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Abstract: Three-dimensional planning of hip arthroplasty is associated with better visualisation of
anatomical landmarks and enhanced mapping for preoperative implant sizing, which can lead to a
decrease in surgical time and complications. Despite the advantages of hip resurfacing arthroplasty
(HRA), it is considered a technically challenging procedure and associated with inaccurate implant
placement. This study aimed to examine the validity, reliability, and usability of preoperative 3D Hip
Planner software for HRA. Fifty random cases of various hip osteoarthritis severity were planned
twice by two junior trainees using the 3D Hip Planner within a one-month interval. Outcome
measures included femoral/cup implant size, stem-shaft angle, and cup inclination angle, and
were assessed by comparing outcomes from 2D and 3D planning. An adapted unified theory of
acceptance and use of technology (UTAUT) survey was used for software usability. Bland–Altman
plots between 3D and 2D planning for stem-shaft and inclination angles showed mean differences of
0.7 and −0.6, respectively (r = 0.93, p < 0.001). Stem-shaft and inclination angles showed inter-rater
reliability biases of around −2◦ and 3◦, respectively. Chi-square and Pearson’s correlation for femoral
implant size showed a significant association between the two assessors (r = 0.91, p < 0.001). The 3D
test–retest coefficient of repeatability for stem-shaft and inclination angles were around ±2◦ and ±3◦,
respectively, with a strong significant association for femoral implant size (r = 0.98, p < 0.001). Survey
analyses showed that 70–90% agreed that 3D planning improved expectancy in four domains. 3D
hip planner appears to be valid and reliable in preoperative HRA and shows significant potential in
optimising the quality and accuracy of surgical planning.

Keywords: hip resurfacing; preoperative planning; 3D planner; arthroplasty

1. Introduction

Hip resurfacing arthroplasty (HRA) is a more bone-conserving alternative to total
hip arthroplasty (THA). It is primarily recommended for younger, active patients with
end-stage hip arthrosis [1], and delivers significant biomechanical and functional gains over
THA [2–4] and a better safety profile [5]. However, HRA comes with a unique complication
profile, including femoral neck fracture [6], while metal-on-metal devices are at risk of
metal debris and adverse local tissue reactions [7]. Both have been strongly associated
with errors of bone preparation and implant position [8,9]. Compared to THA, HRA is
considered more technically challenging, with a narrower margin of error.

Conventional pre-operative methods of planning hip arthroplasties use a standing
plain radiograph templating of the hip joint to determine cup and femoral stem sizes,
inclination angle, neck-shaft angle, and the depth of the cup [10–12]. The two-dimensional
nature of templating to represent 3D bony structures was shown to be of limited accuracy
and reliability in comparison with three-dimensional (3D) planning [13]. Emerging 3D
platforms have been developed to plan THA and involve the use of computed tomography
(CT) images to construct the plan [14,15].
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Three-dimensional planning permits clearer visualisation of patients’ unique anatom-
ical landmarks and provides a better map for preoperative implant sizing, which may
reduce intraoperative guesswork and translate to a decrease in surgical time and complica-
tions [12,16,17]. This is particularly useful to less experienced surgeons as an essential tool
to facilitate preoperative mental rehearsal, execution of the procedure and to prevent unan-
ticipated problems [18,19]. Most planning software also measures values such as femoral
offset, cup orientation, femoral neck anteversion, and sagittal pelvic tilt [20–23], allowing
surgeons to anticipate potential intraoperative complications (e.g., periprosthetic fractures,
implant instability, and leg length discrepancy) [15,23]. It also enables surgeons to reduce
surgical device inventory and rationalise their choice of intraoperative equipment [16],
yielding more cost-effective surgeries [21].

The evolution of 3D planning has acted as a path to introducing innovative assisted
technologies in hip surgery, particularly patient-specific instrumentation [24], but also
navigation techniques and robotic-assisted surgeries [17]. Implant modifications, such
as the introduction of modern ceramics and crosslinked polyethylene, have significantly
improved arthroplasty bearing wear with encouraging preliminary results [25]. Similarly,
implants which are anatomically matched but have rotational control have been developed,
such as ADM; Stryker, Mahwah, NJ; and the H1 cup; Embody Orthopaedic Ltd., London,
UK; and 3D planning is part of the workflow for arthroplasty (e.g., Mako SmartRobotics,
Stryker; ROSA, Zimmer Biomet; and VELYS, DePuy), all of which is of relevance to the
modern surgeon.

Overall, there is sufficient evidence to suggest that 3D planning enhances the preci-
sion of arthroplasties [22]. This study sought to examine the validity and reliability of a
preoperative 3D Hip Planner software for hip resurfacing arthroplasty and address some
of the potential challenges and needs associated with its implementation through survey
analyses using an adapted unified theory of acceptance and use of technology (UTAUT)
questionnaire.

2. Materials and Methods

Two trainees with limited prior experience in hip arthroplasty planning underwent
a three-hour structured training on hip resurfacing procedural elements planning using
the 3D Hip Planner (Supplementary Materials S1) and TraumaCad 2D templating soft-
ware (Version 2.5), based on the recommendations of Solver, Wetter, and Malchau [11]
(Supplementary Materials S2). Fifty random surgical cases of varying osteoarthritis sever-
ity, statistically powered by the Bland–Altman method [26], were planned twice using the
3D Hip Planner (Figure 1) to examine inter- and intra-rater reliabilities with a minimum of a
one-month interval to avoid carry-over effects from the test–retest study design. Concurrent
validity against 2D templating was assessed by comparing the outcome measures from
the 3D planner and from the 2D system. Software usability was evaluated by engaging
clinicians to share their feedback on the usage of the software across five domains using
a survey.

2.1. Comparison of Techniques (3D vs. 2D)

Outcome measures were selected by considering the common elements between
the two software planning tools, and included femoral/acetabular implant size, stem-
shaft angle (Figure 2a), and cup inclination angle (Figure 2b). A visual representation
of the 3D hip planner software showing a femur and hemi-pelvis is shown in Figure 1.
Statistical analyses were conducted using SPSS version 22. A bivariate two-tailed Pearson’s
correlation coefficient (PCC) was computed to measure the strength of the relationship
between variables. Bland–Altman plots were used to assess the agreement between 3D and
2D planning as well as estimate the interrater reliability (surgeon 1 vs. surgeon 2) of 3D
Hip planner for stem-shaft and inclination angles. Intra-rater (test–retest) reliability for
the stem-shaft and inclination angles was examined with the coefficient of repeatability
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(CR). A chi-squared test was used to measure the agreement of the categorical implant
size variable.
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2.2. Usability

Ten medical doctors of various clinical backgrounds (Figure 3) were recruited through
convenience sampling to examine the usability of the software. A questionnaire was
developed using elements from the unified theory of acceptance and use of technology
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(UTAUT) validated model [27] and encompassed five domains: performance expectancy,
effort expectancy, social influence, facilitating conditions, and attitudes toward 3D planning.
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3. Results
3.1. Agreement with Current Practice

Bland–Altman plots for stem-shaft and inclination angles (Figure 4) showed mean
differences of 0.7 (95% upper and lower limits of agreement were −2.8 and 4.2) and
−0.6 (−4.8 and 3.4), respectively. There was a high positive correlation between the 3D
hip planner and 2D templating for stem-shaft angle (Pearson’s r = 0.83, p < 0.001) and
inclination angle (Pearson’s r = 0.71, p < 0.001).
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Figure 4. Limits of agreement for stem-shaft (left) and inclination (right) angles between 3D Hip
Planner and 2D templating.

With regard to femoral implant size, there was a significant association between the
3D hip planner and 2D templating (X2(25) = 153.7, p < 0.001; Pearson’s r = 0.93, p < 0.001).

3.2. Interrater Reliability

Bland–Altman plots for stem-shaft and inclination angles (Figure 5) showed biases
of around −2◦ (95% upper and lower limits of agreement were −1◦ and 4◦) and 3◦ (1.37
and 6.73), respectively. The chi-square and Pearson’s correlation for femoral implant size
showed a significant association between the two assessors (X2(30) = 129.3, p < 0.001;
Pearson’s r = 0.91, p < 0.001).
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3.3. D Test–Retest Reliability

Figure 6 shows stem-shaft and inclination angles measured by the 3D hip planner in
the first test compared to the second test (stem-shaft angle Pearson’s r = 0.91, p < 0.001;
inclination angle Pearson’s r = 0.69, p < 0.001). The CR for the stem-shaft angle was around
±2◦, with a mean bias of 1.2. The CR for inclination angle was ±3◦, with a mean bias of 1◦.
There was a strong significant association during retest measurements for femoral implant
size (X2(25) = 217, p < 0.001; Pearson’s r = 0.98, p < 0.001).
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3.4. Usability

Adapted UTAUT survey analyses (Figure 7) of 10 surgeons showed that 90% agreed
that 3D planning improved the performance and quality of surgical planning (performance
expectancy), with eight participants believing it is easy to use (effort expectancy) with
clear identification of anatomical landmarks (facilitating conditions). Similarly, seven
participants believed that 3D planning is accurate and interesting and would therefore
recommend it to other surgeons. However, only four participants thought that their
colleagues would be supportive to use three-dimensional hip planning, partly due to
challenges associated with operational implementation and the availability of technical
support teams (Figure 8).
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4. Discussion

This study sought to examine the validity, reliability, and usability of the 3D Hip
Planner in planning hip resurfacing arthroplasty. The findings suggest that 3D Hip Planner
software is valid and reliable for hip resurfacing arthroplasty planning and may, as per the
UTAUT model, enhance surgical planning.
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4.1. Agreement with Current Practice

Compared with 2D templating, the 3D Hip Planner showed good agreement. The
findings highlight that stem-shaft and inclination angles may differ by less than one degree
if planned in either software. The symmetric spread of data points across the Bland–Altman
plots suggests no systematic difference across the range of stem-shaft and inclination angles.
Likewise, the strong association of the choice of implant size between the two software
(Pearson’s r = 0.93, p < 0.001) indicates that clinicians are unlikely to choose a different
implant size when planning HRA in three-dimensions compared to 2D.

4.2. Interrater Reliability of 3D Hip Planner

The significant association of implant size (Pearson’s r = 0.91, p < 0.001) for inter-
rater reliability is higher than previous 2D templating studies [k = 0.25–0.32 [28]; and
k = 0.22–0.43 [29]] and indicates that 3D planning is an appropriate sizing tool for HRA.
Biases for interrater stem-shaft and inclination angles were −2◦ and +3◦, respectively, with
an equal spread of data points and relatively narrow limits of agreements. This translates
into differences among assessors in planning these angles to be different by about 1.5◦ for
stem-shaft angle and less than 3◦ for inclination angle.

It is worth noting that 2D planning was shown to be accurate and reliable in preopera-
tive THA templating [30] and HRA planning [31]. The authors compared 2D templating
to computed tomography, which was assumed to be a true representation of implant ori-
entation. Previous studies in THA demonstrated the excellent reliability of CT-based 3D
planning for implant size and alignment [32,33]. This study shows comparable findings
with high levels of reliability for the 3D planning of HRA.

4.3. Test–Retest Reliability of 3D Hip Planner

There was a strong correlation for implant size during retest measurements (Pear-
son’s r = 0.98, p < 0.001). There appeared to be modest variability in the repeated 3D
stem-shaft and inclination angles measurements as well as between assessors. Two-
dimensional templating studies showed high variability among surgeons [k = 0.16–0.73 [28]
and k = 0.39–0.61 [29]]. The coefficient of repeatability in our study was less than 2◦ for
stem-shaft angle and less than 3◦ degrees for inclination angle during intrarater tests. For
any observed difference to be considered real, they should be at least as large as CR. Stem-
shaft and inclination angles measurements would need to differ by more than ~2◦ and ~3◦,
respectively, to reflect a significant difference. This provides the potential implications for
the use of 3D planning in HRA. It is unlikely that these CRs reflect carry-over inherent
biases or carry-over effects from the study design, since assessors were blinded to their
previous outcome measures and a one-month time interval was ensured between the two
tests. Statistically, there is no single statistical approach to help researchers decide the
magnitude of acceptable CR, it is rather best judged according to its clinical context and rel-
evance [34,35]. Therefore, the minimum clinically important difference (MCID) needs to be
measured in clinical settings [36]. Limited evidence exists regarding the limits of agreement
for 3D hip resurfacing planning. Mast and colleagues studied the reliability agreement
between repeated measures, as given by minimal detectable change, of radiographic pa-
rameters on standardised digital anteroposterior and cross-table lateral radiographs, and
reported values for neck-shaft angle as 12.2◦ (interrater reliability) and 4.8◦–15.9◦ (intrarater
reliability). Taken together, our findings highlight that 3D planning provides a more robust
tool for hip resurfacing arthroplasty.

4.4. Usability of 3D Hip Planner

Our adapted UTAUT analyses demonstrated physicians’ views towards 3D hip plan-
ning primarily in improving the performance and quality of surgical planning. Two
potential barriers to the implementation of 3D Hip Planner were highlighted: lack of tech-
nical support teams and managerial/operational challenges. Although participants found
positive effort expectancy and facilitating conditions in using three-dimensional planning,
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a necessary step in preoperative planning is the extraction of anatomical landmarks and
reference points. In addition, 3D planning entails an additional annual cost to hospitals, and
Huppertz et al. reported an estimated direct cost of 3D preoperative THA planning of EUR
53–116 per patient [37], but the total cost of THA may be reduced by up to 25.7% through
automatic selection of hip implants [17,38]. This requires the availability of managerial
support, technical engineers, and medical personnel to enhance the learning curve and
compensate for barriers to adoption [39].

There are a few limitations to report. The fifty randomly selected cases reflected
patients with various degrees of hip osteoarthritis severity and did not include cases related
to other morphologies such as rheumatoid arthritis or slipped capital femoral epiphysis.
Future studies are required to address the suitability of the 3D Hip Planner for different
patient cohorts. The two junior assessors had no prior experience in 2D templating and
3D planning, which may yield different findings if senior surgeons were to plan the fifty
cases. However, previous studies found similar efficacy of preoperative templating by
junior trainees as their senior counterparts [40]. Likewise, 3D planning is believed to be
an essential tool to improve mental rehearsal and surgical execution by less experienced
surgeons [18], thus it makes it a legitimate cause for carrying out this key validation step by
junior trainees. Finally, convenience sampling was used to understand physicians’ attitudes
towards using 3D HRA planning. This sampling strategy may be biased towards surgeons
who favour the use of surgical technologies in their practice. Large-scale studies should
seek to understand and address a wide range of users’ expectations and investigate the
benefits of 3D planning in terms of intraoperative performance.

5. Conclusions

3D Hip Planner appears to be valid and reliable in preoperative hip resurfacing
arthroplasty and shows great potential in optimising the quality and accuracy of surgical
planning. It may reduce intraoperative guesswork and complications while arguably
enhancing mental rehearsal and learning curves for junior surgeons. The accuracy of
templating methods needs to be evaluated by comparing the projected size and position
of components with the actual placements during the operative procedure. Prospective
clinical studies should address these advantages alongside other measures such as cost-
effectiveness, radiation dose associated with the prerequisite low-dose CT scans required
for constructing 3D plans, and postoperative outcomes. Likewise, a better understanding
of the drivers and barriers to implementation is needed to permit a widespread adoption
of this technology in clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10080939/s1, Supplementary Materials S1: Steps
to plan hip resurfacing cases using 3D Hip Planner; Supplementary Materials S2: Steps to template
surgical cases using 2D TraumaCad.
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