF’s axis will be hindered. Additionally, the linear
movement is described relative to the oral cavity, meaning that the disturbance movement
of the patient’s head, which corresponds to the motion control of the manipulator, will
not be considered in this paper. In other words, all the coordinate systems and geometry
objects discussed later are based on the oral cavity.
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With the definition of the conical VF, the task of preoperative planning is to place the
straight line, including its position and orientation. When the straight line is determined,
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the VF can then be formed with its axis coinciding with the line. The relationship between
the VF and preoperative placement is shown in Figure 2c. It can be seen from Figure 2c
that the VF can be placed using a position and an orientation, forming the feeding target to
be optimized in this work.

2.3. Overview of Two-Stage Optimization Framework

The proposed planning framework consists of two main modules, both of which are
calculated with iterative optimization. The first module is the FPSM, which represents the
complex surfaces of the oral cavity using an array of fitting curves that are determined
by finite parameters. By optimizing these parameters, the numerical fitting of the oral
structure is performed, forming a cage-shaped surrogate model that can estimate collisions
between a geometric object and the FPSM. Hence, optimizing the parameters of FPSM in
the first module is the first stage of optimization.

Then, the FPSM module plays the role of collision detector, which can determine the
collision status between the surgical instrument and the oral cavity both qualitatively and
quantitatively, providing the objective function for the placement of the VF. By optimizing
the objective function formed by the FPSM, the placement result can be obtained. Thus,
optimizing the placement of the VF is the second stage of optimization.

In a word, the first stage of optimization is the basis and prerequisite for the second
stage of optimization, and the second stage of optimization provides the desired preopera-
tive planning result directly to the users. The two-stage optimization, which is the mainline
for the proposed framework, is shown in Figure 3.
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3. Finite-Parameter Surrogate Model

In this section, a FPSM is designed. Based on the triangular mesh of preoperative
scanning, a set of closed curves in polar coordinates is used to simulate the triangular mesh.
In other words, the oral cavity is represented by a series of parameterized slices instead of
the triangular mesh, as shown in Figure 4. This section, replacing the complex triangular
mesh with a simple model, is the basis of real-time collision detection, on which automatic
placement of the VF is based.
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3.1. Parameterization of Closed Curves

All the closed curves are described in polar coordinates, which are in the form of
ρ(θ), with 0 ≤ θ < 2π always holding. The origin of the polar coordinate system is the
intersection point of the Z-axis and the slice plane. The function ρ(θ) is represented by
a piecewise cubic polynomial, containing N segments, which can better represent more
complex cross-sections in the three-dimensional oral structure. Let the i-th segment of ρ(θ)
be ρi(θ), seen as follows.

ρi(θ) = ai + biθ + ciθ
2 + diθ

3 2π(i− 1)
N

≤ θ <
2π i

N
(1)

where ai, bi, ci, and di are the polynomial coefficients of ρi(θ). N is the number of segments
of ρ(θ). The larger N is, the more undetermined parameters there are, but the fitting
capacity is higher. Contrariwise, as N becomes less, fewer parameters have to be solved.
However, the fitting accuracy will be lower. When N = 6, one example of the closed curve
function ρ(θ), described in polar coordinates, can be seen in Figure 5.
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Since ρ(θ) is formed of several segments, some constraints must be satisfied at the
connecting points between two segments. As a continuous and smooth function, the
function values and derivative values are continuous at the connection points. Additionally,
to avoid the oscillation of the function, the derivative values at the connection points are
designed to be equal to the average change rate among two adjacent segments. These
constraints can be written as

ρi(2π i/N) = ρi+1(2π i/N) = ρi+1

ρ′i(2π i/N) = ρ′i+1(2π i/N) =
−
v i,i+1

−
v i,i+1 =

N(ρi+2−ρi)
4π

(2)

where i is the index of the i-th segment with 1 ≤ i ≤ N. vi,i+1 denotes the average derivative
value of segments i and i + 1. What has to be explained here is that the index is cyclical,
that is to say, the circumstance where i = N + 1 is equal to i = 1, and the circumstance
where i = N + 2 can be replaced by i = 2. This definition provides how to deal with the
out-of-range index for Equation (2).

It can be seen from Equation (1) that there are 4N undetermined parameters to obtain
a closed curve. Also, 4N constraints exist in Equation (2), which means the closed curve
ρ(θ) can be obtained by solving the linear equation, as shown in Equation (3).

M · a = b
M =

[
Mρ; Mv

]
a = [a1, b1, c1, d1, a2, b2, c2, d2, · · · cN , dN ]

T

b =
[
bρ, bv

] T

(3)
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where a is the coefficient vector that includes all the required polynomial coefficients to
determine the whole closed curve ρ(θ). M is the constraint matrix assembled using the
function value constraint matrix Mρ and the derivative value constraint matrix Mv , as
shown in Equation (4). b is the constraint vector accompanied by M, which is assembled
using the function value constraint vector bρ and the derivative value constraint vector
bv , as shown in Equation (5). All polynomial coefficients can be obtained by solving the
equation M·a = b.

Mρ =

 P0 O
. . .

O PN−1

 Mv =

 Q0 O
. . .

O QN−1


bρ = [ρ1 ρ2 ρ2 ρ3 ρ3 · · · ρN ρN ρ1]

bv =
[
−
vN,1

−
v1,2

−
v1,2 · · · −

vN−1,N
−
vN−1,N

−
vN,1

] (4)

where ρ1, ρ2, ρ3, · · · ρ6 can be found in Figures 5 and 6, which are the ρ values of the
connecting points, and can be adjusted to change the function ρ(θ). vi,i+1 is the same symbol
explained in Equation (2). Pj and Qj are constant matrices to assemble the constraint matrix
M, shown as follows.

Pi =

 1 2π i
N

(
2π i

N

)2 (
2π i

N

)3

1 2π(i+1)
N

(
2π(i+1)

N

)2 (
2π(i+1)

N

)3


Qi =

 0 1 4π i
N 3

(
2π i

N

)2

0 1 4π(i+1)
N 3

(
2π(i+1)

N

)2


(5)
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At this point, the parameterization process for the closed curve is conducted, that
is, ρ1, ρ2, ρ3, · · · ρN (or N control points) are the parameters that can fully determine
a closed curve/slice, and the closed curve can be intuitively deformed to suit the 3D
structure/boundary according to these ρ values. As shown in Figure 6, when N = 6, the
six connecting points (or control points) are located on the constraint lines. By adjusting
the polar radius ρ1, ρ2, ρ3, · · · ρ6, the shape can be randomly changed. Therefore, to find
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the best closed curve, the problem is converted to finding the best combination of the six
polar radii ρ1, ρ2, ρ3, · · · ρ6.

3.2. Parameter Optimization of Closed Curves

As introduced in Section 3.1, when the closed curves are parameterized, the shape of
the closed curve will be uniquely determined by the N control points. However, the FPSM
cannot be adopted until it is optimized to make the closed curve fitted to the oral structure.
On the one hand, if the volume of the FPSM is obviously smaller than the oral structure,
many feasible spaces for VF placement will no longer accessible for planning. On the other
hand, if the FPSM is apparently larger than the oral cavity, the planning result may well
penetrate the surface of the oral cavity, causing risks of damaging the tissue. Following
these reasons, there are two principles of objective function for optimization (stage 1):

1. The area of the closed curve should be as large as possible to better-simulate the
boundary of the oral structure, and the maximum possible area is when the closed
curve exactly coincides with the boundary. This point aims to provide accessible
spaces for preoperative planning as much as possible.

2. The closed curve should not collide with the triangular mesh, or should only al-
low very slight collisions to be accepted. This point aims to prevent collisions and
ensure safety.

In the framework, optimization for closed curves of the FPSM is the first stage of
optimization, and its iterative pattern is presented as follows: let the area of a closed curve
be S; after all the polynomial coefficients ai, bi, ci, and di are obtained by using Equation (3),
the area S can be obtained as follows

S = 1
2

∫ 2π
0 ρ(θ)2 dθ

= 1
2

N
∑

i=1

(
a2

i θ + aibiθ
2 +

2aici+b2
i

3 θ3 + aidi+bici
2 θ4

+
2bidi+c2

i
5 θ5 + cidi

3 θ6 +
d2

i
7 θ7

)∣∣∣∣
2π(i−1)

N

2πi
N

(6)

Except for the area S, which is the one important part of the optimization objective,
another requirement is to avoid interference or only accept very slight interference. Fol-
lowing this requirement, the penalty function method is adopted, serving as another part
of the optimization objective. To evaluate the extent of interference between the closed
curve and the triangular mesh, Z sampling points are evenly distributed on ρ(θ). By
counting the number of sampling points penetrating the boundary Zpene, which can obtain
the rate of interference fpene = Zpene/Z, the extent of the collision can be estimated. For
example, if one sets Z to be 360, then the angles of the sampling points are 0◦, 1◦,. . .,359◦;
when 36 out of these 360 sampling points penetrate the boundary, fpene = 0.1. Then, let
λpene

(
λpene > 0

)
be the penalty coefficient. The optimization objective function Faim can

be written as
Faim = −S + λpene f 2

pene (7)

where λpene f 2
pene is the penalty term to reduce the collision.

In Equation (7), when S is getting larger or fpene is getting smaller, the performance is
better, or the performance will get worse otherwise. Generally, to better-prevent interfer-
ence, the penalty coefficient λpene should be relatively bigger, such as λpene = 100, 000. In
that case, even a very slight interference can trigger a significant increase in the penalty term
λpene f 2

pene, which can make the performance Faim become much worse. Thus, the closed
curve will not penetrate the boundary, or only a very small contact with the boundary will
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occur. Then, the objective function can be optimized by using the gradient descent method,
as shown in Equation (8).

ρk+1 = ρk − α

∂Faim
∂ρk

|| ∂Faim
∂ρk
||

(8)

where ρk is the ρ value in the k-th round of iteration. α is the size of the iteration steps,
such as α = 0.1. For the partial derivative term, it can be approximately calculated using
numerical differentiation:

∂Faim

∂ρi
≈ Faim(ρi + ∆ρ)− Faim(ρi − ∆ρ)

2∆ρ
(9)

With the optimization process, one slice can be determined. Another example is
shown in Figure 7a, where a predefined boundary is drawn in red, and the optimized
curve for fitting the boundary is drawn in blue. It can be seen from Figure 7a that there
are 20 control points being used, meaning that 20 parameters are involved in this slice.
The ρ(θ) function for the closed curve is shown in Figure 7b. This case illustrates that the
complex boundary can be approximately fitted by another simple curve, which is adequate
for collision detection. This will be discussed in Section 5.
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3.3. Establishment of FPSM

In Sections 3.1 and 3.2, a single slice can be established. When an array of slices
are arranged evenly through the oral cavity, the triangular mesh can be replaced by the
group of slices, as shown in Figure 4. Letting the number of slices be M, there are M polar
coordinate systems whose origins coincide with the Z-axis in Figure 4.

To accelerate the establishment of the FPSM, a pre-assignment step is important. For
a slice, it corresponds to a container, and all triangles intersecting with the slice will be
put into its container. Then, for triangles in the container, only triangles aligned with Z
sampling points (see the definition of fpene in Equation (7)) will be retained, and the others
will be abandoned. Therefore, during the optimization, only triangles in the containers will
be involved, avoiding the calculation of the entire triangular mesh, which can accelerate
the optimization to a great extent. The steps to establish the FPSM are listed as follows, and
are also seen in Figure 8.
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4. Automatic Placement of Feeding Target

In Section 3, the FPSM was obtained by the first stage of optimization. Based on the
FPSM, an optimization-based preoperative placement method is presented, which is the
second optimization process for the preoperative framework. In this section, an objective
function is designed via collision detection and safety evaluation using the FPSM. Then,
undetermined parameters of the feeding target are extracted and optimized by the PSO
algorithm, obtaining the best position/orientation to place the virtual fixture.

4.1. Collision Detection and Safety Estimation

For collision detection, the relationship between the FPSM and spatial elements (e.g.,
point, line, cylinder) is the core. As shown in Figure 9, for a point P coinciding with a slice
whose closed curve is ρ(θ), the safe distance is

dsafe = ρ(θP)−
√

x2
P + y2

P (10)

where d(k)safe is the safe distance, which is the remaining distance from penetrating the FPSM.
xP, yP, and θP are shown in Figure 9. If dsafe > 0, point P is regarded to be inside the
boundary; otherwise, a collision is detected. If point P is located between two adjacent
slices S1 and S2, the safe distance can be obtained via linear interpolation.

dsafe = d(S1)
safe +

(
d(S2)

safe − d(S1)
safe

)
dP,S1

dS1,S2
(11)

where d(S1)
safe and d(S2)

safe are safe distances of P’s projection points on S1 and S2, dS1,S2 is the
distance between S1 and S2, and dP,S1 is the distance between P and S1.
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For a line segment L, assume m slices are intersected by line L. The intersection points
are Q1, Q2, · · · , Qm, as shown in Figure 10b. Qualitatively, when d(Q1)

safe , d(Q2)
safe ,. . ., d(Qm)

safe are
all larger than zero, line L is regarded as collision-free. If one or more of the dsafe values is
less than or equal to zero, a collision is detected.
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Figure 10. Collision detection for a line/rod: (a) Rod and FPSM. (b) Shrink the FPSM for collision
detection, which is collision detection between a line and the FPSM.

Then, for a cylinder shown in Figure 10a, collision detection is similar. Letting the
radius be r, by simplifying the rod into a line while shrinking the closed curve inward by r
(that is, shrink the finite-parameter surrogate model by r), the collision detection of a rod is
just the same as a line, as shown in Figure 10b.

ρ∗(θ) = ρ(θ)− r (12)

where ρ∗(θ) is the closed curve when the FPSM is shrunk by r. The polar coordinate of the
FPSM is quite convenient. Collision detection for a rod is illustrated in Figure 10.

The above steps can qualitatively check whether a collision occurs. However, to
optimize the placement of the VF, a method that can quantificationally evaluate the safety
performance is required, for which a safety indicator should be designed. Here, the safety
indicator of a rod can be written as:

fsafe =


λavg
m+1

(
d(T)safe +

m
∑

i=1
d(Qi)

safe

)
+ λmind(min)

safe

(
d(min)

safe > 0
)

λmind(min)
safe

(
d(min)

safe ≤ 0
) (13)

where fsafe is the safe indicator for a line/rod and d(min)
safe = min

{
d(Q1)

safe , d(Q2)
safe , · · · , d(Qm)

safe , d(T)safe

}
is the minimum safe distance among m + 1 safe distances. m is the number of intersection
points between the line and the slices, along with the endpoint T, forming the m + 1
sampling points to decide whether a collision occurs. The first term using λavg is the
average value term and the second term using λmin is the extreme value term. λavg and
λmin are the weighting coefficients of the average and minimum safe distance.

In Equation (13), when a collision is detected, it can be asserted that d(min)
safe ≤ 0

always holds true. In this case, the average value term loses its meaning, and only the
extreme value term will remain in Equation (13), which can not only qualitatively determine
whether a collision occurs, but can also quantificationally assess the extent of the collision.
Contrariwise, when no collision occurs, d(min)

safe ≥ 0 always holds true, and the indicator
fsafe must be larger than 0. The larger fsafe is, the safer the VF can be. Briefly, if fsafe is larger
than zero, the situation is collision-free, or a collision is detected. For fsafe, the larger, the
better, the smaller, the worse.
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4.2. Establishment of Objective Function

To determine which position/orientation the VF should be placed in, the safety should
be quantificationally evaluated, establishing the objective function by using the collision
detection model discussed in Section 4.1.

As illustrated in Figure 11a, the feeding direction is along the rod’s axis. After the
tool is aligned with the hole, only two DOFs can adjust the placement of the VF: linear
movement along the hole’s axis, and rotation around the hole’s axis. By adjusting the two
DOFs, a relatively safer preoperative setting of the VF can be found.
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Figure 11. Collision detection for feeding process: (a) Two adjustable DOFs. (b) Geometry model to
build objective function.

In Figure 11b, the rod is simplified to line1, with the FPSM and its shrunk model
shown. In addition, line2 is defined for obstacle avoidance. This is because the space swept
by the feeding motion along line1 may collide with the tissue. In other words, the geometry
model should represent the whole occupied space rather than one instant. Following the
geometry model, the objective function for VF placement can be built as:

Fsafe = −
(m1 + 1)sgn

(
f (L1)
safe

)√∣∣∣ f (L1)
safe

∣∣∣+ (m2 + 1)sgn
(

f (L2)
safe

)√∣∣∣ f (L2)
safe

∣∣∣
m1 + m2 + 2

(14)

where Fsafe is the objective function for placement. f (L1)
safe and f (L2)

safe are, respectively, the
fsafe value for line1 and line2 calculated using Equation (13). m1 are m2 are the number
of intersection points of line1 and line2. The two fractions, decided by m1 and m2, are the
weights of f (L1)

safe and f (L2)
safe .

During the second stage of optimization, whose target is Equation (14), when f (L1)
safe and

f (L2)
safe are all larger than 0, a collision-free solution is found, or the current placement cannot

be accepted. The smaller Fsafe is, the better the placement of the VF. After the iterative
algorithm (the second stage of optimization) returns its result, if f (L1)

safe ≤ 0 or f (L2)
safe ≤ 0, the

placement result is invalid and the optimization has failed.
Further, f (L2)

safe should be calculated by using the none-shrunk FPSM to avoid unneces-
sary adjustment since line2 is not a rod, as is indicated in Figure 11b.

4.3. Optimization of Preoperative Placement

To obtain a relatively satisfied placement of the implant tool and VF, the second stage of
optimization is responsible, where dT and θT should be optimized, which are translational
and rotational parameters along the z-axis of {Hole}, as shown in Figure 12.
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For this stage of optimization, the objective function Fsafe is critical. However, Fsafe
cannot be obtained until it is connected to dT and θT . In Figure 12, the frame {Tool} is
defined with its x-axis along line1 and its z-axis along the rotating axis. The definition of
frames and undetermined parameters for optimization are shown in Figure 12.

In terms of frame {Hole}, its origin is expressed in {Center}, which can be writ-
ten as tch. The z-axis of {Hole} coincides with the hole’s axis, whose unit vector is

Dhz =
(

D(x)
hz , D(y)

hz , D(z)
hz

)T
, described in {Center}, and its x-axis is parallel with the YZ

plane in frame {Center}. Let the x-axis of {Hole} be Dhx =
(

D(x)
hx , D(y)

hx , D(z)
hx

)T
, expressed

in {Center}, which is a unit vector. From the definition, D(x)
hx = 0 holds. Because Dhx is

perpendicular to Dhz, the relationship between D(y)
hx and D(z)

hx is{
D(y)

hx D(y)
hz + D(z)

hx D(z)
hz = 0

D(y)2

hx + D(z)2

hx = 1
(15)

By solving Equation (15), D(y)
hx and D(z)

hx can be obtained as follows.
D(z)

hx =

∣∣∣D(y)
hz

∣∣∣√
D(y)2

hz +D(z)2

hz

D(z)
hx = −D(z)

hz

D(y)
hz

∣∣∣D(y)
hz

∣∣∣√
D(y)2

hz +D(z)2

hz

(16)

With Dhx and Dhz already known, the rotation matrix from {Center} to {Hole}, which
is Rch, can be seen as follows:

Rch =
(
Dhx Dhz ×Dhx Dhz

)
(17)

Then, the transformation matrix Tct from {Center} to {Tool} can be written as:

Tct = Tch · Tht =

(
Rch tch

0 1

)
·
(

Rht tht
0 1

)
=

(
Rch ·Rht Rch · tht + tch

0 1

)
(18)

where Tch is the transformation matrix from {Center} to {Hole} assembled by Rch and tch.
tch is defined based on the 3D model of the oral cavity. Tht is the transformation matrix
from {Hole} to {Tool} assembled by Rht and tht. Rht is the rotation matrix from {Hole} to
{Tool}, which can represent the rotation around the z-axis by θT . tht is the translational
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vector [0, 0, dT ]
T decided by dT , representing the movement from {Hole} to {Tool}. Hence,

the endpoint and the direction of line1 and line2 can be obtained as:

D(1)
line = Rch · [cosθT , sinθT , 0]T

D(2)
line = Rch · [cosθT , sinθT , 0]T[

P(1)
line, 1

]T
= Tct · [r, 0, 0, 1]T[

P(2)
line, 1

]T
= Tct · [r, 0,−d12, 1]T

(19)

where D(1)
line and D(2)

line are the unit direction vector of line1 and line2, and also the first

column of the rotation matrix RchRht. P(1)
line and P(2)

line are the positions of the endpoint of
line1 and line2. r is the radius of the tool. d12 is the length of the implant. With Equation (19),
all the intersection points can be obtained, which can calculate the objective function in
Equation (14). At this point, objective Fsafe is connected to dT and θT , given that line1 and
line2 can be expressed by them.

To find a good combination of dT and θT , an effective optimization algorithm must
be used. Because the objective Fsafe is discontinuous, whose performance is sensitive to
the initial value for iteration, gradient-based algorithms are not palatable. Thus, as one of
the most powerful bionic algorithms, the PSO algorithm was selected to find a satisfied
preoperative placement. The iteration for PSO can be written as: v(i)

k+1 = c0v(i)
k + r1c1

(
x(i)best − x(i)k

)
+ r2c2

(
x(glb)

best − x(i)k

)
x(i)k+1 = x(i)k + v(i)

k+1

(20)

where x(i)k and v(i)
k are, respectively, the position and velocity of particle i in the k-th

iteration, with x = [dT , θT ]
T. c0, c1, and c2 are, respectively, the inertia, self-cognition, and

group-cognition coefficients. r1 and r2 are random values ranging from 0 to 1. x(i)best and

x(glb)
best are, respectively, the best position of particle i and the best position among the entire

particle swarm. The optimization process is shown in Figure 13.
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Figure 13. Process of preoperative placement optimization.

5. Tests, Results, and Discussion

Based on Sections 3 and 4, the FPSM solver, the PSO solver, and a 3D visualization
software (GUI) were developed in C++ language, with another FPSM program written
in MATLAB language for detailed testing. All the programs were run on a PC with
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Intel(R) Core(TM) i5-10200H at 2.4 GHz and 16 GB RAM in a 64-bit win10 system. In the
implementation, the settings of FPSM and PSO were input through GUI and submitted
to the FPSM solver and PSO solver. Also, the pre-assignment was performed through
GUI and submitted to the FPSM solver. After the FPSM was solved in the first stage of
optimization, it played the role of collision detection and safety estimation. Then, based on
the FPSM, the implanting tool’s placement could be solved by the PSO solver. Finally, the
result was displayed in the GUI. The full framework is shown in Figure 14.
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5.1. Test of FPSM Establishment

In this section, the FPSM will be tested using different parameter settings, evaluating
its performance, such as for coverage rate and time consumption. Firstly, for a closed curve
(slice), the number of control points N (Equation (1)) is a critical parameter. When the
number is larger, the coverage rate inclines higher, and the fitting is better. However, the
time consumption tends to be larger when more control points are involved. By adopting
the boundary in Figure 7a, we ran the MATLAB version of the program on MATLAB
R2017b environment; the results of the coverage rate and time consumption are listed
in Table 1. Additionally, the performance data are drawn in Figure 15, including shapes
(Figure 15a), coverage rate (Figure 15b), and consumed time (Figure 15c). In this test, other
settings were λp = 20, 000 (Equation (7)) and α = 1.0 (Equation (8)).

Table 1. Coverage rate and consumed time for optimizing one slice.

N Coverage (%) Time (s) N Coverage (%) Time (s)

3 59.24 0.171 12 90.30 1.161
4 71.09 0.262 13 87.29 1.247
5 60.14 0.215 14 91.28 1.255
6 82.31 0.303 15 88.23 1.926
7 79.11 0.346 16 91.42 1.860
8 79.98 0.459 17 92.05 3.098
9 82.63 0.406 18 90.92 3.969

10 84.07 0.665 19 93.17 4.867
11 86.24 0.653 20 90.87 4.911
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From these data, the main tendency is for the coverage rate to increase when more
control points are involved, although not all the data support this tendency. However,
when the number is larger than 15, such an increase will slow down. Also, as more control
points are involved, the consumed time increases significantly, especially when the number
is larger than 15. To balance the coverage rate and time consumption, the number of
control points can be set to 15, which can cover most of the boundary with relatively less
time consumption.

Then, we used the C++ version of the FPSM solver, which loads a 3D model of the
oral cavity in oral format, and ran the GUI and solver with the following settings: 15 slices,
15 control points for each slice, 150 sampling points for evaluating the collision of each
slice, the penalty coefficient λp was 30,000, the iteration step length α was 0.1, and the
maximum number of iterations was 1000. It took the solver 33.613 s to optimize the entire
model, which consisted of 15 slices. The results are shown in Figure 16, including the
triangular mesh of the oral cavity (Figure 16a), the highlighting of triangles selected by
pre-assignment (Figure 16b), and the optimized FPSM (Figure 16c). In Figure 16, the closed
curves can well-fit the triangular mesh, meaning that these closed curves can represent the
complex triangular mesh, indicating that the FPSM is an effective substitute for the mesh.

5.2. Test of Optimization for Instrument Placement

As mentioned before, the FPSM serves as a fast model for collision detection and
safety estimation. With the FPSM, the position/orientation of the surgical tool’s target can
be determined via the second stage of optimization. The settings for the implanting task
were as follows: the radius of the rod was 6 mm, d12 was 31 mm, and the position and
direction of the implanting hole were tch = [−10,−25, 50]T and Dhz = [0, 1, 0]T, expressed
in {hole}. For the PSO solver, the settings were 30 particles, c1 = 0.3, c2 = 0.4, λavg = 0.5,
and λmin = 0.5. It took the PSO solver 0.299 s to optimize the placement after 76 iterations.
The results were dT = 38.206 mm and θT = −4.005 deg. The optimized placement of the
implanting tool is shown in Figure 17, with a YZ view (Figure 17a), an XY view (Figure 17b),
an XZ view (Figure 17c), and an isometric view (Figure 17d).



Bioengineering 2023, 10, 952 17 of 24Bioengineering 2023, 10, x FOR PEER REVIEW 17 of 24 
 

 
Figure 16. Result of the C++ version of FPSM establishment: (a) Model of oral cavity. (b) Result of 
pre-assignment for triangular mesh. (c) The FPSM is optimized and displayed. 

5.2. Test of Optimization for Instrument Placement 
As mentioned before, the FPSM serves as a fast model for collision detection and 

safety estimation. With the FPSM, the position/orientation of the surgical tool’s target 
can be determined via the second stage of optimization. The settings for the implanting 
task were as follows: the radius of the rod was 6 mm, 𝑑  was 31 mm, and the position 
and direction of the implanting hole were 𝒕 = −10,−25, 50  and 𝑫 = 0,1, 0 , 
expressed in {ℎ𝑜𝑙𝑒}. For the PSO solver, the settings were 30 particles, 𝑐 = 0.3, 𝑐 = 0.4, 𝜆 = 0.5, and 𝜆 = 0.5. It took the PSO solver 0.299 s to optimize the placement after 
76 iterations. The results were 𝑑 = 38.206 mm and 𝜃 = −4.005 deg. The optimized 
placement of the implanting tool is shown in Figure 17, with a YZ view (Figure 17a), an 
XY view (Figure 17b), an XZ view (Figure 17c), and an isometric view (Figure 17d). 

Figure 16. Result of the C++ version of FPSM establishment: (a) Model of oral cavity. (b) Result of
pre-assignment for triangular mesh. (c) The FPSM is optimized and displayed.

Bioengineering 2023, 10, x FOR PEER REVIEW 18 of 24 
 

 
Figure 17. Result of preoperative placement obtained from PSO solver: (a) YZ view. (b) XY view. 
(c) XZ view. (d) Isometric view. 

To further verify whether the solution provided by the PSO solver is a desirable 
one, the solution space was traversed, generating contour plots of the objective function. 
A global view of the objective function is shown in Figure 18a, and a local magnified 
view of the region near the optimal solution is shown in Figure 18b,c. The convergence 
plot of the PSO iteration process is shown in Figure 18d. It can be seen from Figure 18 
that the optimal solution is localized in the pink region, which corresponds to the 
solution where 𝑑 = 38.206 mm and 𝜃 = −4.005 deg. As for the objective value, the 
optimized objective value is −2.611059, corresponding to the value of the pink region. 
With the contour plot, the solution obtained from the PSO solver is verified, meaning 
that this combination of 𝑑  and 𝜃  is a desirable one. 

 
Figure 18. Verify the solution: (a) Global view of objective function. (b) Magnified view. (c) Local 
magnified view near the optimal value. (d) Convergence plot of PSO iterations. 

  

Figure 17. Result of preoperative placement obtained from PSO solver: (a) YZ view. (b) XY view.
(c) XZ view. (d) Isometric view.

To further verify whether the solution provided by the PSO solver is a desirable one,
the solution space was traversed, generating contour plots of the objective function. A
global view of the objective function is shown in Figure 18a, and a local magnified view
of the region near the optimal solution is shown in Figure 18b,c. The convergence plot of
the PSO iteration process is shown in Figure 18d. It can be seen from Figure 18 that the
optimal solution is localized in the pink region, which corresponds to the solution where
dT = 38.206 mm and θT = −4.005 deg. As for the objective value, the optimized objective
value is −2.611059, corresponding to the value of the pink region. With the contour plot,
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the solution obtained from the PSO solver is verified, meaning that this combination of dT
and θT is a desirable one.
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5.3. Discussion

The above-mentioned tests, including the FPSM and placement optimization, verify
the feasibility and effectiveness of the proposed framework. In the framework, the FPSM
provides a fast and intuitive spatial constraint, and the PSO solver can quickly find a target
position/orientation for preoperative feeding and positioning.

In the establishment of the FPSM, it took 33.613 s to deal with the first stage of
optimization when 15 slices were involved whose number of control points was 20. On
average, it took the C++ solver 2.241 s to finish a slice, which is a bit slower than the
MATLAB version and deviates from the usual expectations. This is because this part was
mainly programmed using matrices operations for which MATLAB is usually one of the
fastest environments. Even so, the time consumption can be completely accepted, given
that the stereo scanning of the oral cavity usually lasts several or more minutes. Only half a
minute of additional time for calculating an effective real-time collision detecting model is
worthwhile. Moreover, with multi-core parallel calculation, in which different slices will be
optimized using different computer cores, the time consumption will be much less and the
solving speed will be accelerated by one or more times.

For the FPSM, by testing the coverage rate and consumed time, one can learn that the
two performance indicators are in conflict: better coverage means poorer time consumption,
and better time consumption means poorer coverage. With the testing data, choosing the
number of control points to be 15 can balance the two conflicting indicators. Also, the
parameter selection should not be limited to the testing data, since the computing platforms
differ from each other. If there is no strict speed requirement or the computing platform is
advanced, the slice number and point number can be higher to present a better surrogate
model. Contrariwise, the FPSM should be simplified; for example, the slice number and
the point number can be reduced to 10, in which the time consumption is decreased to
only 12.227 s.

With the FPSM, the PSO solution is much faster. Assuming that 30000 triangles are
included in the mesh, 30 particles are involved in PSO, and 100 iterations are taken for
solving, there are almost 100000000 times of intersection tests between a triangle and the
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surgical tool for the entire PSO solving process. Additionally, the safety estimation for
the objective function may well be complex since too many geometric elements have to
be processed. Moreover, in some cases, the triangular mesh should be shrunk or offset,
for which other complex geometry processing algorithms should be developed. When
the triangular mesh is replaced by the FPSM, all the mentioned concerns can be elim-
inated immediately, making the FPSM an essential part of the proposed preoperative
planning framework.

In addition, the FPSM is not only a part of the preoperative planning framework
but also a multifunctional model for other tasks. For example, in real-time automatic
obstacle-avoidance trajectory generating, the triangular mesh cannot be directly adopted
because too much calculation has to be dealt with. Alternatively, the FPSM provides a
fast and accurate collision-detection model which is suitable for online path planning or
trajectory generation. Furthermore, in teleoperation under master-slave control, the FPSM
can act as a real-time collision-alarming mechanism, which can warn the operator when
the current situation is dangerous. Therefore, the FPSM is far more than its usage on paper
and can be expanded to a considerable extent.

On the other hand, in terms of the PSO solver, the objective value reduces steeply
during the first 10 times of iteration. In later iterations, the reduction of the objective
value is much smaller. In the PSO program, when the optimal value does not change after
40 consecutive iterations, it is considered that the iteration has converged and the solver
is exited. Thus, in the 36th iteration, the PSO solver finds the final solution. The time
consumption of the PSO solver is 0.299 s, which is adequate for automatic preoperative
planning, and there is even no need to wait. Combining the 3D visualization and the
contour plot, a position/orientation with a minimal objective value is found. When the
instrument moves in the planned direction, the risk of colliding with the tissue will be
much lower. Although the objective function (safety evaluation) can be defined by many
different expressions, meaning that the solution is not necessarily the best one, the risk is
still lower than most of the manually defined preoperative planning. Therefore, the PSO
solver is a satisfactory solving method when the FPSM is already presented.

Additionally, for the PSO solver that is the second stage of optimization, to persua-
sively illustrate the effectiveness of the designed objective function (Equation (14)) against
other common objective functions, another simple example can be adopted, as shown in
Figure 19. In the example, a cylindrical FPSM whose radius is 50 mm is adopted, playing
the role of an oral cavity without any complex geometry. The implanting target described in
{Center} is (0,−50, 50). The configurations and settings of the implanting instrument, VF,
and the PSO parameters are all the same as the test in Figure 17. In Equation (14), the sum
of the square root, whose expression is ka

√
a + kb

√
b, is chosen for building the optimizing

objective. To make a comparison, two types of other objective functions whose expressions
are kaa + kbb and kaa2 + kbb2 are introduced, respectively, written in Equations (21) and
(22), which are two variants of Equation (14). The optimization results when Equation (14),
Equation (21), and Equation (22) are, respectively, selected as the objective function are
listed in Table 2.

Fsafe = −
(m1 + 1) f (L1)

safe + (m2 + 1) f (L2)
safe

m1 + m2 + 2
(21)

Fsafe = −
(m1 + 1)

(
f (L1)
safe

)2
+ (m2 + 1)

(
f (L2)
safe

)2

m1 + m2 + 2
(22)
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Figure 19. A simple example to compare objective functions in which FPSM is set to be a cylinder.

Table 2. Optimization results when different variants of objective function are used.

Objective Function dT/mm θT/deg

Equation (14) 65.500 0.000
Equation (21) 55.304 0.000
Equation (22) 81.000 0.000

From Figure 19, it can be easily drawn that the optimal solutions are dT = 31 +
(100− 31)/2 = 65.5 and θT = 0. Among the different results in Table 2, using Equation (14)
can obtain the optimal solution. Preliminarily, for Equation (21), whose type is kaa+ kbb, the
objective function value will remain unchanged when θT = 0, no matter how dT is adjusted.
For Equation (22), whose type is kaa2 + kbb2, it can be seen the result is the same, as line 2
coincides with the cylinder’s axis. Take this assumption that Equation (22) can be re-written
as d2

line1 + d2
line2 with dline1, respectively, being the distances between line1/line2 and the

cylinder. If θT = 0, dline1 + dline2 = 69 will hold true if dline1 ≤50 and dline2 ≤ 50. Based
on Equation (22), the larger d2

line1 + d2
line2 is, the better the objective function. Following

this, the optimal solution will never be dline1 = 34.5 and dline2 = 34.5, corresponding to the
correct result driven by Equation (14). More deeply, contour plots were drawn, respectively,
for Equations (14), (21), and (22), as shown in Figure 20, from which the unchanged zone of
Equation (21) and the wrong zone of Equation (22) can be found, illustrating the correctness
of the design for Equation (14). Therefore, the effectiveness of the objective function is
preliminarily validated.
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In summary, the preoperative framework can help the dentist determine how to place
the implanting instrument in robot-assisted dental implant surgery, providing a faster
but safer solution. The framework can be especially useful for master-slave operations or
teleoperations. In teleoperation, the target for feeding should be preoperatively defined,
and the moving process should be regulated by the virtual fixture to guarantee safety. With
this framework, the target and the virtual fixture can be automatically determined without
any participation by the operator. Moreover, in many rural areas and less developed
countries, professional dentists are often under severe deficiency. This condition makes
master-slave operations or teleoperations extremely important in case the patient is on
one side of the world while the dentist is operating on another side of the world. The
framework proposed in this paper can considerably enhance safety since teleoperation
often lacks on-site feeling and sophisticated skill. When the target and virtual fixture can
be automatically generated, such safety concerns will no longer be an obvious challenge.
Hence, this work is also an essential expansion of the previous proposed study.

6. Conclusions and Future Work

This paper introduces an automatic preoperative planning framework to place the
target of surgical instruments for feeding tasks in robot-assisted dental implant surgery.
The framework is conducted through a two-stage optimization process, during which a
finite parameter surrogate model is established and the instrument’s placement is solved.
Conclusions can be listed as follows:

1. A new finite parameter surrogate model for the oral cavity, also called the FPSM, is
designed using an array of closed curves in polar coordinates. After pre-assignment
of the triangular mesh of the oral cavity, the model is solved during the first stage of
optimization through gradient descent and penalty function methods.

2. The placement for the implanting instrument is solved using the PSO algorithm in
the second stage of optimization, during which the FPSM serves as a safety estimator
to drive the iteration to converge to the optimal solution.

3. The FPSM solver, the PSO solver, and a 3D visualization software are developed,
and the performance of the entire framework is tested, preliminarily verifying the
effectiveness of the proposed framework.

4. The FPSM has the feature of high real-time quality, accuracy, flexibility, and multi-
functionality, which has great potential to play a role in preoperative planning, online
trajectory planning, intraoperative motion regulating, and collision alarming. Com-
bined with the PSO solver, the framework is an important expansion of the previously
proposed work.

In the future, three works are planned which can further improve this study.

1. The FPSM will be used for other tasks and applications, including preoperative
planning, online trajectory planning, intraoperative motion regulating, and collision
alarming, which can bring more safety for other modes of surgical operation.

2. The proposed framework will be seamlessly integrated with master-salve control, vir-
tual fixture, vision system, and system hardware. When all the modules are combined,
a complete master-slave teleoperation test can be conducted, during which some
control aspects including some non-linearities will be investigated and addressed.

3. Some artificial intelligence models, such as objective encoding and predicting net-
works, that are being studied in mobile robot navigation can be adopted and applied
to the aspect of traditional robotic manipulators, which can bring more methods or
approaches for robot-assisted oral surgery.

Author Contributions: Conceptualization, W.W., Y.W. (Yan Wang) and Y.C.; software, Y.W. (Yan
Wang) and Q.Z.; simulation, Y.W. (Yuyang Wang); experiment, Y.W. (Yan Wang) and Q.Z.; investi-
gation, Y.W. (Yan Wang) and Y.C.; writing, Y.W. (Yan Wang) and Y.W. (Yuyang Wang); review, W.W.
and Y.C.; supervision, W.W. and Y.C. All authors have read and agreed to the published version of
the manuscript.



Bioengineering 2023, 10, 952 22 of 24

Funding: This research was funded by the National Key R&D Program of China, grant number
2020YFB1312800. This work is also partly supported by the Fundamental Research Funds for the
Central Universities (No. YWF-23-L-912).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors declare acknowledgment for the funding support from the National
Key R&D Program of China, grant number 2020YFB1312800, and the Fundamental Research Funds
for the Central Universities (No. YWF-23-L-912).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mihara, Y.; Matsuda, K.; Takahashi, T.; Hatta, K.; Fukutake, M.; Sato, H.; Gondo, Y.; Masui, Y.; Kamide, K.; Sugimoto, K.; et al.

Occlusal support predicts tooth loss in older Japanese people. Community Dent. Oral Epidemiol. 2020, 48, 163–170. [CrossRef]
[PubMed]

2. Kusama, T.; Nakazawa, N.; Kiuchi, S.; Kondo, K.; Osaka, K.; Aida, J. Dental prosthetic treatment reduced the risk of weight loss
among older adults with tooth loss. Ournal Am. Geriatr. Soc. 2021, 69, 2498–2506. [CrossRef] [PubMed]

3. Carvalho, R.; Botelho, J.; Machado, V.; Mascarenhas, P.; Alcoforado, G.; Mendes, J.; Chambrone, L. Predictors of tooth loss during
long-term periodontal maintenance: An updated systematic review. J. Clin. Periodontol. 2021, 48, 1019–1036. [CrossRef]

4. Kudsi, Z.; Fenlon, M.; Johal, A.; Baysan, A. Assessment of Psychological Disturbance in Patients with Tooth Loss: A Systematic
Review of Assessment Tools. J. Prosthodont.-Implant. Esthet. Reconstr. Dent. 2020, 29, 193–200. [CrossRef]

5. Hosadurga, R.; Soe, H.; Lim, A.; Adl, A.; Mathew, M. Association between tooth loss and hypertension: A cross-sectional study.
J. Fam. Med. Prim. Care 2020, 9, 925–932. [CrossRef]

6. Flanagan, D. Rationale for Mini Dental Implant Treatment. J. Oral Implantol. 2020, 47, 437–444. [CrossRef] [PubMed]
7. Trullenque-Eriksson, A.; Guisado-Moya, B. Retrospective Long-term Evaluation of Dental Implants in Totally and Partially

Edentulous Patients. Part I: Survival and Marginal Bone Loss. Implant. Dent. 2014, 23, 732–737. [CrossRef]
8. Trullenque-Eriksson, A.; Guisado-Moya, B. Retrospective Long-Term Evaluation of Dental Implants in Totally and Partially

Edentulous Patients: Part II: Periimplant Disease. Implant. Dent. 2015, 24, 217–221. [CrossRef]
9. Ahmad, P.; Alam, M.K.; Aldajani, A.; Alahmari, A.; Alanazi, A.; Stoddart, M.; Sghaireen, M.G. Dental Robotics: A Disruptive

Technology. Sensors 2021, 21, 3308. [CrossRef]
10. Riet, T.; Sem, K.; Ho, J.; Spijker, R.; Kober, J.; Lange, J. Robot technology in dentistry, part one of a systematic review: Literature

characteristics. Dent. Mater. 2021, 37, 1217–1226. [CrossRef]
11. Riet, T.; Sem, K.; Ho, J.; Spijker, R.; Kober, J.; Lange, J. Robot technology in dentistry, part two of a systematic review: An overview

of initiatives. Dent. Mater. 2021, 37, 1227–1236. [CrossRef] [PubMed]
12. Wang, Y.; Wang, W.; Cai, Y.; Zhao, Q.; Wang, Y.; Hu, Y.; Wang, S. A Guiding and Positioning Motion Strategy Based on a New

Conical Virtual Fixture for Robot-Assisted Oral Surgery. Machines 2023, 11, 3. [CrossRef]
13. Sun, X.; McKenzie, F.; Bawab, S.; Li, J.; Yoon, Y.; Huang, J. Automated dental implantation using image-guided robotics:

Registration results. Int. J. Comput. Assist. Radiol. Surg. 2011, 6, 627–634. [CrossRef] [PubMed]
14. Sun, X.; Yoon, Y.; Li, J.; McKenzie, F. Automated image-guided surgery for common and complex dental implants. J. Med. Eng.

Technol. 2014, 38, 251–259. [CrossRef] [PubMed]
15. Yu, K.; Uozumi, S.; Ohnishi, K.; Usuda, S.; Kawana, H. Stereo Vision based Robot Navigation System Using Modulated Potential

Field for Implant Surgery. In Proceedings of the 2015 IEEE International Conference on Industrial Technology, Seville, Spain,
17–19 March 2015; pp. 493–498.

16. Li, J.; Lam, W.; Hsung, R.; Pow, E.; Wang, Z. A Customizable, Compact Robotic Manipulator for Assisting Multiple Dental
Procedures. In Proceedings of the 2018 3rd IEEE International Conference on Advanced Robotics and Mechatronics, Singapore,
18–20 July 2018; pp. 720–725.

17. Li, J.; Shen, Z.; Xu, W.; Lam, W.; Hsung, R.; Pow, E.; Kosuge, K.; Wang, Z. A Compact Dental Robotic System Using Soft Bracing
Technique. IEEE Robot. Autom. Lett. 2019, 4, 1271–1278. [CrossRef]

18. Li, J.; Lam, J.; Liu, M.; Wang, Z. Compliant Control and Compensation for A Compact Cable-Driven Robotic Manipulator. IEEE
Robot. Autom. Lett. 2020, 5, 5417–5424. [CrossRef]

19. Feng, Y.; Fan, J.; Tao, B.; Wang, S.; Mo, J.; Wu, Y.; Liang, Q.; Chen, X. An image-guided hybrid robot system for dental implant
surgery. Int. J. Comput. Assist. Radiol. Surg. 2021, 17, 15–26. [CrossRef]

20. Tao, B.; Feng, Y.; Fan, X.; Lan, K.; Lan, K.; Zhuang, M.; Wang, S.; Wang, F.; Chen, X.; Wu, Y. The accuracy of a novel image-guided
hybrid robotic system for dental implant placement: An in vitro study. Int. J. Med. Robot. Comput. Assist. Surg. 2023, 19, e2452.
[CrossRef]

https://doi.org/10.1111/cdoe.12515
https://www.ncbi.nlm.nih.gov/pubmed/31876315
https://doi.org/10.1111/jgs.17279
https://www.ncbi.nlm.nih.gov/pubmed/34081343
https://doi.org/10.1111/jcpe.13488
https://doi.org/10.1111/jopr.13141
https://doi.org/10.4103/jfmpc.jfmpc_811_19
https://doi.org/10.1563/aaid-joi-D-19-00317
https://www.ncbi.nlm.nih.gov/pubmed/32663848
https://doi.org/10.1097/ID.0000000000000171
https://doi.org/10.1097/ID.0000000000000224
https://doi.org/10.3390/s21103308
https://doi.org/10.1016/j.dental.2021.06.001
https://doi.org/10.1016/j.dental.2021.06.002
https://www.ncbi.nlm.nih.gov/pubmed/34162501
https://doi.org/10.3390/machines11010003
https://doi.org/10.1007/s11548-010-0543-3
https://www.ncbi.nlm.nih.gov/pubmed/21221831
https://doi.org/10.3109/03091902.2014.913079
https://www.ncbi.nlm.nih.gov/pubmed/24841842
https://doi.org/10.1109/LRA.2019.2894864
https://doi.org/10.1109/LRA.2020.3007382
https://doi.org/10.1007/s11548-021-02484-0
https://doi.org/10.1002/rcs.2452


Bioengineering 2023, 10, 952 23 of 24

21. Hu, Y.; Li, J.; Chen, Y.; Wang, Q.; Chi, C.; Zhang, H.; Gao, Q.; Lan, Y.; Li, Z.; Mu, Z.; et al. Design and Control of a Highly
Redundant Rigid-flexible Coupling Robot to Assist the COVID-19 Oropharyngeal-Swab Sampling. IEEE Robot. Autom. Lett. 2022,
7, 1856–1863. [CrossRef]

22. Rosenberg, L. Virtual fixtures: Perceptual tools for telerobotic manipulation. In Proceedings of the 12th International Symposium
on Robotics Research, Seattle, WA, USA, 18–22 September 1993; pp. 76–82.

23. Abbott, J.; Marayong, P.; Okamura, A. Haptic virtual fixtures for robot-assisted manipulation. In Proceedings of the 12th
International Symposium on Robotics Research, San Francisco, CA, USA, 12–15 October 2005; pp. 49–64.

24. Abbott, J.; Okamura, A. Stable forbidden-region virtual fixtures for bilateral telemanipulation. J. Dyn. Syst. Meas. Control.-Trans.
ASME 2006, 128, 53–64. [CrossRef]

25. Bettini, A.; Marayong, P.; Lang, S.; Okamura, A.; Hager, G. Vision-assisted control for manipulation using virtual fixtures. IEEE
Trans. Robot. Autom. 2004, 20, 953–966. [CrossRef]

26. Abbott, J.; Okamura, A. Pseudo-admittance bilateral telemanipulation with guidance virtual fixtures. Int. J. Robot. Res. 2007,
26, 865–884. [CrossRef]

27. Tang, A.; Cao, Q.; Pan, T. Spatial motion constraints for a minimally invasive surgical robot using customizable virtual fixtures.
Int. J. Med. Robot. Comput. Assist. Surg. 2014, 10, 447–460. [CrossRef]

28. Xu, C.; Lin, L.; Aung, Z.; Chai, G.; Xie, L. Research on spatial motion safety constraints and cooperative control of robot-assisted
craniotomy: Beagle model experiment verification. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, 1–13. [CrossRef]

29. Ren, J.; Patel, R.; McIsaac, K.; Guiraudon, G.; Peters, T. Dynamic 3-D virtual fixtures for minimally invasive beating heart
procedures. IEEE Trans. Med. Imaging 2008, 27, 1061–1070. [CrossRef] [PubMed]

30. He, C.; Yang, E.; McIsaac, K.; Patel, N.; Ebrahimi, A.; Shahbazi, M.; Gehlbach, P.; Iordachita, I. Automatic Light Pipe Actuating
System for Bimanual Robot-Assisted Retinal Surgery. IEEE Trans. Mechatron. 2020, 25, 2846–2857. [CrossRef] [PubMed]

31. Yu, L.; Yu, X.; Chen, X.; Zhang, F. Laparoscope arm automatic positioning for robot-assisted surgery based on reinforcement
learning. Mech. Sci. 2019, 10, 119–131. [CrossRef]

32. Liang, K.; Xing, Y.; Li, J.; Wang, S.; Li, A.; Li, J. Motion control skill assessment based on kinematic analysis of robotic end-effector
movements. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1845. [CrossRef]

33. Xing, Y.; Liang, K.; Wang, S.; Li, J.; Wang, X.; Li, A. Safety Oriented Evaluation (SOE) of Robot-assisted Minimally Invasive Surgery
(MIS) Performance Skill. In Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics IEEE-ROBIO,
Bali, Indonesia, 5–10 December 2014; pp. 619–624.

34. Preda, S.; Ciobirca, C.; Gruionu, G.; Lacob, A.; Sapalidis, K.; Gruionu, L.; Castravete, S.; Patrascu, S.; Surlin, V. Preoperative
Computer-Assisted Laparoscopy Planning for the Minimally Invasive Surgical Repair of Hiatal Hernia. Diagnostics 2020, 10, 621.
[CrossRef]

35. Badani, K.; Muhletaler, F.; Fumo, M.; Kaul, S.; Peabody, J.; Bhandari, M.; Menon, M. Optimizing robotic placement renal surgery:
The lateral camera port technique and current results. J. Endourol. 2008, 22, 507–510. [CrossRef]

36. Banez, J.; Caro, S.; Schwaitzberg, S.; Classe, J.; Cao, C. Modeling Patients for Optimized Port Placement in Robot-Assisted Surgery.
In Proceedings of the ASME 11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, France, 2–4 July
2012; pp. 821–826.

37. Tian, C.P.; Xu, Z.Y.; Wang, L.K.; Liu, Y.J. Arc fault detection using artificial intelligence: Challenges and benefits. Math. Biosci. Eng.
2023, 20, 12404–12432. [CrossRef] [PubMed]

38. Shi, Y.; Li, L.; Yang, J.; Wang, Y.X.; Hao, S.H. Center-based Transfer Feature Learning With Classifier Adaptation for surface defect
recognition. Mech. Syst. Signal Process. 2023, 188, 110001. [CrossRef]

39. Lin, C.; Zheng, Y.; Guang, C.H.; Ma, K.; Yang, Y. Precision forceps tracking and localisation using a Kalman filter for continuous
curvilinear capsulorhexis. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2432. [CrossRef] [PubMed]

40. He, C.Y.; Patel, N.; Ebrahimi, A.; Kobilarov, M.; Iordachita, I. Preliminary study of an RNN-based active interventional robotic
system (AIRS) in retinal microsurgery. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 945–954. [CrossRef]

41. He, C.Y.; Patel, N.; Shahbazi, M.; Yang, Y.; Gehlbach, P.; Kobilarov, M.; Iordachita, I. Toward Safe Retinal Microsurgery:
Development and Evaluation of an RNN-Based Active Interventional Control Framework. IEEE Trans. Biomed. Eng. 2020,
64, 966–977. [CrossRef]

42. Lin, C.; Yang, Y.; Gao, H.D.; Zhang, Y.; Ma, K.; Guang, C.H. Evaluation of continuous curvilinear capsulorhexis based on a
neural-network. Int. J. Comput. Assist. Radiol. Surg. 2023, 1–10. [CrossRef]

43. Liu, Z.W.; Yang, D.; Wang, Y.J.; Lu, M.J.; Li, R.R. EGNN: Graph structure learning based on evolutionary computation helps more
in graph neural networks. Appl. Soft Comput. 2023, 135, 110040. [CrossRef]

44. Wang, Y.X.; Liu, Z.W.; Xu, J.D.; Yan, W.Q. Heterogeneous Network Representation Learning Approach for Ethereum Identity
Identification. IEEE Trans. Comput. Soc. Syst. 2022, 10, 890–899. [CrossRef]

45. Shi, Y.; Li, H.R.; Fu, X.P.; Luan, R.F.; Wang, Y.X.; Wang, N.; Sun, Z.B.; Niu, Y.X.; Wang, C.H.; Zhang, C.; et al. Self-powered
difunctional sensors based on sliding contact-electrification and tribovoltaic effects for pneumatic monitoring and controlling.
Nano Energy 2023, 110, 108339. [CrossRef]

https://doi.org/10.1109/LRA.2021.3062336
https://doi.org/10.1115/1.2168163
https://doi.org/10.1109/TRO.2004.829483
https://doi.org/10.1177/0278364907080425
https://doi.org/10.1002/rcs.1551
https://doi.org/10.1002/rcs.2231
https://doi.org/10.1109/TMI.2008.917246
https://www.ncbi.nlm.nih.gov/pubmed/18672424
https://doi.org/10.1109/TMECH.2020.2996683
https://www.ncbi.nlm.nih.gov/pubmed/33343183
https://doi.org/10.5194/ms-10-119-2019
https://doi.org/10.1002/rcs.1845
https://doi.org/10.3390/diagnostics10090621
https://doi.org/10.1089/end.2007.0228
https://doi.org/10.3934/mbe.2023552
https://www.ncbi.nlm.nih.gov/pubmed/37501448
https://doi.org/10.1016/j.ymssp.2022.110001
https://doi.org/10.1002/rcs.2432
https://www.ncbi.nlm.nih.gov/pubmed/35679516
https://doi.org/10.1007/s11548-019-01947-9
https://doi.org/10.1109/TBME.2019.2926060
https://doi.org/10.1007/s11548-023-02973-4
https://doi.org/10.1016/j.asoc.2023.110040
https://doi.org/10.1109/TCSS.2022.3164719
https://doi.org/10.1016/j.nanoen.2023.108339


Bioengineering 2023, 10, 952 24 of 24

46. Haidegger, T. Autonomy for Surgical Robots: Concepts and Paradigms. IEEE Trans. Med. Robot. Bionics 2019, 1, 65–76. [CrossRef]
47. Nagy, T.; Haidegger, T. Performance and Capability Assessment in Surgical Subtask Automation. Sensors 2022, 22, 2501. [CrossRef]

[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TMRB.2019.2913282
https://doi.org/10.3390/s22072501
https://www.ncbi.nlm.nih.gov/pubmed/35408117

	Introduction 
	Background and Task 
	Related Works 

	System, Task, and Framework 
	System Constitution 
	Planning Task for Virtual Fixture 
	Overview of Two-Stage Optimization Framework 

	Finite-Parameter Surrogate Model 
	Parameterization of Closed Curves 
	Parameter Optimization of Closed Curves 
	Establishment of FPSM 

	Automatic Placement of Feeding Target 
	Collision Detection and Safety Estimation 
	Establishment of Objective Function 
	Optimization of Preoperative Placement 

	Tests, Results, and Discussion 
	Test of FPSM Establishment 
	Test of Optimization for Instrument Placement 
	Discussion 

	Conclusions and Future Work 
	References

