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Abstract: Preoperative prediction of microvascular invasion (MVI) is essential for management deci-
sion in hepatocellular carcinoma (HCC). Deep learning-based prediction models of MVI are numerous
but lack clinical interpretation due to their “black-box” nature. Consequently, we aimed to use an
attention-guided feature fusion network, including intra- and inter-attention modules, to solve this
problem. This retrospective study recruited 210 HCC patients who underwent gadoxetate-enhanced
MRI examination before surgery. The MRIs on pre-contrast, arterial, portal, and hepatobiliary phases
(hepatobiliary phase: HBP) were used to develop single-phase and multi-phase models. Atten-
tion weights provided by attention modules were used to obtain visual explanations of predictive
decisions. The four-phase fusion model achieved the highest area under the curve (AUC) of 0.92
(95% CI: 0.84–1.00), and the other models proposed AUCs of 0.75–0.91. Attention heatmaps of
collaborative-attention layers revealed that tumor margins in all phases and peritumoral areas in
the arterial phase and HBP were salient regions for MVI prediction. Heatmaps of weights in fully
connected layers showed that the HBP contributed the most to MVI prediction. Our study firstly im-
plemented self-attention and collaborative-attention to reveal the relationship between deep features
and MVI, improving the clinical interpretation of prediction models. The clinical interpretability
offers radiologists and clinicians more confidence to apply deep learning models in clinical practice,
helping HCC patients formulate personalized therapies.

Keywords: hepatocellular carcinoma; microvascular invasion; attention mechanism; deep learning;
multi-phase MRI

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third
leading cause of cancer-related mortality globally [1,2]. Worldwide, in 2019, there were ap-
proximately 747,000 cases of HCC, and 480,000 patients died due to HCC [3]. China has the
greatest HCC burden, followed by Japan [3]. There is a wide variety of therapies for HCC,
such as curative resection, radiofrequency ablation, and liver transplantation. However, the
overall survival of HCC remains poor, with a medium survival of 6–10 months [3]. High
recurrence and metastasis are the major causes of poor survival of patients with HCC [4].

Microvascular invasion (MVI) is a well-known prognostic factor for HCC and is pos-
itively associated with the HCC recurrence [5,6]. Reliable preoperative identification of
MVI is beneficial for choosing optimal therapies, such as extended resection margins or a
combination of postsurgical neoadjuvant therapy [7,8]. However, MVI is normally assessed
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using histopathological specimens after surgical resection [8,9]. Accurate preoperative
prediction of MVI is of great significance in clinical decision making [9]. The motivation
of this study is to develop a MVI prediction model with deep learning and offer it visual
explanations, which can accelerate its application in the clinical practice and help HCC pa-
tients formulate personalized therapies, thus reducing the HCC recurrences and improving
the overall survival.

Preoperative prediction of MVI remains a challenge [10]. Many studies produced
MVI prediction models based on radiological features [5,6] and radiomic analysis [2,11].
Since imaging features rely on radiologists, interobserver variability would exist [10], and
radiomics analysis is time-consuming as the tumor boundary needs to be manually de-
fined [12]; therefore, the produced models lack practical feasibility. Multi-phase magnetic
resonance imaging (MRI) can offer comprehensive anatomical and functional information
about tumors, and the fusion of multi-phase MRI with deep learning in preoperative MVI
prediction is trending [13,14]. Deep learning can automatically extract high-dimensional fea-
tures and analyze the relationship between the image features and clinical problems. Many
studies proposed MVI prediction models with deep learning based on multi-phase MRI and
reported that multi-phase fusion models outperformed single-phase models [13,14]. Zhou
et al. developed a multi-phase fusion model based on pre-contrast, arterial, and portal
phases of contrast-enhanced MRI with a three-dimensional (3D) convolutional neural net-
work (CNN) and found that the fusion model outperformed the single-phase models [13].
Similarly, a study by Zhang et al. fused multi-phase MRI with 3D CNN and demonstrated
that a fusion model combining three sequences of MRI had better prediction performance
than single-sequence models [14]. However, deep learning is an end-to-end process that
directly shows the association between images and MVI but cannot explain the cause-and-
effect relationship between deep features and outcomes. The black-box nature of deep
learning makes it less interpretable, thereby obstructing its clinical application [15].

Attention mechanism was first proposed by Bahdanau et al. [16] for dealing with
the difficulty that neural networks faced in processing long sentences. They developed a
deep learning architecture called RNNsearch by implementing an attention module in the
decoder, which allowed the network assign weights to different parts of the input data and
select the most useful features, thus improving translation accuracy [16]. Features with
larger weights are considered to be more valuable to outputs. Attention mechanism is
widely used in the field of image processing and exhibits good performances, such as auto-
matic facial expression recognition and tooth segmentation [17–21]. Recently, self-attention
and collaborative-attention modules were integrated into deep learning to fuse features
from multimodalities and help attention fusion models achieve better performance than
other fusion models [22,23]. The self-attention module, also known as intra-attention block,
is a structure that assigns attention weights to features based on their importance within the
same modality and captures useful features [23]. The collaborative-attention module is a
cross-modal inter-attention module and is used to explore the feature relations of different
modalities after the self-attention module [23]. It combines related features from different
modalities and highlights useful features, which helps deep learning networks focus on the
most informative regions and select the most favorable features [21,23]. Furthermore, the
weights provided by the attention modules are analytical and easily interpretable [21]. The
visualization of attention weights can directly display salient regions to the final prediction,
which offers insights into prediction models and improves its clinical interpretation [21,24].
This suggests that embedding attention mechanisms into deep learning may improve
the prediction performance of MVI and reveal the underlying mechanism behind predic-
tions, overcoming the black-box nature of deep learning. A study by Xu et al. adopted a
self-attention-based vision transformer to predict MVI from CT images and their model
produced an AUC of 0.88 [25]. Their attention maps generated from attention weights
allow color visualization of the suspicious patches of MVI [25]. However, whether the
implementation of self-attention and collaborative-attention in 3D CNN can effectively
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predict MVI based on multi-phase MRI and provide interpretation to deep learning has not
been investigated.

Therefore, the purpose of this study was to investigate whether an attention-guided
feature fusion network which includes intra- and inter-attention modules can accurately
predict MVI based on multi-phase MRI. More importantly, we tried to reveal the cause-and-
effect relationship between deep features and MVI by visualizing attention weights in the
training network, thereby increasing the clinical interpretability of prediction models.

2. Material and Methods

In this section, we first introduce the recruitment process of the patients with HCC
and the collection of clinical data. Second, the section presents the pathological criteria
for MVI evaluation. Third, it introduces the aquation of MR images. Fourth, it describes
the process of the models’ development, including the tumor segmentation in MR images,
tumor cubic regions’ extraction, data augmentation and resizing, models’ training process,
models’ evaluation, and models’ visualization. The flow diagram of the overall workflow
is presented in Figure 1.
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Figure 1. Flow diagram depicting patients’ recruitment and the deep learning workflow. (A) describes
the process of patients’ recruitment, and (B) demonstrates the flowchart of models’ development and
visual explanation, including tumor segmentation, tumor cubic regions extracting, models’ training
and validation, model evaluation, visualization of attention weights. HCC, hepatocellular carcinoma;
MVI, microvascular invasion.
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2.1. Patients

This retrospective study was approved by the Ethical Review Authority, and the
requirement for written informed consent was waived by the Ethical Review Authority
due to the retrospective nature of this study.

From 28 September 2016 to 16 May 2022, 210 patients with primary solitary HCC
(186 men and 24 women) who were enrolled at the First Affiliated Hospital, Sun Yat-Sen
University, were recruited for this study. Patients were included if they met the following
criteria: (a) underwent gadoxetate-enhanced MRI examination within 2 weeks before
surgery, (b) underwent curative liver resection, and (c) were diagnosed as having HCC
based on surgical specimens and pathological reports including MVI information. Patients
were excluded for the following reasons: (a) multiple HCCs, (b) presence of macrovascular
invasion (gross tumor thrombus), (c) underwent neoadjuvant therapy such as transarterial
chemoembolization before surgical resection, (d) co-morbidity with other malignancies,
(e) recurrence of HCC, and (f) suboptimal image quality for analysis.

The routine preoperative clinical characteristics of patients, including age, sex, alanine
aminotransferase, aspartate aminotransferase, and alpha-fetoprotein, were obtained from
clinical reports. Maximum tumor diameters were measured in the hepatobiliary phase
(HBP) by two trained radiologists with 2 and 3 years of experience in MRI diagnosis.

According to the pathological reports, among the 210 patients 70 were MVI-positive
(mean age, 54 years ± 13 [standard deviation]), and 140 were MVI-negative (mean age,
55 years ± 11 [standard deviation]). The patients’ demographics in MVI-positive and
MVI-negative patients are shown in Table 1.

Table 1. Clinical characteristics in MVI-positive and MVI-negative patients with HCC.

Parameters MVI-Negative (n = 140) MVI-Positive (n = 70) p-Value

Age (years) * 55 ± 11 54 ± 13 0.818
Sex >0.99
Men 124 (88.6) 62 (88.6)

Women 16 (11.4) 8 (11.4)
Aspartate aminotransferase (U/L) † 32.0 (24.2–48.0) 33.0 (24.0–60.0) 0.378
Alanine aminotransferase (U/L) † 33.5 (23.0–53.7) 32.0 (20.7–51.2) 0.682

Alpha-fetoprotein <0.001
≥400 µg/L 28 (20.0) 30 (42.9)
<400 µg/L 112 (80.0) 40 (57.1)

Tumor diameter (mm) † 42.5 (30.0–65.0) 57.0 (41.5–91.2) <0.001

* Datum is means ± standard deviation. † Data are medians and numbers in parentheses are interquar-
tile range. Sex and alpha-fetoprotein were compared with Pearson’s chi-squared test and expressed as
numbers (percentages).

2.2. Pathological Records

The pathological sampling of HCC specimens was based on the baseline 7-point
sampling scheme in the standardized pathological diagnosis guidelines for primary liver
cancer [26]. HCC diagnosis was based on morphological criteria defined by the World
Health Organization. MVI was defined as the presence of tumor emboli in a vascular space
lined by endothelial cells in the peritumoral liver, which was visible by microscopy [1,10].

2.3. MRI Examination

MRI was performed using a 3.0-T MRI scanner (Magnetom Prisma; Siemens Medical
Systems, Erlangen, Germany) with an eight-channel torso-array coil within 2 weeks before
surgical resection. Before MRI examination, all patients fasted for 6–8 h. The liver MRI
protocols are presented in Table 2. Dynamic contrast-enhanced MRI was performed after
administering gadoxetate (0.1 mL/kg, Primovist, Bayer Schering Pharma, Berlin, Germany).
The contrast agent was injected at a flow rate of 2 mL/s, and 30 mL of normal saline was
flushed at the same rate. For dynamic sequences, arterial, portal, and hepatobiliary phases
were obtained 25 s, 66 s, and 20 min after contrast media injection, respectively.
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Table 2. MRI sequences in this study.

Sequences TR (ms) TE (ms) FA Thickness (mm) Matrix FOV (mm) Breath-Hold

T1-weighted imaging 2.75 1.05 12.5 2 320 × 192 380 × 380 Yes
T2-weighted imaging 2000 77 103 5 384 × 288 380 × 380 No
Arterial/Portal phase 2.75 1.05 12.5 2 320 × 192 380 × 380 Yes
Hepatobiliary phase 3.84 1.45 25 2 288 × 186 380 × 306 Yes

Abbreviations: TR, repetition time; TE, echo time; FA, flip angle; FOV, field of view.

2.4. Deep Learning Models’ Development

The models’ development included several steps. First, we needed to segment tumors
in MR images and extract 3D cubic tumors with bounding boxes. These 3D cubic tumors
were separated into training and test sets randomly in 4:1 ratio. Extracted 3D cubic regions
in the training set were resized and augmented to a large amount of small 3D cubic regions.
Second, the 3D cubic regions in the training set were fed into the deep learning network
to train models. The 3D cubic regions in the test set were used to validate the prediction
performance. Third, the attention weights in the training networks were visualized to
display the informative regions to the prediction decisions.

2.4.1. Image Preprocessing and Data Augmentation

MVI was scattered in the 3D space of the peritumoral areas. The input included
multilayer images for extracting the 3D features of tumors and peritumoral areas. To locate
a tumor when extracting 3D tumor cubic regions with bounding boxes, firstly the tumors
needed to be labeled. Tumor borders in the HBP were distinct and easy to recognize.
Hence, we segmented the tumor in the HBP. Therefore, two trained radiologists with 2 and
3 years of experience in MRI diagnosis manually segmented the tumor borderlines at the
top, largest, and bottom layers of the tumor on axial images of the HBP using ITK-SNAP
software (www.itksnap.org) (Version 3.8.0-beta), (accessed on 28 October 2018) covering
the entire tumor. A senior radiologist with 4 years of experience in MRI diagnosis reviewed
all segmentations. The tumor borders in the arterial, portal, and pre-contrast phases were
automatically matched based on the segmentation of the HBP.

After finishing tumor segmentations, a bounding box was centered on the volume
of interest to cover the tumor and was expanded by 2 pixels to include peritumoral areas,
extracting a cubic region. Then, 210 patients were randomly divided into training and
test sets in a ratio of 4:1. Finally, 168 patients were randomly selected for training, and
42 patients were selected for testing. In the training set, image resampling included data
resizing and augmentation, which was similar to a previous study [27]. This aimed to
overcome the lack of large datasets and avoid the overfitting problem caused by insufficient
data in the training set, so the images data in the training set underwent augmentation
to obtain local region-based features of MR images. In the data-resizing step, the original
cubic region was resized to the same size (16 × 16 × 16) to acquire features based on the
global regions of MR images. A total of 168 global cubic regions were obtained in the
training set. In the data augmentation step, the original cubic region was first resized into a
predetermined size (32 × 32 × 32) and then cut into a small size (16 × 16 × 16) in the x, y,
and z directions with an interval of 2 pixels. Further, 9, 9, and 9 cubic regions along the x, y,
and z directions, respectively, were generated in one tumor cubic region. Finally, 729 local
cubic regions were generated from each tumor in a single phase. Overall, 122,640 samples
for each phase, including 729 × 168 local cubic regions and 168 global cubic regions,
were generated for model training. The data in the test set were resized to the same size
(16 × 16 × 16), and 42 global region samples in the test set were used for model evaluation.
For the test set, data augmentation would make a large amount of the augmented data share
the same MVI label, which would introduce data bias. So, the samples in the test set only
underwent data resizing. A flowchart of the image preprocessing and data augmentation
is shown in Figure 2.

www.itksnap.org
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Figure 2. Image preprocessing and data augmentation. The tumor was segmented at the top, largest,
and bottom layers of tumor on axial images of the hepatobiliary phase covering the entire tumor. A
bounding box (red) was then centered on the volume of interest to extract a cubic region containing
the tumor and was expanded by 2 pixels to include peritumoral areas. The patients were randomly
divided into training (n = 168) and test sets (n = 42) in a ratio of 4:1. The data in the training set were
resized into the same size (16 × 16 × 16) for extracting global features. Furthermore, the data in
the training set were also resized into a predetermined size (32 × 32 × 32) and cut into a small size
(16 × 16 × 16) in the x, y, and z directions with an interval of 2 pixels for extracting local features.
The gray box is the schematic diagram indicating the process of data augmentation. The data in
the test set were resized into the same size (16 × 16 × 16) for model evaluation. The red colors box
represents tumor cubic regions in different sizes.

2.4.2. Model Development

This study was motivated by a previous study by Li et al. [23]. They proposed an
attention-guided discriminative feature learning and fusion framework which included a
cross-modal intra- and inter-attention module for grading HCC and demonstrated that the
proposed method outperformed the previous feature fusion methods [23]. The cross-modal
intra- and inter-attention module considers the intra- and inter-relation among modalities
to harness the complementary information among different phases, which can help deep
learning focus on the most informative region of each modality and select the most useful
features for predictions [23]. Moreover, attention modules can provide attention weights
that can be visualized and display salient regions to predictions, increasing the clinical
interpretability of prediction models [21,24]. Therefore, the motivation of this study was to
apply the attention-guided feature fusion network proposed by Li’s group [23] to develop
MVI prediction models based on multi-phase MRI and to acquire visual explanations of
predictions through the visualization of weights offered by attention modules.
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The framework of the deep learning network used for single-phase models is shown
in Figure 3A and was implemented in the pre-contrast (PreP), arterial (AP), portal (PP),
and HBP model. Attention-guided feature fusion network, as shown in Figure 3B, was
implemented in the arterial + portal phase model (2P), the arterial + portal + hepatobiliary
phase model (3P), and the pre-contrast + arterial + portal + hepatobiliary phase model
(4P). In this framework, self-attention and collaborative-attention blocks were added be-
tween the convolutional and pooling layers on the deep learning network LeNet5. The
frameworks of the self-attention and collaborative-attention blocks are shown in Figures 4
and 5, respectively. The purpose of the self-attention block is to assign high-attention
weights to MVI-relevant features and low-attention weights to MVI-irrelevant features.
The collaborative-attention block complements related information from other phases and
adjusts attention weights to further highlight the relevant features.
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The 3D cubic regions were fed into the network. The extracted features were concate-
nated and flowed into fully connected layers and a SoftMax layer to generate the final
results. The network training was repeated for 5 runs due to the 5-fold cross-validation
schemes. The batch size of each network was 16, and each model was trained for 50 epochs
using a momentum-based stochastic gradient descent optimizer (learning rate starting:
0.004, momentum parameter: 0.9, weight decay: 0.0001). The maximum number of itera-
tions was set to 501.

The loss function in this study is Lclassifify = ∑ωxLx. For single-phase models, there
is only oneω, while for multi-phase models, there are 2ω for two-phase models, 3ω for
three-phase models, and 4 ω for four-phase models. The fusion loss function measures
the discrepancy between the model’s predicted outputs and the ground truth annotations.
During the training process, the attention mechanism is adjusted by backpropagating the
gradients through the model to update the weightsω and improve the alignment between
the input and output sequences.

Furthermore, we employed the following techniques to prevent overfitting:

1. Data augmentation: We augmented the 168 original training samples to 122,640,
allowing the model to have sufficient numbers of validation data to help the model
converge in the 5-fold cross-validation session.

2. Dropout: Dropout randomly removes a fraction of the neurons during the training
process, forcing the model to be less reliant on specific neurons and preventing
potential overfitting.

3. Early stopping: We employed early stopping during the model training process.
By outputting the learning curve in real time during the training process, we could
monitor the model’s performance on a validation set and stop the training process once
the performance started to deteriorate, which can prevent the model from excessively
fitting to the training data.

All models were developed with Python Software Foundation (28 June 2021). Python
Language Reference (version 3.9.6) https://www.python.org/downloads/release/python-
396/, PyTorch (Version 1.12.1), (accessed on 28 June 2021). PyTorch: Tensors and dynamic
neural networks in Python with strong GPU acceleration. https://pytorch.org/docs/1.12/,
(accessed on 28 June 2022).

2.4.3. Model Evaluation and Features Visualization

Receiver operating characteristic (ROC) curves were used to evaluate the predictive
performance of each model. The area under the curve (AUC) and 95% confidence interval
(CI), accuracy, sensitivity, and specificity were recorded. Decision curve analysis (DCA)
was performed to compare the clinical benefits of different models. To understand the un-
derlying prediction mechanism, we generated activation heatmaps with gradient-weighted
class activation mapping (Grad-CAM) based on the attention weights in the self-attention
and collaborative-attention layers [28]. After concatenation, the tensor weights in the
fully connected layers of each phase were visualized using heatmaps to demonstrate the
contributions of each phase to the multi-phase fusion models.

2.5. Statistical Analysis

Statistical analysis was performed using the Statistical Package for the Social Sciences
software (version 25.0; IBM SPSS, Inc., Chicago, IL, USA). The Shapiro–Wilk test was used
to test the normality of continuous variables. Continuous variables were analyzed using
Student’s t-test or the Mann–Whitney U test based on their normality and expressed as
mean ± standard deviation or median (interquartile range). Categorical variables were
analyzed using Pearson’s chi-squared test and expressed as numbers (percentages). A
two-tailed p value < 0.05 was considered statistically significant.

https://www.python.org/downloads/release/python-396/
https://www.python.org/downloads/release/python-396/
https://pytorch.org/docs/1.12/
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3. Results
3.1. MVI Prediction Performance of the Deep Learning Models

Two hundred and ten patients were randomly separated into the training (n = 168)
and test (n = 42) sets. In the training set, there were 56 MVI-positive and 112 MVI-negative
patients. In the test set, there were 14 MVI-positive and 28 MVI-negative patients. The
characteristics of patients in the training and test sets are showed in Table 3.

Table 3. Clinical characteristics in training and test sets.

Parameters Training Set (n = 168) Test Set (n = 42) p-Value

Age (years) * 54 ± 11 56 ± 12 0.266
Sex 0.914
Men 149 37

Women 19 5
Aspartate aminotransferase (U/L) † 33.0 (24.0–50.8) 31.0 (24.0–62.0) 0.933
Alanine aminotransferase (U/L) † 33.0 (21.0–49.8) 32.0 (23.0–77.0) 0.469

Alpha-fetoprotein 0.354
≥400 µg/L 124 28
<400 µg/L 44 14

Tumor diameter (mm) † 47.5 (34.0–70.0) 52.1 (31.8–71.0) 0.701

* Datum is means ± standard deviation. † Data are medians and numbers in parentheses are interquar-
tile range. Sex and alpha-fetoprotein were compared with Pearson’s chi-squared test and expressed as
numbers (percentages).

The AUC, accuracies, sensitivities, and specificities of the different models in the test
set are shown in Table 4. The PreP, AP, PP, and HBP models had AUCs of 0.75 (95%CI:
0.59–0.90, p = 0.010), 0.82 (95%CI: 0.68–0.96, p = 0.001), 0.82 (95%CI: 0.69–0.95, p = 0.001),
and 0.86 (95%CI: 0.73–0.98, p < 0.001), respectively. The 2P model had an AUC of 0.84
(95%CI: 0.73–0.96, p < 0.001), and the 3P model achieved an AUC of 0.91 (95%CI: 0.81–1.00,
p < 0.001). The 4P model had the best prediction performance (AUC, 0.92; 95%CI: 0.84–1.00,
p < 0.001).

Table 4. Prediction performance of different models in the test set.

Model AUC
(95%CI) Accuracy Sensitivity Specificity p-Value

PreP 0.75
(0.59–0.90) 0.64 0.86 0.57 0.010

AP 0.82
(0.68–0.96) 0.74 0.79 0.79 0.001

PP 0.82
(0.69–0.95) 0.79 0.71 0.82 0.001

HBP 0.86
(0.73–0.98) 0.71 0.79 0.86 <0.001

2P 0.84
(0.73–0.96) 0.81 0.93 0.64 <0.001

3P 0.91
(0.81–1.00) 0.88 0.93 0.82 <0.001

4P 0.92
(0.84–1.00) 0.81 0.93 0.79 <0.001

Abbreviations: AUC, the area under the curve; CI, confidence interval.

The ROC and DCA curves of the different models in the test set are shown in Figure 6.
The ROC curves showed that the 4P model had the best predictive performance (Figure 6A).
The DCA curves showed that the 3P and 4P models had more clinical benefits than the
2P and single-phase models (Figure 6B). In a large range of threshold probabilities, the 4P
model can always add more clinical benefits than the single-phase models.
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Figure 6. Receiver operating characteristic curves (A) and decision curve analysis (B) of different
models in the test set. PreP represents the pre-contrast phase model; AP represents the arterial phase
model; PP represents the portal phase model; HBP represents the hepatobiliary phase model; 2P
represents the fusion model of the arterial and portal phases; 3P represents the fusion model of the
arterial, portal, and hepatobiliary phases; 4P represents the fusion model of the four phases.

3.2. Visualization and Interpretation of the Deep Learning Models

To improve the clinical interpretation of deep learning, we generated activation heatmaps
using Grad-CAM based on attention weights in the self-attention and collaborative-attention
layers. The representative example is presented in Figure 7. Figure 7A–D are the original
MR images of the pre-contrast, arterial, portal, and hepatobiliary phases.

The heatmaps of the self-attention layers showed that the tumor and peritumoral
areas in the arterial and hepatobiliary phases gained high attention, whereas in the portal
phase only the tumor gained high attention (Figure 7F–H). The pre-contrast phase did not
show a specific area to focus on (Figure 7E). After fusing the arterial and portal phases,
the heatmaps of the collaborative-attention layers showed that the border of the tumor
in the arterial phase and the tumor body in the portal phase had high-attention weights
(Figure 7I,J). In the 3P model, the heatmaps of the collaborative-attention layers showed
that the tumor margins and peritumoral areas in the three phases received high attention
(Figure 7K–M). After fusing relevant information from the four phases, the heatmaps of the
arterial and hepatobiliary phases showed that the tumor margins and peritumoral areas
acquired high attention (Figure 7O,Q), while the heatmaps of the pre-contrast and portal
phases showed that the tumor margins gained high attention (Figure 7N,P).

To demonstrate the relative importance of the extracted features in each phase, the
tensor weights of each phase were visualized using heatmaps after direct concatenation,
as shown in Figure 8. The results showed that in the 2P model the weights in the arterial
phase were higher than those in the portal phase, whereas in the 3P and 4P models the
weights in the HBP were much higher than those in the other three phases.



Bioengineering 2023, 10, 948 12 of 17
Bioengineering 2023, 10, x FOR PEER REVIEW 12 of 17 
 

 
Figure 7. Original MR images and activation heatmaps in a 44-year-old woman with HCC and MVI 
(+). (A,B,C,D) are original MR images of the tumor in the pre-contrast, arterial, portal, and hepato-
biliary phases. (E,F,G,H) are activation heatmaps of the self-attention layers in different phases. (I, 
J) are activation heatmaps of collaborative-attention layers in the 2 phase models. (K,L,M) are the 
activation heatmaps of collaborative-attention layers in the 3 phase models. (N,O,P,Q) are activation 
heatmaps of collaborative-attention layers that fused relevant information from all phases. The red 
arrow in (D) indicates the tumor, and the green arrow indicates peritumoral areas. The red color 
indicates high-attention weights, and the blue color indicates low-attention weights. Self-att, self-
attention; CA, collaborative-attention; 2P, fusion model of the arterial and portal phases; 3P, fusion 
model of the arterial, portal, and hepatobiliary phases; 4P, fusion model of the pre-contrast, arterial, 
portal, and hepatobiliary phases. 

To demonstrate the relative importance of the extracted features in each phase, the 
tensor weights of each phase were visualized using heatmaps after direct concatenation, 
as shown in Figure 8. The results showed that in the 2P model the weights in the arterial 
phase were higher than those in the portal phase, whereas in the 3P and 4P models the 
weights in the HBP were much higher than those in the other three phases. 

 
Figure 8. Heatmaps of tensor weights in three multi-phase fusion models after concatenation. Each 
phase had 32 grids. Bright color indicates high-tensor weights, and dark color indicates low-tensor 
weights. AP, arterial phase; PP, portal phase; HBP, hepatobiliary phase; PreP, pre-contrast phase. 

 

Figure 7. Original MR images and activation heatmaps in a 44-year-old woman with HCC and MVI
(+). (A–D) are original MR images of the tumor in the pre-contrast, arterial, portal, and hepatobiliary
phases. (E–H) are activation heatmaps of the self-attention layers in different phases. (I,J) are
activation heatmaps of collaborative-attention layers in the 2 phase models. (K–M) are the activation
heatmaps of collaborative-attention layers in the 3 phase models. (N–Q) are activation heatmaps
of collaborative-attention layers that fused relevant information from all phases. The red arrow in
(D) indicates the tumor, and the green arrow indicates peritumoral areas. The red color indicates
high-attention weights, and the blue color indicates low-attention weights. Self-att, self-attention;
CA, collaborative-attention; 2P, fusion model of the arterial and portal phases; 3P, fusion model of the
arterial, portal, and hepatobiliary phases; 4P, fusion model of the pre-contrast, arterial, portal, and
hepatobiliary phases.
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4. Discussion

In this study, we applied an attention-guided feature fusion network to develop MVI
prediction models based on multi-phase MRI and found that the 4P model had the best
prediction performance (AUC, 0.92; 95%CI: 0.84–1.00). The visualization of attention
weights provided by the attention modules revealed that the tumor margins in the four
phases and peritumoral areas in the arterial and hepatobiliary phases were the most relevant
regions contributing to MVI prediction. Simultaneously, heatmaps of tensor weights in the
fully connected layers indicated that the HBP was the most important phase contributing
to MVI prediction.

In this study, the 4P model achieved an AUC of 0.92, which is comparable to the
excellent deep learning models reported in previous studies that produced an AUC of
0.91 to 0.92 without using attention mechanism [13,15,29]. The common shortcoming of
these studies is that they cannot give interpretability to their prediction models. Recently,
a study by Xu et al. proposed a MVI prediction model with a vision transformer-based
pure self-attention structure using contrast-enhanced CT images and demonstrated that
the model achieved an AUC of 0.88 [25]. Similarly, Li et al. developed a modality-based
attention and dual-stream multiple instance CNN for predicting MVI and reported that the
model produced an AUC of 0.74 [30]. Both these studies used the self-attention module to
develop MVI prediction models, but their models achieved a relatively low performance.
This may be attributable to the fact that they did not combine the collaborative-attention
module after the self-attention module, indicating that the collaborative-attention module
plays a crucial role in improving MVI prediction performance. In addition to our study,
several studies also demonstrated that self-attention and collaborative-attention modules
can enhance prediction performance during imaging processing in other different fields,
such as skin lesion diagnosis and grading HCC [22,23]. The underlying mechanism is
that during the training of deep learning, self-attention blocks assign attention weights to
different features within the same phase, and collaborative-attention blocks learn related
features from other phases and assist the deep learning network in paying attention to
key features by suppressing attention weights to irrelevant features and adding attention
weights to relevant features [22]. The highlight of the attention-guided feature fusion
network is that the collaborative-attention block considers the intrinsic association between
different phases, which is consistent with the clinical logic that images from different phases
are not observed separately in the evaluation of MVI. The arterial, portal, and hepatobiliary
phases reflect different perfusion statuses and can offer different types of information on
the tumor and peripheral liver parenchyma [31]. Hence, the multi-phase fusion method
is important for improving performance in MVI prediction. The attention-guided feature
fusion model achieved a promising performance in MVI prediction, suggesting that this
network is suitable for developing MVI prediction models based on multi-phase MRI.

The black-box nature of deep learning leads to a poor understanding of the relationship
between deep features and outcomes. To understand the association between deep features
and MVI, we generated attention heatmaps using Grad-CAM based on weights in the self-
attention and collaborative-attention layers. The attention heatmaps of the collaborative-
attention layers in the 4P model showed that the tumor margins in the four phases and
the peritumoral areas in the arterial and hepatobiliary phases had high-attention weights,
indicating that these areas contributed the most to MVI prediction. Recently, a study by
Xu et.al. [25] produced a MVI prediction model with the self-attention module based on
CT images and generated heatmaps with attention weights. Their studies revealed that
attention maps can provide color visualization in detecting suspicious MVI patches [25].
Similarly, Xiao et al.’s [32] group proposed an expert-inspired MVI prediction model based
on CT images and generated an activation map based on the final model. The activation
map in their study showed that discontinuous borderline and peritumoral enhancement
were strong predictive factors for MVI [32]. Zeng et al. developed a MVI prediction model
with an attention mechanism based on intravoxel incoherent motion diffusion-weighted
imaging, and the model achieved an AUC of 0.85 [33]. The attention map of their study
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showed that main parts of the tumor received high attention, in contrast with the results
of our study. The main reason may be that the weak borders and noisy backgrounds
of diffusion-weighted imaging reduced the significance of the tumor margins [33]. This
study revealed an intuitive understanding of the association between deep features and
MVI, which increased the clinical interpretability of prediction models and addressed the
black-box nature of deep learning.

In addition, the high-attention regions contributing to MVI prediction in the four
phases are consistent with the radiological features reported in previous studies [10,34].
Many previous studies demonstrated that radiological features such as nonsmooth tu-
mor margins, rim arterial enhancement, peritumoral hyperenhancement in the arterial
phase, and peritumoral hypointensity in the HBP were significant features for MVI predic-
tion [5,6,9,10,35]. According to a study by Jiang’s group, tumor margins ranked first among
129 radiomics–radiological–clinical features, indicating that tumor margins were the most
important radiological feature in identifying MVI [29]. Pathologically, irregular tumor mar-
gins indicate nodules protruding into the non-tumor parenchyma, which represents a more
aggressive tumor growth pattern and increases the occurrence of MVI [9,36]. Irregular rim-
like hyperenhancement in the arterial phase is associated with more aggressive pathological
features [36,37]. MVI mainly occurs in the minute portal vein branch, leading to hemo-
dynamic perfusion changes in the peritumoral areas, in which portal flow decreases and
arterial flow compensatively increases [5,38,39]. Hemodynamic perfusion changes further
cause the functional impairment of organic anion-transporting polypeptide transporters in
peritumoral hepatocytes [6,36], which induces peritumoral hypointensity in the HBP. The
MVI-associated imaging features and pathological characteristics provided radiological
and pathological explanations for our findings and revealed a cause-and-effect relationship
between deep features and MVI, which further increased the clinical interpretability of
our models.

In the present study, heatmaps of tensor weights in the fully connected layers after
concatenation showed that in the 3P and 4P models, the HBP showed the highest tensor
weights, indicating that the HBP was the most important phase contributing to MVI
prediction. This finding was confirmed by the fact that the HBP model exhibited the best
performance among four single-phase models. In addition, heatmaps of tensor weights
showed that the contribution of the pre-contrast and portal phases to the final prediction
was much smaller than that of the arterial and hepatobiliary phases, which was in line
with result that the PreP and PP models had lower predictive performances than the AP
and HBP models. After fusing the relevant features from other phases, the pre-contrast
and portal phases learned to pay more attention to tumor margins. Visualization of the
tensor weights in the fully connected layers provided information about the contributions
of each phase to the final prediction, providing clinical interpretability of deep learning
models. This study suggested that among the four phases, the HBP is most important in
evaluating MVI.

Our prediction model exhibits a promising performance in MVI prediction, which
offers a non-invasive method to preoperatively predict MVI. By using our model, radiolo-
gists and clinicians can preoperatively obtain the evidence of MVI in patients with HCC.
The color visualization of the model highlights the areas that contain critical information,
enabling radiologists and clinicians to focus on these areas and provides supplemental in-
formation for MVI prediction. The high-attention regions in the MR images may also show
the potential usefulness in guiding pathologists in sampling. Moreover, our prediction
model can be explained by radiological features, allowing radiologists and clinicians to
confidently apply it in clinical settings. Finally, our study found that the HBP is the most
important phase in evaluating MVI, suggesting that radiologists and clinicians should pay
more attention to the HBP, which may be helpful in finding evidence of MVI existence.
The combination of deep learning and radiological features can increase the accuracy of
MVI prediction and save radiologists’ time in evaluating MVI. Preoperative identification



Bioengineering 2023, 10, 948 15 of 17

of MVI is crucial for patients with HCC to formulate personalized therapies, which can
reduce the HCC recurrence and improve the overall survival [30].

Our study has several limitations. First, this is a retrospective study, which might
induce a potential patient selection bias. A large prospective clinical trial is necessary
to validate deep learning models in clinical practice. Second, this study was conducted
at a single healthcare center in China without an external test set, limiting the model’s
generalizability. A larger number of study groups from multiple centers involving varying
types of HCC or MVI in different ethnic groups or populations is needed to validate
our prediction models. Third, patients with HCC included in this study had solitary
tumors. Multiple tumors are frequently associated with a higher incidence of MVI and
are much more complicated; therefore, our prediction model cannot directly apply to
patients with multiple HCCs. MVI prediction models based on multiple HCCs require
further investigation.

5. Conclusions

The attention-guided multi-phase fusion network performed excellently in preop-
erative MVI prediction. Tumor margins in the four phases and the peritumoral areas in
the arterial and hepatobiliary phases were the most salient regions contributing to MVI
prediction. The HBP contributed the most to MVI prediction among the four phases. Visu-
alizing the attention weights in the training network provides an intuitive understanding
of the cause-and-effect relationship between deep features and MVI, increasing the clinical
interpretation of deep learning models, which may facilitate the clinical application of deep
learning. Accurate preoperative prediction of MVI can help screen patients with HCC
who are at risk of MVI, assisting clinicians in selecting more suitable therapies to achieve
better survival.
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Abbreviations

HCC hepatocellular carcinoma
MVI microvascular invasion
HBP hepatobiliary phase
AUC area under the curve
ROC receiver operating characteristic
DCA decision curve analysis
CI confidence interval
Grad-CAM gradient-weighted class activation mapping
3D three-dimensional
CNN convolutional neural network
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