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Abstract: Acute kidney injury (AKI) is a major postoperative complication that lacks established
intraoperative predictors. Our objective was to develop a prediction model using preoperative and
high-frequency intraoperative data for postoperative AKI. In this retrospective cohort study, we
evaluated 77,428 operative cases at a single academic center between 2016 and 2022. A total of
11,212 cases with serum creatinine (sCr) data were included in the analysis. Then, 8519 cases were
randomly assigned to the training set and the remainder to the validation set. Fourteen preoperative
and twenty intraoperative variables were evaluated using elastic net followed by hierarchical group
least absolute shrinkage and selection operator (LASSO) regression. The training set was 56% male
and had a median [IQR] age of 62 (51–72) and a 6% AKI rate. Retained model variables were
preoperative sCr values, the number of minutes meeting cutoffs for urine output, heart rate, perfusion
index intraoperatively, and the total estimated blood loss. The area under the receiver operator
characteristic curve was 0.81 (95% CI, 0.77–0.85). At a score threshold of 0.767, specificity was 77%
and sensitivity was 74%. A web application that calculates the model score is available online. Our
findings demonstrate the utility of intraoperative time series data for prediction problems, including
a new potential use of the perfusion index. Further research is needed to evaluate the model in
clinical settings.

Keywords: acute kidney injury; artificial intelligence; clinical decision support; hemodynamic parameters;
intraoperative predictors; machine learning; non-invasive monitoring; surgical complications;
time-sensitive indicators

1. Introduction

Acute kidney injury (AKI) is a major postoperative complication associated with a
higher risk of death, chronic kidney injury, long-term major adverse cardiovascular events,
and cost of care [1–10]. Implementing reno-protective strategies has been shown to prevent
episodes of AKI in high-risk patients identified by biomarkers [11]; however, lab tests
for biomarkers are expensive and not widely available or used. Early identification of
high-risk patients preoperatively using available data in the electronic health record (EHR)
can be used to accurately stratify patients at risk of perioperative AKI and is highly likely
to prevent episodes of AKI and improve outcomes by implementing early reno-protective
strategies [12]. Intraoperatively, both the patient status and risk for potential complications
rapidly evolve; hence, progression of risk factors can occur rapidly, and real-time analysis
could provide timely instruction to aid an anesthesia provider.
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Observational studies in noncardiac surgeries have found a 9.0–10.1% incidence of
postoperative AKI [12,13]. In a randomized trial with careful postoperative monitoring,
12.3–13.4% developed AKI among the intervention groups; no intervention (aspirin, cloni-
dine, or both) significantly reduced the risk of postoperative AKI [14].

Postoperative AKI often has a prerenal etiology whereby hypoperfusion causes an
ischemic insult to tubular epithelial cells; in severe cases, epithelial cell death by apoptosis
and necrosis manifests as acute tubular necrosis [15,16]. Thus, proposed intraoperative pre-
dictors of AKI include arterial and noninvasive blood pressures, arterial pressure variability,
and urine oxygen partial pressure [13,17,18]. An observational study of noncardiac proce-
dures in which 9.0% of patients developed AKI found no association between intraoperative
hypotension and AKI in those with low preoperative risk, an association between severe
intraoperative hypotension (mean arterial pressure < 50 mmHg) and AKI in participants
with medium preoperative risk (adjusted odds ratio, 2.62), and an association between
mild intraoperative hypotension (mean arterial pressure between 55 and 59 mmHg) and
AKI in participants with high preoperative risk (adjusted odds ratio, 1.34) [13].

While postoperative AKI is often initiated by renal hypoperfusion, systolic blood
pressure varies among arterial segments due to pulse pressure amplification; therefore,
brachial or radial systolic blood pressure may not reliably measure renal hypoperfusion [19].
In a cohort study of 82,659 participants undergoing noncardiac surgery, arterial pressure
standard deviation, coefficient of variation, variation independent of mean, and average
real variability were associated with postoperative AKI independent of intraoperative hy-
potension, with adjusted standardized odds ratios of 1.11–1.14 per standard deviation [17].
In a prospective cohort study of 91 participants undergoing cardiac surgery, the adjusted
relative risk of AKI was 0.82 per 10 mm Hg increase in mean urinary oxygen partial pres-
sure [18]. Challenges of these approaches include the intermittent nature of noninvasive
blood pressure monitoring, invasiveness of arterial pressure monitoring, and specialized
equipment required for urinary oxygen monitoring. In a study of 42,615 major noncardiac
surgeries, the addition of intraoperative variables to prehospitalization and preoperative
variables in a predictive model of postoperative AKI resulted in a modest but signifi-
cant increase in predictive performance (area under the receiver operating characteristic
(ROC) curve (AUC), 0.82 vs. 0.80) [12]. Notably, this model represented intraoperative
data using summary rather than time-sensitive measures and only evaluated indicators of
central hypotension.

The objective of this study was to characterize non-invasive, time-sensitive intraopera-
tive predictors of AKI. Our hypothesis was that a limited set of physiologically relevant
intraoperative variables provides adequate prediction of postoperative AKI.

2. Materials and Methods

We conducted a retrospective cohort study from 2016 to 2022 at the University of Cali-
fornia, San Francisco, CA, USA, an urban quaternary academic medical center. Inclusion
criteria included adult operative cases during the study period with ≥1 serum creatinine
(sCr) value in the 90 days preceding surgery and ≥1 serum sCr in the 48 h following
surgery (Figure 1). Exclusion criteria included obstetric, kidney donor and recipient, and
arteriovenous fistula cases due to preexisting alteration in renal physiology. For the same
reason, we excluded those with last preoperative sCr ≥ 4.5 mg/dL. The study size was
not prespecified.

This study was approved by the University of California, San Francisco Institutional
Review Board (#17-23204) with a waiver of informed consent. STROBE guidelines for
observational studies and TRIPOD guidelines for prediction models were followed [20,21].

Candidate preoperative and intraoperative predictors were selected based on being
routinely measured, noninvasive, or suspected in the literature or the investigators’ clinical
experience (Table S1). A surgery-specific risk score was calculated as described previ-
ously [22]. Intraoperative variables were recorded at a frequency of 1/60 Hz. Non-invasive
blood pressure and urine output were measured intermittently. Non-invasive blood pres-
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sure values were linearly interpolated. Urine output was back-calculated as a constant rate
to the preceding urine output recording or the start of the case.
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Figure 1. Cohort development for training and internal validation. * Within the time interval 90 days
preceding surgery and 48 h following surgery. sCr, serum creatinine.

Intraoperative variables were investigated in a time-sensitive manner. The variables
recorded at each minute of the operation included vital signs and signals from the pulse
oximeter. Quantiles were determined for each variable at 2.5%, 5%, 10%, 25%, 50%, 75%,
90%, 95%, and 97.5% (Table S2). To prevent longer cases from being overrepresented in
these distributions, 100 values of each variable were resampled with replacement from
each case prior to calculating the quantiles. We then calculated the number of minutes in
each case during which the respective intraoperative variable was less than or equal to and
above each respective quantile.

The main outcome was AKI according to the Kidney Disease Improving Global Out-
comes (KDIGO) criteria in the 48 h following surgery [23]: [48 h maximum postoperative
sCr] − [last preoperative sCr] ≥ 0.3 mg/dL or [48 h maximum postoperative sCr]/[last
preoperative sCr] ≥ 1.5. While we attempted to incorporate KDIGO urine output criteria
into our definition of postoperative AKI, we found that this was not well-suited to retro-
spective analysis due to unclear or inconsistent urine output charting practices, as was
similarly found in other studies [12]. We restricted postoperative follow-up to 48 h rather
than 7 days to avoid misclassifying cases in which AKI was more directly related to features
of the postoperative rather than intraoperative course. Whereas prior studies have modeled
AKI as a binary (stage 1 vs. stage 0) or multiclass (stages 0–3) outcome, we modeled the
continuous difference between 48 h maximum postoperative sCr and last preoperative sCr,
as we found this improved model performance. Cases with a postoperative sCr decrease
were labeled as having a postoperative sCr increase of 0 for the purposes of modeling.

For variables with missing data, we added a binary indicator of missingness. All
categorical variables were encoded by dummy variables. Missing data were imputed
as the median for continuous variables and the most common category for categorical
variables. Data were abstracted using Opal, an implementation science tool for clinical
decision support in anesthesia [24].

All analyses were carried out in R version 4.1.1. Characteristics of the study population
were summarized as the median and interquartile range (IQR) for continuous variables
and counts and percentages for categorical variables. Differences between cases with and
without AKI were summarized as the standardized mean difference.

Cases were randomly assigned to an 80% training or 20% internal validation set. Due
to the large number of candidate intraoperative predictors, we carried out a two-step
modeling strategy on the training set. To select main terms, we conducted 1000 trials
of elastic net regression using the glmnet package [25]. Prior to commencing the trials,
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the alpha parameter was tuned to α = 0.5 among {0.000, 0.001, 0.008, 0.027, 0.064, 0.125,
0.216, 0.343, 0.512, 0.729, and 1.000} by minimizing the cross-validated loss value initialized
using cva.glmet in the glmnetUtils package [26]. In each trial, cv.glmnet was called with
nfolds = 5, alpha = 0.5, standardize = TRUE, and otherwise default arguments, to identify
the largest regularization parameter lambda within one standard error of the lambda that
minimized the cross-validated error (λ1se). We conducted repeated trials as suggested by
developers of the glmnet package due to the inherent randomness of the folds.

We then assessed interactions among the main terms identified in the above procedure
using the glinternet package [27]. We called glinternet.cv with nFolds = 5 and otherwise
default arguments to identify λ1se. Of note, glinternet initially standardizes continuous
features to unit norm and mean zero by default. We used this two-step strategy because
of the computational infeasibility of assessing the >25,000 interactions in the initial set of
candidate predictors. The glinternet model where λ = λ1se was deemed the POSTOP-AKI
(perfusion optimized score to predict AKI) model and evaluated in the validation set. Figure
S1 shows a flowchart of the variable selection and model building process. For comparison,
the POSTOP-AKI model was compared to a simple preoperative predictor—the minimum
sCr in the 90 days preceding the procedure.

We created ROC and precision-recall (PR) curves and calculated their respective AUCs
using the continuous predicted postoperative increase in sCr. We conduced decision curve
analysis using the dcurves package [28]. Because decision curve analysis necessitates that
markers be bound within (0, 1), the minimum preoperative creatinine was transformed
as such by logistic regression; the POSTOP-AKI scores already met this condition. We
chose three thresholds for the predicted postoperative increase in sCr to facilitate analyses
requiring a binary outcome. The middle threshold of 0.0767 was identified using the
Youden index. Because interventions for AKI are relatively low risk, we also demonstrate
a lower threshold of 0.05, which has higher sensitivity. The variance in the postoperative
increase in sCr in the training set is 0.05. We also selected a higher threshold of 0.1, which
has a higher positive predictive value, to provide users with scenarios wherein higher risk
interventions may be warranted. These thresholds were meant to be demonstrative and
should not be interpreted as optimized in external data sets. We created confusion matrices
and calculated specificity, sensitivity, and positive predictive value (PPV) using these three
cutoffs. A calibration curve was created by plotting the observed values for postoperative
increase in sCr against predicted values in the validation set. R2 and the root-mean-square
error (RMSE) were calculated for the calibration curve in the validation set. Moreover,
the observed rate of AKI as a binary outcome was plotted within deciles of the predicted
postoperative increase in sCr.

We then assessed predictive performance in subpopulations of the validation set
defined by cutoffs in the 90-day minimum preoperative sCr due to the influence of preop-
erative kidney function on the risk of developing postoperative AKI. Across 200 equally
spaced cutoffs from the 10th percentile (0.49) to the 90th percentile (1.46) of minimum
preoperative sCr, we calculated ROC AUCs in the subpopulation of the validation set with
minimum preoperative sCr greater than or equal to the cutoff.

We then compared random forest and XGBoost models to the POSTOP-AKI model
using the caret, ranger, and xgboost packages [29–31]. For hyperparameter optimization,
we called the train function on the same training set as above with method = ‘ranger’ and
‘xgbTree’, metric = ‘RMSE,’ and the trainControl parameters method = ‘cv’, number = 10,
and search = ‘grid’. The predictors were those identified by the elastic net variable selection
step described above (2 preoperative variables and 4 intraoperative variables). We created
ROC and PR curves and calculated their respective AUCs as described above.

To aid interpretation of the variables included in the POSTOP-AKI model, we con-
ducted OLS regression on 1000 bootstraps of the training set using the main terms identified
above. Confidence intervals were calculated by the percentile method using the boot pack-
age [32], though they should not be interpreted in the context of statistical hypothesis
testing due to the numerous variable selection steps in our model-building approach. Lin-
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ear relationships were evaluated by plotting the observed rate of postoperative AKI as a
function of the number of minutes meeting intraoperative thresholds in 30 min bins, the
estimated blood loss in 100 mL bins, and the minimum preoperative sCr in 0.2-mg/dL bins.

Trends in retained model variables were further explored by plotting the proportion
of non-AKI and AKI cases meeting predictive thresholds for urine output, heart rate, and
perfusion index at each minute during the procedure.

3. Results
3.1. Patient Characteristics

We initially evaluated 77,428 adult operative cases not involving obstetric, kidney
transplant, or AV fistula surgery during the study period (Figure 1). A total of 11,212 cases
were further evaluated based on existing sCr data in the 90 days preceding and 48 h
following the procedure. A total of 589 cases with preoperative sCr ≥ 4.5 mg/dL were
excluded from the analysis, resulting in an analytic set of 10,623 cases. Then, 8519 were
randomly assigned to the training set and 2104 to the validation set. There were 469 (5.5%)
and 132 (6.3%) cases with AKI in the training and validation sets, respectively.

Patients had a median [IQR] age of 62 (51, 71) years. A total of 5871 (55.3%) patients
were male and 6401 (60.3%) identified as White or Caucasian. A total of 2675 (25.2%)
patients were classified as an ASA emergency. The most common operative services were
orthopedic surgery (3778, 35.6%), neurological surgery (1350, 12.7%), and general surgery
(1611, 15.2%). Median [IQR] booking and actual case durations were 210 (133, 242) min
and 160 (93, 257) min, respectively. Clinical characteristics were well-balanced between the
training and validation sets, with SMD < 0.1 for all variables (Table 1), including differences
in case duration (Figure S2).

3.2. Preoperative and Intraoperative Variables

In the first variable-selection step, 14 preoperative and 20 intraoperative variables were
evaluated by fitting an elastic net model on the training set (Table S1). Eleven time-sensitive
intraoperative variables were represented as the number of minutes below and above
nine population-level distributional thresholds (Table S2). With the addition of missingness
indicator variables, this led to a total of 226 candidate variables. Preoperative variables
retained by the model were the preoperative sCr closest to the procedure (last preoperative
sCr within 90 days) and the minimum sCr within 90 days before the procedure. Retained
intraoperative variables were the number of minutes the pulse oximetry perfusion index
was ≤0.8%, minutes urine output ≤31.29 mL/h, minutes pulse oximetry heart rate > 85,
and total estimated blood loss.

We then explored interactions among the retained main terms to capture the inter-
play among physiological processes leading to AKI. To determine interactions among the
six variables identified above, a glinternet model was fit on the training set. Retained
interactions were between the last preoperative sCr and perfusion index, urine output,
and estimated blood loss; between the urine output and minimum preoperative sCr and
perfusion index; between the minimum preoperative sCr and heart rate; and between the
estimated blood loss and heart rate and perfusion index. Coefficients of the POSTOP-AKI
model are presented in Table S3. A web application that calculates the POSTOP-AKI score
for user-specified inputs is available at https://postop-aki.onrender.com (accessed on
30 July 2023; Figure 2).

https://postop-aki.onrender.com


Bioengineering 2023, 10, 932 6 of 14

Table 1. Characteristics of the study population. SMD, standardized mean difference. Data missing-
ness (%) was 0 with the exception of 3.2, 2.8, and 4.7 for height, weight, and body mass index; 39 and
37 for preoperative temperature and heart rate; 37 and 36 for ASA class and emergency; 18 and 17 for
booking case length and surgical risk score.

Characteristic Overall Training Set Validation Set SMD

N 10,623 8519 2104
Age (median [IQR]) 62 (51, 72) 62 (51, 72) 62 (50, 71) 0.02
Male (%) 5871 (55.3) 4747 (55.7) 1124 (53.4) 0.05
Race (%) 0.02

American Indian or Alaska Native 89 (0.8) 74 (0.9) 15 (0.7)
Black or African American 916 (8.6) 732 (8.6) 184 (8.7)
Other, including multiracial 3217 (30.3) 2573 (30.2) 644 (30.6)
White or Caucasian 6401 (60.3) 5140 (60.3) 1261 (59.9)

Hispanic or Latino (%) 1558 (14.7) 1246 (14.6) 312 (14.8) 0.006
Weight—kg (median [IQR]) 77 (64, 91) 77 (64, 91) 77 (64, 91) 0.01
Height—cm (median [IQR]) 170 (163, 178) 170 (163, 178) 168 (163, 178) 0.08
Body mass index—kg/m2 (median [IQR]) 26 (22, 30) 26 (22, 30) 26 (22, 30) 0.03
Diabetes mellitus (%) 257 (2.4) 208 (2.4) 49 (2.3) 0.007
Hypertension (%) 296 (2.8) 247 (2.9) 49 (2.3) 0.04
Heart failure (%) 119 (1.1) 95 (1.1) 24 (1.1) 0.002
Liver disease (%) 401 (3.8) 327 (3.8) 74 (3.5) 0.02
Surgical risk score (%) 0.02

0 6554 (61.7) 5238 (61.5) 1316 (62.5)
1 2571 (24.2) 2070 (24.3) 501 (23.8)
2 1498 (14.1) 1211 (14.2) 287 (13.6)

American Society of Anesthesiologists (ASA) class (%) 0.05
1 216 (2.0) 163 (1.9) 53 (2.5)
2 5853 (55.1) 4685 (55.0) 1168 (55.5)
3 3957 (37.2) 3184 (37.4) 773 (36.7)
4 591 (5.6) 483 (5.7) 108 (5.1)
5 6 (0.1) 4 (0.0) 2 (0.1)

ASA emergency (%) 2675 (25.2) 2138 (25.1) 537 (25.5) 0.01
Primary service (%) 0.07

Cardiac surgery 188 (1.8) 151 (1.8) 37 (1.8)
Cardiology 826 (7.8) 680 (8.0) 146 (6.9)
Gastroenterology 108 (1.0) 90 (1.1) 18 (0.9)
General surgery 1611 (15.2) 1277 (15.0) 334 (15.9)
Neurological surgery 1350 (12.7) 1099 (12.9) 251 (11.9)
Orthopedic surgery 3778 (35.6) 3003 (35.3) 775 (36.8)
Other 1012 (9.5) 823 (9.7) 189 (9.0)
Plastic surgery 324 (3.0) 257 (3.0) 67 (3.2)
Thoracic surgery 240 (2.3) 193 (2.3) 47 (2.2)
Vascular surgery 1186 (11.2) 946 (11.1) 240 (11.4)

Booking case length—min (median [IQR]) 210 (133, 242) 210 (134, 242) 210 (130, 241) 0.02
Actual case duration—min (median [IQR]) 160 (93, 257) 161 (94, 257) 159 (90, 258.25) 0.003
Intraoperative

Use of inhalational anesthetic (%) 9827 (92.5) 7878 (92.5) 1949 (92.6) 0.006
Use of pressors (%) 6468 (60.9) 5188 (60.9) 1280 (60.8) 0.001
Median temperature (median [IQR]) 97 (96, 98) 97 (96, 98) 97 (97, 98) 0.04
Median heart rate (median [IQR]) 72 (63, 83) 72 (63, 83) 72 (63, 82) 0.02
Median systolic blood pressure (median [IQR]) 112 (103, 124) 112 (103, 124) 112 (103, 125) 0.01
Median respiratory rate (median [IQR]) 12 (10, 14) 12 (10, 14) 12 (10, 14) 0.008
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Figure 2. Demonstration of the POSTOP-AKI web application. (A) Variables are initialized with
their respective medians in the training set. POSTOP-AKI, perfusion optimized score to predict AKI.
(B) The predicted postoperative increase in serum creatinine is compared to three thresholds for
predicting postoperative acute kidney injury.

3.3. Predictive Performance of the POSTOP-AKI Model

We then evaluated the predictive performance of the POSTOP-AKI model in the
validation set. The ROC AUC was 0.81 (95% CI, 0.77–0.85) for the POSTOP-AKI model and
0.75 (0.70–0.80) for the 90-day minimum preoperative sCr (Figure 3A). The PR AUC was 0.24
for the POSTOP-AKI model and 0.19 for the 90-day minimum preoperative sCr (Figure 3B).
Decision curve analysis demonstrated an increased net benefit of the POSTOP-AKI model
compared to a treat-all strategy, treat-none strategy, and prediction using the minimum
preoperative sCr across a wide range of threshold probabilities (Figure 3C). The increased
predictive performance of the POSTOP-AKI model was consistent across a range of cutoffs
in the 90-day minimum preoperative sCr (Figure S3). Both the relationship between
the predicted postoperative increase in sCr (the POSTOP-AKI score) and the observed
postoperative increase in sCr and between the POSTOP-AKI score and the observed rate of
AKI were largely linear (Figures S4 and S5). R2 and RMSE for the calibration curve in the
validation set were 0.22 and 0.18, respectively. For comparison to the POSTOP-AKI model,
the random forest model had an ROC AUC of 0.79 and a PR AUC of 0.22 and the XGBoost
model had an ROC AUC of 0.80 and a PR AUC of 0.21 (Figure S6).
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demonstrated Table 2. (C) Decision curve analysis. POSTOP-AKI, perfusion optimized score to
predict AKI.
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Low, middle, and high score thresholds were 0.05, 0.0767, and 0.1 for the POSTOP-AKI
model, respectively, and 0.75, 0.945, and 1.25 for the 90-day minimum preoperative sCr,
respectively (Table 2). For the low cutoff in the POSTOP-AKI model, specificity was 37%,
sensitivity was 91%, and PPV was 8.2%. For the low cutoff in the minimum preoperative
sCr, specificity was 47%, sensitivity was 83%, and PPV was 8.7%. For the middle cutoff in
the POSTOP-AKI model, specificity was 77%, sensitivity was 74%, and PPV was 15%. For
the middle cutoff in the minimum preoperative sCr, specificity was 72%, sensitivity was
67%, and PPV was 12%. For the high cutoff in the POSTOP-AKI model, specificity was 87%,
sensitivity was 60%, and PPV was 19%. For the high cutoff in the minimum preoperative
sCr, specificity was 88%, sensitivity was 47%, and PPV was 18%.

Table 2. Confusion matrices for low, medium, and high cutoffs of predicted postoperative increase in
serum creatinine (sCr).

Minimum Preoperative sCr POSTOP-AKI

Score threshold <0.75 ≥0.75 <0.05 ≥0.05
No AKI 935 1037 737 1235

AKI 23 109 12 120
Score threshold <0.945 ≥0.945 <0.0767 ≥0.0767

No AKI 1413 559 1514 458
AKI 44 88 34 98

Score threshold <1.25 ≥1.25 <0.1 ≥0.1
No AKI 1743 229 1714 258

AKI 70 62 53 79

3.4. Associations of Model Variables with Postoperative AKI

To aid model interpretation, an OLS linear regression model was fit on the training set
using the main terms retained in the POSTOP-AKI model (Table S4). Variables retained in
the POSTOP-AKI model demonstrated largely linear relationships with the observed rate
of AKI, supporting the use of a linear model (Figures S7–S11).

We also assessed the relationship between time-sensitive intraoperative variables
retained in the POSTOP-AKI model and postoperative AKI at each minute throughout the
procedure. From the procedure start time to up to 10 h intraoperatively, the proportion
of cases meeting the predictive thresholds for urine output, perfusion index, and heart
rate was consistently higher among those who developed postoperative AKI compared to
those who did not (Figure 4). Throughout intraoperative time points, the median [IQR]
difference in the portion meeting the predictive threshold between cases that developed
AKI and those that did not was 15.8% (13.3–19.1%) for urine output, 8.0% (5.0–11.3%) for
heart rate, and 7.2% (5.2–9.5%) for perfusion index.

Time-series distributions of urine output, perfusion index, and heart rate, as well as
density plots of estimated blood loss and 90-day minimum preoperative sCr, are presented
in Figures S12–S16. Distributions were largely parallel, with urine output and perfusion
index shifted lower in cases developing AKI, and heart rate, estimated blood loss, and
90-day minimum preoperative sCr shifted higher in cases developing AKI.
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4. Discussion

Anesthesia is an ideal discipline for integrating data analysis and machine learning
into clinical decision support because much of the raw clinical data were digitized and
automatically captured and stored. We report a simple and easy to use prediction model
for postoperative AKI that uses non-invasive intraoperative variables. Notable attributes
of our model are its simplicity, interpretability, ease of intraoperative use, and potential
actionability. Underlying this model, we developed a statistical method for transforming
intraoperative time-series data into a set of numeric variables. This method may prove
useful for other applications of prediction models in the operative setting.

Accurate intraoperative prediction of AKI could enable customizable reno-protective
interventions for patients who will benefit from them most, such as hemodynamic opti-
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mization with vasoactive drugs and infusions of fluid and blood products [33], without
exposing patients with a low probability of AKI to these interventions. The prediction
can also improve the transfer of the information and concerns to those who take care of
the patient after surgery, as it has been shown that important details are often lost when a
handoff occurs between providers [34].

Our analysis identified a set of predictive intraoperative variables that matches clinical
intuition. Urine output, heart rate, and estimated blood loss are all thought to reflect
volume status and fluid responsiveness. Of note, the pulse oximetry perfusion index was
retained in the model over more central measures of perfusion, such as blood pressure. The
perfusion index is the ratio of absorbed arterial inflow light, or pulsatile pulse oximetry
signal, to the nonpulsatile signal. While the perfusion index has been previously proposed
as a marker of peripheral perfusion [35,36], its use for the prediction of postoperative AKI
is new to our knowledge. The predictive ability of the perfusion index in our application
suggests that renal hypoperfusion may not always coincide with central hypotension.

Of the intraoperative variables included in the POSTOP-AKI model, both heart rate
and perfusion index are continuous, noninvasive, and routinely measured for almost all
procedures. While formal documentation of the urine output and estimated blood loss is
more intermittent in nature, particularly in cases not using a foley catheter for urine output,
most anesthesiologists closely monitor these values throughout procedures.

The baseline kidney function, as reflected by preoperative sCr, is perhaps the most com-
mon and straightforward predictor of postoperative AKI widely available currently [37–39].
The Simple Postoperative AKI Risk (SPARK) model is a relatively simple score-based model
that uses age, estimated glomerular filtration rate, sex, expected surgical duration, emer-
gency operation, diabetes mellitus status, renin–angiotensin–aldosterone system blockade
use, hypoalbuminemia, anemia, and hyponatremia [40]. Lastly, more complex predictive
models of postoperative AKI have been reported using hundreds of preoperative and
intraoperative variables [12]. In comparison to preoperative sCr, the POSTOP-AKI model
demonstrated a clinically meaningful increase in predictive performance. The POSTOP-
AKI model used fewer preoperative variables than the SPARK model and achieved superior
predictive performance. Lastly, the POSTOP-AKI model achieved similar performance to
complex preoperative and intraoperative models while including a far more limited set of
variables and a more interpretable linear model.

In the POSTOP-AKI model, several intraoperative variables were retained over preop-
erative variables despite placing no constraints on inclusion or exclusion of either set of
variables. While it may be possible to achieve a similar predictive performance with a much
larger set of candidate preoperative variables and the use of a more complicated model,
a strength of our model is its simplicity and ease of use. Conversely, even among larger,
more complicated models, the inclusion of the intraoperative variables identified in this
study or the use of our method for transforming intraoperative time series data may still
lead to meaningful increases in predictive performance compared to entirely preoperative
models. These questions may serve as the basis for future research.

Also subject to further research is the question of optimal score cutoffs for the POSTOP-
AKI model. While we describe three potential cutoffs, a formal investigation of the risks and
benefits of intervention based on different cutoffs is perhaps better served by a prospective
or randomized study. Further work is needed to determine whether clinical interventions
guided by the predicted risk of AKI can alter rates of postoperative AKI.

This study has some limitations. Our model was developed and validated at a single
center, and broader application necessitates validation of the model with external data.
Importantly, score thresholds for the binary outcome were intended to be demonstrative
and are not optimized for external data. Nevertheless, our data represented a broad range
of operative services, anesthesiologists, and surgeons, and the retained model variables
have clear physiologic reasons to be predictors of AKI. Our study design limits a causal
interpretation of the results, which strictly requires that exposures precede the outcome.
While we attempted to exclude those with preoperative AKI, concurrent timing of the
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exposures and outcome is still possible given the lack of real-time indicators of AKI. Another
important limitation of our study is the possibility that the accuracy of the perfusion index
varies in different skin tones, as observed for the pulse oximetry oxygen saturation [41].

5. Conclusions

We report a simple and easy to use prediction model for postoperative AKI that uses
preoperative sCr values, the number of minutes meeting cutoffs for urine output, heart rate,
and perfusion index intraoperatively, and the total estimated blood loss. A web application
that calculates the model score is available online. Our findings demonstrate the utility of
intraoperative time-series data for prediction problems in the operative setting, including
a new potential use of the perfusion index. Further research is needed to prospectively
characterize the use of the POSTOP-AKI model in clinical settings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10080932/s1, Table S1: Candidate preoperative and
intraoperative variables; Table S2: Distributions of intraoperative variables; Table S3: POSTOP-AKI
model coefficients; Table S4: Main term coefficients; Figure S1: Variable selection and model building;
Figure S2: Distribution of case duration; Figure S3: Predictive performance of the POSTOP-AKI
model as a function of cutoffs in the minimum preoperative sCr; Figure S4: Calibration curve
for the POSTOP-AKI model in the validation set; Figure S5: Association between POSTOP-AKI
score and AKI in the validation set; Figure S6: Performance metrics in the validation set for com-
parison models; Figures S7–S9: Correlation of rate of acute kidney injury and duration of meeting
intraoperative predictive threshold for urine output, pulse oximetry heart rate, and pulse oximetry
perfusion index; Figure S10: Correlation of total estimated blood loss and rate of acute kidney in-
jury; Figure S11: Correlation of 90-day minimum preoperative serum creatinine and rate of acute
kidney injury; Figures S12–S14: Time-series plots of urine output, pulse oximetry heart rate, and
pulse oximetry perfusion index; Figures S15 and S16: Density plots of total estimated blood loss and
90-day minimum preoperative serum creatinine; STROBE and TRIPOD checklists.

Author Contributions: Conceptualization, S.Z. and A.B.; Data curation, S.Z. and A.B.; Formal
analysis, S.Z., A.E.H., J.F., A.J.B., R.P. and A.B.; Funding acquisition, A.B.; Methodology, S.Z., A.E.H.,
J.F., A.J.B., R.P. and A.B.; Project administration, A.B.; Resources, A.B.; Software, S.Z. and A.B.;
Supervision, A.B.; Validation, S.Z. and A.B.; Visualization, S.Z. and A.B.; Writing—original draft, S.Z.
and A.B.; and Writing—review and editing, S.Z., A.E.H., J.F., A.J.B., R.P. and A.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Foundation for Anesthesia Education and Research Men-
tored Research Training Grant (FAER MRTG) and the National Institute of General Medical Sciences
of the National Institutes of Health (K23GM151611) to A.B. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National Institutes of Health.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of the University of California, San
Francisco (#17-23204, 22 December 2022).

Informed Consent Statement: Patient consent was waived in the IRB approval due to the retrospec-
tive use of anonymized data.

Data Availability Statement: The data presented in this study are available in a deidentified format
via a secure data repository on request from the corresponding author.

Acknowledgments: The authors thank James P. Pirruccello for helpful discussions.

https://www.mdpi.com/article/10.3390/bioengineering10080932/s1
https://www.mdpi.com/article/10.3390/bioengineering10080932/s1


Bioengineering 2023, 10, 932 13 of 14

Conflicts of Interest: A.B. is a co-founder of Bezel Health, a company building software to measure
and improve healthcare quality interventions. A.J.B. is a co-founder and consultant to Personalis
and NuMedii; consultant to Samsung, Mango Tree Corporation, and in the recent past, 10x Ge-
nomics, Helix, Pathway Genomics, and Verinata (Illumina); has served on paid advisory panels or
boards for Geisinger Health, Regenstrief Institute, Gerson Lehman Group, AlphaSights, Covance,
Novartis, Genentech, and Merck, and Roche; is a shareholder in Personalis and NuMedii; is a minor
shareholder in Apple, Facebook, Google, Microsoft, Sarepta, Moderna, Regeneron, 10x Genomics,
Amazon, Biogen, CVS, Illumina, Snap, Nuna Health, Assay Depot, Vet24seven, and Sutro, and
several other non-health related companies and mutual funds; and has received honoraria and travel
reimbursement for invited talks from Genentech, Takeda, Varian, Roche, Pfizer, Merck, Lilly, Mars,
Siemens, Optum, Abbott, Celgene, AstraZeneca, AbbVie, Johnson and Johnson, Westat, and many
academic institutions, medical or disease specific foundations and associations, and health systems.
Atul Butte receives royalty payments through Stanford University, for several patents and other
disclosures licensed to NuMedii and Personalis. A.J.B.’s research has been funded by NIH, Robert
Wood Johnson Foundation, Northrup Grumman (as the prime on an NIH contract), Genentech,
Johnson and Johnson, FDA, the Leon Lowenstein Foundation, the Intervalien Foundation, Priscilla
Chan and Mark Zuckerberg, the Barbara and Gerson Bakar Foundation, and in the recent past, the
March of Dimes, Juvenile Diabetes Research Foundation, California Governor’s Office of Planning
and Research, California Institute for Regenerative Medicine, L’Oreal, and Progenity. The authors
declare no other conflicts of interest. The funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References
1. Hobson, C.; Ozrazgat-Baslanti, T.; Kuxhausen, A.; Thottakkara, P.; Efron, P.A.; Moore, F.A.; Moldawer, L.L.; Segal, M.S.; Bihorac,

A. Cost and Mortality Associated with Postoperative Acute Kidney Injury. Ann. Surg. 2015, 261, 1207–1214. [CrossRef] [PubMed]
2. Wang, Y.; Bellomo, R. Cardiac Surgery-Associated Acute Kidney Injury: Risk Factors, Pathophysiology and Treatment. Nat. Rev.

Nephrol. 2017, 13, 697–711. [CrossRef] [PubMed]
3. Romagnoli, S.; Ricci, Z.; Ronco, C. Perioperative Acute Kidney Injury: Prevention, Early Recognition, and Supportive Measures.

Nephron 2018, 140, 105–110. [CrossRef] [PubMed]
4. Sahinturk, H.; Ozdemirkan, A.; Zeyneloglu, P.; Gedik, E.; Pirat, A.; Haberal, M. Early Postoperative Acute Kidney Injury Among

Pediatric Liver Transplant Recipients. Exp. Clin. Transplant. 2021, 19, 659–663. [CrossRef] [PubMed]
5. Massoth, C.; Zarbock, A.; Meersch, M. Acute Kidney Injury in Cardiac Surgery. Crit. Care Clin. 2021, 37, 267–278. [CrossRef]
6. Chang, C.-Y.; Chien, Y.-J.; Kao, M.-C.; Lin, H.-Y.; Chen, Y.-L.; Wu, M.-Y. Pre-Operative Proteinuria, Postoperative Acute Kidney

Injury and Mortality: A Systematic Review and Meta-Analysis. Eur. J. Anaesthesiol. 2021, 38, 702–714. [CrossRef]
7. Bennett, D.; Fossi, A.; Marchetti, L.; Lanzarone, N.; Sisi, S.; Refini, R.M.; Sestini, P.; Luzzi, L.; Paladini, P.; Rottoli, P. Postoperative

Acute Kidney Injury in Lung Transplant Recipients. Interact. CardioVasc. Thorac. Surg. 2019, 28, 929–935. [CrossRef]
8. Helgason, D.; Helgadottir, S.; Ahlsson, A.; Gunn, J.; Hjortdal, V.; Hansson, E.C.; Jeppsson, A.; Mennander, A.; Nozohoor, S.;

Zindovic, I.; et al. Acute Kidney Injury After Acute Repair of Type A Aortic Dissection. Ann. Thorac. Surg. 2021, 111, 1292–1298.
[CrossRef]

9. Oh, T.K.; Song, I.-A. Postoperative Acute Kidney Injury Requiring Continuous Renal Replacement Therapy and Outcomes after
Coronary Artery Bypass Grafting: A Nationwide Cohort Study. J. Cardiothorac. Surg. 2021, 16, 315. [CrossRef]

10. Engin, M.; Aydın, U.; Tatlı, A.B.; As, A.K.; Ata, Y. Heart Surgery and Postoperative Acute Kidney Injury. J. Card. Surg. 2022,
37, 2487–2488. [CrossRef]

11. McIlroy, D.R.; Wagener, G.; Lee, H.T.; Riou, B. Biomarkers of Acute Kidney Injury. Anesthesiology 2010, 112, 998–1004. [CrossRef]
[PubMed]

12. Lei, V.J.; Luong, T.; Shan, E.; Chen, X.; Neuman, M.D.; Eneanya, N.D.; Polsky, D.E.; Volpp, K.G.; Fleisher, L.A.; Holmes, J.H.; et al.
Risk Stratification for Postoperative Acute Kidney Injury in Major Noncardiac Surgery Using Preoperative and Intraoperative
Data. JAMA Netw. Open 2019, 2, e1916921. [CrossRef] [PubMed]

13. Mathis, M.R.; Naik, B.I.; Freundlich, R.E.; Shanks, A.M.; Heung, M.; Kim, M.; Burns, M.L.; Colquhoun, D.A.; Rangrass, G.; Janda,
A.; et al. Preoperative Risk and the Association between Hypotension and Postoperative Acute Kidney Injury. Anesthesiology
2020, 132, 461–475. [CrossRef]

14. Garg, A.X.; Kurz, A.; Sessler, D.I.; Cuerden, M.; Robinson, A.; Mrkobrada, M.; Parikh, C.R.; Mizera, R.; Jones, P.M.; Tiboni, M.; et al.
Perioperative Aspirin and Clonidine and Risk of Acute Kidney Injury: A Randomized Clinical Trial. JAMA 2014, 312, 2254. [CrossRef]

15. Bonventre, J.V.; Yang, L. Cellular Pathophysiology of Ischemic Acute Kidney Injury. J. Clin. Investig. 2011, 121, 4210–4221.
[CrossRef] [PubMed]

16. Sharfuddin, A.A.; Molitoris, B.A. Pathophysiology of Ischemic Acute Kidney Injury. Nat. Rev. Nephrol. 2011, 7, 189–200. [CrossRef]
17. Park, S.; Lee, H.-C.; Jung, C.-W.; Choi, Y.; Yoon, H.J.; Kim, S.; Chin, H.J.; Kim, M.; Kim, Y.C.; Kim, D.K.; et al. Intraoperative

Arterial Pressure Variability and Postoperative Acute Kidney Injury. CJASN 2020, 15, 35–46. [CrossRef]

https://doi.org/10.1097/SLA.0000000000000732
https://www.ncbi.nlm.nih.gov/pubmed/24887982
https://doi.org/10.1038/nrneph.2017.119
https://www.ncbi.nlm.nih.gov/pubmed/28869251
https://doi.org/10.1159/000490500
https://www.ncbi.nlm.nih.gov/pubmed/29945154
https://doi.org/10.6002/ect.2018.0214
https://www.ncbi.nlm.nih.gov/pubmed/30880650
https://doi.org/10.1016/j.ccc.2020.11.009
https://doi.org/10.1097/EJA.0000000000001542
https://doi.org/10.1093/icvts/ivy355
https://doi.org/10.1016/j.athoracsur.2020.07.019
https://doi.org/10.1186/s13019-021-01704-7
https://doi.org/10.1111/jocs.16509
https://doi.org/10.1097/ALN.0b013e3181cded3f
https://www.ncbi.nlm.nih.gov/pubmed/20216399
https://doi.org/10.1001/jamanetworkopen.2019.16921
https://www.ncbi.nlm.nih.gov/pubmed/31808922
https://doi.org/10.1097/ALN.0000000000003063
https://doi.org/10.1001/jama.2014.15284
https://doi.org/10.1172/JCI45161
https://www.ncbi.nlm.nih.gov/pubmed/22045571
https://doi.org/10.1038/nrneph.2011.16
https://doi.org/10.2215/CJN.06620619


Bioengineering 2023, 10, 932 14 of 14

18. Silverton, N.A.; Lofgren, L.R.; Hall, I.E.; Stoddard, G.J.; Melendez, N.P.; Van Tienderen, M.; Shumway, S.; Stringer, B.J.; Kang, W.;
Lybbert, C.; et al. Noninvasive Urine Oxygen Monitoring and the Risk of Acute Kidney Injury in Cardiac Surgery. Anesthesiology
2021, 135, 406–418. [CrossRef]

19. Roman, M.J.; Devereux, R.B. Association of Central and Peripheral Blood Pressures with Intermediate Cardiovascular Phenotypes.
Hypertension 2014, 63, 1148–1153. [CrossRef]

20. von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Int. J. Surg. 2014,
12, 1495–1499. [CrossRef]

21. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Br. J. Surg. 2015, 102, 148–158. [CrossRef]

22. Whitlock, E.L.; Braehler, M.R.; Kaplan, J.A.; Finlayson, E.; Rogers, S.E.; Douglas, V.; Donovan, A.L. Derivation, Validation,
Sustained Performance, and Clinical Impact of an Electronic Medical Record–Based Perioperative Delirium Risk Stratification
Tool. Anesth. Analg. 2020, 131, 1901–1910. [CrossRef]

23. Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.;
Levey, A.S. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice
Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1–138.

24. Bishara, A.; Wong, A.; Wang, L.; Chopra, M.; Fan, W.; Lin, A.; Fong, N.; Palacharla, A.; Spinner, J.; Armstrong, R.; et al. Opal:
An Implementation Science Tool for Machine Learning Clinical Decision Support in Anesthesia. J Clin Monit Comput 2022,
36, 1367–1377. [CrossRef]

25. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.
2010, 33, 1–22. [CrossRef] [PubMed]

26. Ooi, H. GlmnetUtils: Utilities for “Glmnet” 2021. R Package Version 1.1.8. Available online: https://cran.r-project.org/package=
glmnetUtils (accessed on 30 July 2023).

27. Lim, M.; Hastie, T. Learning Interactions via Hierarchical Group-Lasso Regularization. J. Comput. Graph. Stat. 2015, 24, 627–654.
[CrossRef] [PubMed]

28. Sjoberg, D.D. Dcurves: Decision Curve Analysis for Model Evaluation 2022. R Package Version 0.4.0. Available online:
https://CRAN.R-project.org/package=dcurves (accessed on 30 July 2023).

29. Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Soft. 2008, 28, 1–26. [CrossRef]
30. Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat.

Soft. 2017, 77, 1–17. [CrossRef]
31. Chen, T.; He, T. Xgboost: EXtreme Gradient Boosting 2022. R Package Version 1.6.0.1. Available online: https://CRAN.R-project.

org/package=xgboost (accessed on 30 July 2023).
32. Canty, A.J. Resampling Methods in R: The Boot Package. R News 2002, 2, 2–7.
33. Meersch, M.; Schmidt, C.; Hoffmeier, A.; Van Aken, H.; Wempe, C.; Gerss, J.; Zarbock, A. Prevention of Cardiac Surgery-Associated

AKI by Implementing the KDIGO Guidelines in High Risk Patients Identified by Biomarkers: The PrevAKI Randomized
Controlled Trial. Intensive Care Med. 2017, 43, 1551–1561. [CrossRef]

34. Jones, P.M.; Cherry, R.A.; Allen, B.N.; Jenkyn, K.M.B.; Shariff, S.Z.; Flier, S.; Vogt, K.N.; Wijeysundera, D.N. Association Between
Handover of Anesthesia Care and Adverse Postoperative Outcomes Among Patients Undergoing Major Surgery. JAMA 2018,
319, 143. [CrossRef]

35. Pinto Lima, A.; Beelen, P.; Bakker, J. Use of a Peripheral Perfusion Index Derived from the Pulse Oximetry Signal as a Noninvasive
Indicator of Perfusion. Crit. Care Med. 2002, 30, 1210–1213. [CrossRef] [PubMed]

36. Zaramella, P.; Freato, F.; Quaresima, V.; Ferrari, M.; Vianello, A.; Giongo, D.; Conte, L.; Chiandetti, L. Foot Pulse Oximeter
Perfusion Index Correlates with Calf Muscle Perfusion Measured by Near-Infrared Spectroscopy in Healthy Neonates. J. Perinatol.
2005, 25, 417–422. [CrossRef]

37. Goren, O.; Matot, I. Perioperative Acute Kidney Injury. Br. J. Anaesth. 2015, 115 (Suppl. S2), ii3–ii14. [CrossRef] [PubMed]
38. Josephs, S.A.; Thakar, C.V. Perioperative Risk Assessment, Prevention, and Treatment of Acute Kidney Injury. Int. Anesth. Clin.

2009, 47, 89–105. [CrossRef]
39. Nussmeier, N.; Hauser, M.; Sarwar, M.; Grigore, A.; Searles, B. Anesthesia for Cardiac Surgical Procedures. In Miller’s Anesthesia;

Miller, R., Ed.; Elsevier Livingstone Churchill: Philadelphia, PA, USA, 2009.
40. Park, S.; Cho, H.; Park, S.; Lee, S.; Kim, K.; Yoon, H.J.; Park, J.; Choi, Y.; Lee, S.; Kim, J.H.; et al. Simple Postoperative AKI Risk

(SPARK) Classification before Noncardiac Surgery: A Prediction Index Development Study with External Validation. JASN 2019,
30, 170–181. [CrossRef]

41. Sjoding, M.W.; Dickson, R.P.; Iwashyna, T.J.; Gay, S.E.; Valley, T.S. Racial Bias in Pulse Oximetry Measurement. N. Engl. J. Med.
2020, 383, 2477–2478. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1097/ALN.0000000000003663
https://doi.org/10.1161/HYPERTENSIONAHA.114.03361
https://doi.org/10.1016/j.ijsu.2014.07.013
https://doi.org/10.1002/bjs.9736
https://doi.org/10.1213/ANE.0000000000005085
https://doi.org/10.1007/s10877-021-00774-1
https://doi.org/10.18637/jss.v033.i01
https://www.ncbi.nlm.nih.gov/pubmed/20808728
https://cran.r-project.org/package=glmnetUtils
https://cran.r-project.org/package=glmnetUtils
https://doi.org/10.1080/10618600.2014.938812
https://www.ncbi.nlm.nih.gov/pubmed/26759522
https://CRAN.R-project.org/package=dcurves
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v077.i01
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://doi.org/10.1007/s00134-016-4670-3
https://doi.org/10.1001/jama.2017.20040
https://doi.org/10.1097/00003246-200206000-00006
https://www.ncbi.nlm.nih.gov/pubmed/12072670
https://doi.org/10.1038/sj.jp.7211328
https://doi.org/10.1093/bja/aev380
https://www.ncbi.nlm.nih.gov/pubmed/26658199
https://doi.org/10.1097/AIA.0b013e3181b47e98
https://doi.org/10.1681/ASN.2018070757
https://doi.org/10.1056/NEJMc2029240

	Introduction 
	Materials and Methods 
	Results 
	Patient Characteristics 
	Preoperative and Intraoperative Variables 
	Predictive Performance of the POSTOP-AKI Model 
	Associations of Model Variables with Postoperative AKI 

	Discussion 
	Conclusions 
	References

