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Abstract: Objective: To develop and validate convolutional neural network algorithms for au-
tomatic upper airway segmentation and minimum cross-sectional area (CSAmin) localisation in
two-dimensional (2D) radiographic airway images. Materials and Methods: Two hundred and one 2D
airway images acquired using cone-beam computed tomography (CBCT) scanning were randomly
assigned to a test group (n = 161) to train artificial intelligence (AI) models and a validation group
(n = 40) to evaluate the accuracy of AI processing. Four AI models, UNet18, UNet36, DeepLab50 and
DeepLab101, were trained to automatically segment the upper airway 2D images in the test group.
Precision, recall, Intersection over Union, the dice similarity coefficient and size difference were used
to evaluate the performance of the AI-driven segmentation models. The CSAmin height in each
image was manually determined using three-dimensional CBCT data. The nonlinear mathematical
morphology technique was used to calculate the CSAmin level. Height errors were assessed to
evaluate the CSAmin localisation accuracy in the validation group. The time consumed for airway
segmentation and CSAmin localisation was compared between manual and AI processing methods.
Results: The precision of all four segmentation models exceeded 90.0%. No significant differences
were found in the accuracy of any AI models. The consistency of CSAmin localisation in specific
segments between manual and AI processing was 0.944. AI processing was much more efficient than
manual processing in terms of airway segmentation and CSAmin localisation. Conclusions: We suc-
cessfully developed and validated a fully automatic AI-driven system for upper airway segmentation
and CSAmin localisation using 2D radiographic airway images.

Keywords: artificial intelligence; cone-beam computed tomography; convolutional neural networks;
airway segmentation; CSAmin localisation

1. Introduction

Upper airway obstruction is a major cause of sleep-disordered breathing and obstruc-
tive sleep apnoea (OSA); this has increased the importance of airway assessment [1,2]. OSA
caused by upper airway obstruction is common in the modern global population and has
been associated with increased incidences of hypertension, atrial fibrillation, coronary heart
disease and stroke [3,4]. OSA reportedly affects 17% of women and 34% of men in the US
and has shown a similar prevalence in other countries; however, approximately 85% of
patients remain undiagnosed [3,5].
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Because the upper airway is anatomically located just behind the oral cavity, airway
diseases are often first detected upon radiographic examination by dentists, especially
orthodontists. However, the superimposition of the upper airway upon adjacent structures
in 2D images, combined with the lack of quantitative measurement standards, makes the
preliminary diagnosis of upper airway obstruction using lateral cephalograms (LCs) quite
challenging and sometimes inaccurate, even though LC is usually the ‘first-hand’ record
for airway evaluation [6,7].

Three-dimensional (3D) computed tomography (CT) and cone-beam CT (CBCT) are
more promising techniques than LCs for upper airway assessment. However, only patients
with severe craniomaxillofacial deformities are required to undergo large-scale CT scans
that cover the upper airway area, owing to the relatively higher radiation dose than 2D
radiography. The risks of exposure to high radiation and high costs render 3D screening
tools impractical for detecting potential airway problems [8,9]. Therefore, albeit challenging,
obtaining sufficient and accurate upper airway information through 2D images, i.e., ‘first-
hand’ image records, is important for the early detection of potential airway problems.

Currently, both 2D and 3D airway image analysis are primarily conducted manually,
with the processing performed by professional dental/radiographic experts [10–12]. These
methods are time-consuming, tedious and expert-dependent, which negatively affects the
efficiency and accuracy and can lead to missed diagnoses of the disease; all of the above
can have significant impacts on human health [13,14]. Recently, artificial intelligence (AI)
and deep learning techniques, which employ computers or machines to imitate human
logic and cognition to complete a series of intelligent tasks [15], have been widely applied
in medical imaging. AI processing is highly efficient because it can extract dental features
and swiftly make decisions based on big data; studies have reported its superiority and
efficacy in imaging detection compared with manual processing. In dentistry, AI algorithms
based on convolutional neural networks (CNNs) have shown remarkable capabilities in
numbering and classifying teeth, detecting root fractures and periodontal bone loss and
diagnosing dental caries [16–18]. However, until now, the effects of AI techniques on upper
airway assessment have not been thoroughly explored. Therefore, we aimed to explore the
possibilities of applying AI techniques to automatic upper airway assessment to achieve
more accurate and efficient evaluations, thereby providing valuable information for the
preliminary diagnosis of upper airway obstruction.

The basic step of upper airway assessment is to detect the airway contour and di-
vide it into three segments: the nasopharynx, retropalatal pharynx and retroglossal phar-
ynx [13,19]. The morphology and features of the different segments serve as anatomical
data that indicate airway obstruction, if present [9,14]. Automatic and accurate segmen-
tation of the upper airway is fundamental for the application of AI techniques to airway
assessment. Furthermore, the minimum cross-sectional area (CSAmin), which denotes the
region with the greatest constriction, is a crucial parameter for airway assessment [20–23].
But CSAmin localisation requires clinicians to reconstruct the upper airway structure in
three dimensions and compare the area values across different planes. In recent AI studies,
CNNs were used to successfully infer or reconstruct 3D structures based on 2D data after
realising large amounts of 3D features and data [24,25]; this would have been impossible to
achieve using manual processing (owing to a lack of data from the third dimension).

Therefore, we hypothesised that the development of AI models based on deep learning
algorithms can facilitate automatic upper airway segmentation and CSAmin localisation in
2D radiographic airway images, and AI processing can improve the efficiency greatly.

2. Materials and Methods

This study was approved by the Institutional Review Board of the University of Hong
Kong (IRB reference no: UW 21-519). The methods were conducted in accordance with
approved guidelines and regulations. All CBCT scans were obtained for diagnosis and treat-
ment planning. Written informed consent was obtained from patients, and patients were
informed that their clinical images may be used for clinical teaching and paper publishing.
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2.1. Data Collection

CBCT scans from 201 orthodontic patients (76 men and 125 women) aged over 18 years
(43.45 ± 19.28 years) were collected from a consecutive sample of the Division of Paediatric
Dentistry and Orthodontics, Faculty of Dentistry, the University of Hong Kong, between
1 September, 2016 and 31 December, 2021. The CBCT scan field view covered the whole
skull and upper airway contour, with the superior border above the calvarium and inferior
border below the epiglottic base. The regions of interest (ROIs) of training data in this
study are three segmented regions (the nasopharynx, retropalatal pharynx and retroglossal
pharynx) of upper airway in the annotated segmentation map. The exclusion criteria were
as follows: (1) patients who presented severe skeletal deformities, facial asymmetry, cleft
lip and palate and craniofacial syndrome, which might affect the upper airway morphology
and (2) patients with defective CBCT scans (low resolution, improper head posture or
unclear airway structures).

The sample ratio of the training group to the test group was set at 4:1 [16–18]; the 201
images were randomly assigned to the training group (n = 161) to train AI models or the
test group (n = 40) to evaluate the efficacy of AI processing. Standard 4-fold cross-validation
was conducted on the training set for basic hyperparameter search, and the test data were
kept blind to the model until the final evaluation. The data collection and AI processing
flow are presented in Figure 1.
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Figure 1. The dataset collection and flow of AI processing.

2.2. Consistency Tests

A solo examiner (CHU G), who is a well-trained dentist with sufficient experience
in dental imaging detection, conducted all the manual image annotation work including
midsagittal plane capture, upper airway segmentation and CSAmin level localisation. To
ensure data validity and reliability, two experienced examiners (CHU G and Ng CH) con-
ducted consistency tests. Intra- and interexaminer reliability were assessed for midsagittal
plane capture, image segmentation and CSAmin level detection.

To assess intraexaminer reliability, 10 randomly selected images from all sample data
of 201 images were analysed by the examiner (CHU G); after 1 month, the assessment was
repeated to test reliability and repeatability. Precision (the ratio of correctly predicted pixels
between the two measurements) was used as the main metric to evaluate consistency.

To assess interexaminer reliability, 10 randomly selected images from all sample data
of 201 images were analysed by two examiners (CHU G and Ng CH) to test the repeatability
of the midsagittal plane capture and CSAmin level detection, respectively.

2.3. Determination of the Midsagittal Plane and Image Capture

All of the CBCT scans were obtained using the CBCT device ProMax 3D Mid (Planmeca
Oy, Helsinki, Finland). The clinical staff of the Oral and Maxillofacial Radiology Unit of
the Faculty of Dentistry, the University of Hong Kong, performed CBCT scanning using a
reference ear plug and head posture aligner to maintain a natural head position. Raw CBCT
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data were saved and extracted using proprietary software (ROMEXIS, v4.4.0.R; Planmeca,
Helsinki, Finland).

Then, CBCT scans were converted to a DICOM image format and evaluated using
Mimics v19.0 (Materialise, Leuven, Belgium). All the scans were then reconstructed with
slices of 0.5 mm thickness and 0.4 mm voxel size. Five reference points (posterior nasal
spine, posterior point of vomer and first, second and fourth cervical vertebrae) were
manually obtained for each scan to determine the midsagittal planes of the CBCT images
(Figure 2). Each of these reference points is defined in Table 1. The determined midsagittal
plane images were captured and saved in PNG format (32 bits, 910 × 910 pixels).

Bioengineering 2023, 10, x FOR PEER REVIEW 4 of 16 
 

pixels between the two measurements) was used as the main metric to evaluate 
consistency. 

To assess interexaminer reliability, 10 randomly selected images from all sample data 
of 201 images were analysed by two examiners (CHU G and Ng CH) to test the 
repeatability of the midsagittal plane capture and CSAmin level detection, respectively. 

2.3. Determination of the Midsagittal Plane and Image Capture 
All of the CBCT scans were obtained using the CBCT device ProMax 3D Mid 

(Planmeca Oy, Helsinki, Finland). The clinical staff of the Oral and Maxillofacial 
Radiology Unit of the Faculty of Dentistry, the University of Hong Kong, performed CBCT 
scanning using a reference ear plug and head posture aligner to maintain a natural head 
position. Raw CBCT data were saved and extracted using proprietary software 
(ROMEXIS, v4.4.0.R; Planmeca, Helsinki, Finland). 

Then, CBCT scans were converted to a DICOM image format and evaluated using 
Mimics v19.0 (Materialise, Leuven, Belgium). All the scans were then reconstructed with 
slices of 0.5 mm thickness and 0.4 mm voxel size. Five reference points (posterior nasal 
spine, posterior point of vomer and first, second and fourth cervical vertebrae) were 
manually obtained for each scan to determine the midsagittal planes of the CBCT images 
(Figure 2). Each of these reference points is defined in Table 1. The determined midsagittal 
plane images were captured and saved in PNG format (32 bits, 910 × 910 pixels). 

 
Figure 2. Landmark points on midsagittal plane images (PNS, VP, CV1, CV2 and CV4). 

Table 1. Definitions and abbreviations of upper airway landmarks in midsagittal plane. 

Reference Points Explanation 
PNS Most posterior point of palate 
VP Most posterior point of vomer 

CV1 Most anterior inferior point of anterior arch of atlas 
CV2 Most anterior inferior point of anterior arch of second vertebra 
CV4 Most anterior inferior point of anterior arch of fourth vertebra 

PNS = posterior nasal spine, VP = posterior point of vomer, CV1 = the first cervical vertebra, CV2 = 
the second cervical vertebra, CV4 = the fourth cervical vertebra. 

2.4. Upper Airway Segmentation 
2.4.1. Manual Segmentation of the Airway and Data Augmentation 

Figure 2. Landmark points on midsagittal plane images (PNS, VP, CV1, CV2 and CV4).

Table 1. Definitions and abbreviations of upper airway landmarks in midsagittal plane.

Reference Points Explanation

PNS Most posterior point of palate
VP Most posterior point of vomer

CV1 Most anterior inferior point of anterior arch of atlas
CV2 Most anterior inferior point of anterior arch of second vertebra
CV4 Most anterior inferior point of anterior arch of fourth vertebra

PNS = posterior nasal spine, VP = posterior point of vomer, CV1 = the first cervical vertebra, CV2 = the second
cervical vertebra, CV4 = the fourth cervical vertebra.

2.4. Upper Airway Segmentation
2.4.1. Manual Segmentation of the Airway and Data Augmentation

A well-trained dentist (CHU G, solo examiner) segmented the upper airway from the
2D images using the image processing tool Microsoft Paint in Windows 10 system. The
airway structure in each image was segmented into three parts [13,19]: the nasopharynx,
extending from the nasal turbinate level to the hard palate; the retropalatal pharynx,
extending from the hard palate to the margin of the soft palate; and the retroglossal
pharynx, extending from the soft palate to the epiglottic base. Each segment of the airway
is shown using different colours in Figure 3.

All of the images were resized to obtain a unified resolution of 400 × 400 pixels.
Manually annotated segmentation maps were converted into label maps, in which all
pixel values were integers between 0 and 3; 0 represented the background region, whereas
1–3 represented the three segmented regions (the nasopharynx, retropalatal pharynx and
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retroglossal pharynx) in the annotated segmentation map. During the training process,
data augmentation techniques were used to increase variability in the training dataset by
resizing, cropping, flipping and randomly rotating the images.
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2.4.2. AI Segmentation Models

The segmentation architectures UNet and DeepLab v3 were selected as the training
models. The UNet and DeepLab network architectures were each implemented at two
depths: UNet18, UNet36, DeepLab50 and DeepLab101. These four AI models were then
trained for the segmentation tasks. All the models were trained using the Adam optimi-
sation algorithm at 200 epochs. The architecture was trained in the Pytorch framework
(learning rate, 0.0001; batch size, 8) to achieve the best possible validation loss. All the
processing work was conducted on a PC with an Intel i7-8700 CPU, 32GB RAM and a single
Nvidia RTX 2080 Ti GPU with 12G VRAM (Jumbo computer supplies, Hong Kong, China).
Figure 4 presents the network architecture of the UNet model.

2.4.3. Evaluation Metrics for Airway Segmentation

The following metrics were used to evaluate the performance of the segmentation
models: precision, recall, Intersection over Union (IoU), dice similarity coefficient (DSC)
and size difference.

Precision indicated how many of all the predicted pixel results had been correctly predicted.

Precision =
TP

TP + FP
Recall measured how many of all the correct pixel results had been correctly predicted.

Recall =
TP

TP + FN
IoU has been commonly used to evaluate image segmentation tasks; it represents the

similarity of segmentation results between the predicted image and ground truth.

IoU(A, B) =
A ∩ B
A ∪ B

=
TP

TP + FN + FP
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DSC was calculated as twice the overlapping area divided by the sum of the areas of
A and B.

DSC =
2 ∗ (A ∩ B)

A + B
Size difference measured the gap between the predicted image and ground truth in

pixels, i.e., the number of ground truth segmentation pixels subtracted from the number of
pixels of the predicted segmentation results.
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2.5. CSAmin Localisation Task
2.5.1. Manual Determination of CSAmin

To determine the exact CSAmin level in the entire upper airway passage, each 3D
upper airway model was reconstructed using Mimics v19.0. The inferred CSAmin could
be manually detected through the midsagittal view in reconstructed 3D images. The
height level was marked in each image to illustrate the specific localisation of the inferred
CSAmin and was recorded as HM (manually determined height of CSAmin). The work
of manual determination of CSAmin was conducted by the solo examiner (CHU G) as
stated previously.

2.5.2. AI-Driven Determination of CSAmin

Forty images each, after manual and AI-driven segmentation, were acquired as the two
test datasets. The nonlinear mathematical morphological operations comprising erosion
and dilation were employed as the postprocessing procedure for the segmentation images.
CSAmin was automatically determined after applying erosion and dilation to extract the
binary image boundaries.

Erosion and Dilation

Erosion is generally used to extract the inner boundary, which refers to the set of pixels
comprising boundary points and belonging to a part of the original regions. The inner boundary
was extracted using erosion processing to obtain a contraction of the original image. An
exclusive OR operation was then conducted between the contraction results and target image,
thereby realising the difference set extraction. After erosion processing, the undesired noise
was efficiently removed, and the main area was smoothed in the predicted segmentation map.

Dilation is generally used to extract the outer boundary, which refers to the set of pixels
adjacent to the boundary points outside the region and is a part of the background. The
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outer boundary was extracted using dilation processing. An exclusive OR operation was then
performed between the dilation result and original target image to obtain the difference set.

Computation and Prediction of CSAmin

After erosion and dilation processing, 40 manual segmentation maps (GT1) and 40 AI-
driven segmentation maps (GT2) were considered as the two types of ground truth. The sum
of the number of the pixels in each row in GT1 and GT2 was calculated to obtain the width
of the upper airway at different levels. The narrowest slice with the minimum number of
pixels was selected and subjected to the original coordinate system. The narrowest heights
in the GT1 and GT2 groups were recorded as H1 and H2, respectively. The height difference
(L) between the predicted ground truth and manually determined heights was calculated
to compare the performance of CSAmin prediction as follows:

L1 =|H1 − HM| L2 =|H2 − HM|

2.6. Time Comparison

To test the efficiency of the AI models, the time consumed for manual work (CHU
G) and AI processing was recorded when performing the segmentation and CSAmin
localisation tasks in the test set (40 images). The average time spent on each image was
compared between the two processing methods.

2.7. Statistical Analysis

Precision (the ratio of correctly predicted pixels between two measures) was assessed
to evaluate the consistency in manual segmentation. The intra- and interclass correlation
coefficients (ICCs) were calculated to evaluate the intra- and inter-rater agreements of the
sagittal view coordinates and HM, respectively.

To evaluate the performance of the AI-driven segmentation, the chi-square test was
then used to compare precision, recall, IoU and DSC across the different segments. And the
Kruskal–Wallis test was used to compare the size differences.

To evaluate the CSAmin height prediction performance, the kappa test was used to
evaluate the consistency of CSAmin determinations across specific segments and compare
it between manual and AI processing. The paired t-test and Bland–Altman analysis were
used to compare HM, H1 and HM, H2. The two-sample t-test was used to compare the
height differences L1 and L2. p < 0.05 indicated statistical significance. All the data were
analysed using Statistical Product and Service Solutions (SPSS) v27.0.

3. Results

The average precision reliability values of manual segmentation for the 10 paired im-
ages were 0.971, 0.967 and 0.969 in the nasopharynx, retropalatal pharynx and retroglossal
pharynx, respectively. The ICCs of the midsagittal plane coordinate were 0.973 and 0.936 for
the intra- and inter-rater agreements, respectively. The ICC values of HM determination for
the intra- and inter-rater agreements were 0.989 and 0.954, respectively. All the consistency
tests indicated a high degree of intra- and interobserver agreement.

3.1. Accuracy Analysis for AI-Driven Upper Airway Segmentation

The accuracy results of the different AI models are presented in Tables 2 and 3. Overall,
the precision and recall reached 90.0–90.6% and 88.0–89.2%, respectively. In general, no
significant differences in accuracy were noted for any of the four AI models (p = 0.476,
0.562, 0.433, 0.552 and 0.283 for precision, recall, IoU, DSC and size difference, respectively).
In terms of the segmentation results, a difference was detected in the size difference only
when using the DeepLab50 model. As the size difference results of the UNet36 model
were not normally distributed after testing using the Shapiro–Wilk test (p = 0.037), the
Kruskal–Wallis test was used to compare the size differences. The size difference in the
nasopharynx was significantly larger than those in the retropalatal pharynx and retroglossal
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pharynx (p = 0.039). Figure 5 shows the airway segmentation results obtained from manual
processing and the UNet18 model.

Table 2. Performance (accuracy metrics) of the DeepLab system for segmenting the upper airway in
2D images. IoU = Intersection over Union, DSC = dice similarity coefficient.

Model DeepLab50 DeepLab101

Precision Recall IoU DSC Size Difference Precision Recall IoU DSC Size Difference

Nasopharynx 93.1 79.9 75.4 85.5 146.1 92.7 82.1 77.0 86.7 122.3
Retropalatal pharynx 87.3 90.4 79.8 88.6 102.1 89.1 89.5 80.6 89.1 101.1
Retroglossal pharynx 89.7 93.6 84.2 91.3 100.4 90.0 94.3 85.0 91.8 92.2

Overall 90.0 88.0 79.8 88.4 116.2 90.6 88.6 80.9 89.2 105.2
p value 0.369 0.381 0.415 0.488 0.039 * 0.451 0.467 0.434 0.451 0.322

Table 3. Performance (accuracy metrics) of the UNet system for segmenting the upper airway in 2D
images. IoU = Intersection over Union, DSC = dice similarity coefficient.

Model UNet18 UNet36

Precision Recall IoU DSC Size Difference Precision Recall IoU DSC Size Difference

Nasopharynx 90.8 85.5 78.8 87.9 83.0 90.3 85.9 78.6 87.7 90.5
Retropalatal pharynx 87.6 90.8 80.4 88.9 115.0 88.8 89.8 80.5 89.0 102.8
Retroglossal pharynx 92.0 91.3 84.4 91.3 101.5 91.3 91.0 83.6 90.7 101.8

Overall 90.2 89.2 81.2 89.4 99.8 90.1 88.9 80.9 89.1 98.4
p value 0.469 0.398 0.416 0.433 0.270 0.416 0.488 0.498 0.433 0.807
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3.2. Accuracy Analysis for AI-Driven CSAmin Localisation

The accuracy of CSAmin localisation in specific segments for the manual (GT1) and
full AI (GT2) processing methods is presented in Table 4. The kappa test revealed that the
consistency between the two results was 0.944. Figure 6 shows the CSAmin localisation
results for the GT1 and GT2 groups.

The detailed results of AI performance in the two test sets are presented Table 5; no
significant differences were noted between H1 and HM (p = 0.780) or between H2 and HM
(p = 0.295). The height difference between the HM of manual work and H1 of the first
test set was 1.95 ± 2.21 mm, whereas that between the HM of manual work and H2 of the
second test set was 2.53 ± 2.21 mm. Furthermore, Bland–Altman analysis was conducted
to compare the difference between HM, H1 and HM, H2, and showed that 95.00% (38/40)
and 90.00% (36/40) of the points were within the 95% conformance level, respectively
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(Figures 7 and 8). The height error L1 across the 40 subjects ranged from 0 to 12.31 mm; the
proportion of errors <3 mm was 82.5% (33 out of 40). The height error L2 ranged from 0 to
9.89 mm; the proportion of errors <3 mm was 70.0% (28 out of 40). The two-sample t-test
showed no significant differences between L1 and L2 (p = 0.786).

Table 4. Consistency of CSAmin localisation in specific segments of upper airway between manual
work and AI prediction in test group.

CSAmin Localisation Manual Work Total

Retropalatal pharynx Retroglossal pharynx
AI prediction

Retropalatal pharynx 27 0 27
Retroglossal pharynx 1 12 13

Total 28 12 40
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Table 5. Performance of AI-driven CSAmin localisation results in GT1 and GT2 groups. SD, stan-
dard deviation.

Patient ID HT (Pixel) H1 (Pixel) H2 (Pixel) L1 (Pixel) L2 (Pixel) L1 (mm) L2 (mm)

1 701 685 737 16 36 3.52 7.91
2 642 633 649 9 7 1.98 1.54
3 612 668 576 56 36 12.31 7.91
4 547 551 541 4 6 0.88 1.32
5 597 599 598 2 1 0.44 0.22
6 589 601 574 12 15 2.64 3.3
7 587 583 583 4 4 0.88 0.88
8 640 645 634 5 6 1.1 1.32
9 742 763 726 21 16 4.62 3.52
10 662 660 651 2 11 0.44 2.42
11 550 559 537 9 13 1.98 2.86
12 615 629 604 14 11 3.08 2.42
13 640 640 637 0 3 0 0.66
14 590 601 575 11 15 2.42 3.3
15 571 569 579 2 8 0.44 1.76
16 578 583 576 5 2 1.1 0.44
17 633 628 630 5 3 1.1 0.66
18 569 568 557 1 12 0.22 2.64
19 558 563 547 5 11 1.1 2.42
20 645 658 633 13 12 2.86 2.64
21 675 663 691 12 16 2.64 3.52
22 581 571 573 10 8 2.2 1.76
23 740 717 771 23 31 5.05 6.81
24 631 625 620 6 11 1.32 2.42
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Table 5. Cont.

Patient ID HT (Pixel) H1 (Pixel) H2 (Pixel) L1 (Pixel) L2 (Pixel) L1 (mm) L2 (mm)

25 632 629 622 3 10 0.66 2.2
26 630 639 613 9 17 1.98 3.74
27 677 679 667 2 10 0.44 2.2
28 626 626 637 0 11 0 2.42
29 621 613 625 8 4 1.76 0.88
30 546 531 562 15 16 3.3 3.52
31 596 599 596 3 0 0.66 0
32 570 565 556 5 14 1.1 3.08
33 602 596 600 6 2 1.32 0.44
34 683 679 676 4 7 0.88 1.54
35 677 677 670 0 7 0 1.54
36 698 699 696 1 2 0.22 0.44
37 659 630 704 29 45 6.37 9.89
38 661 673 644 12 17 2.64 3.74
39 586 581 587 5 1 1.1 0.22
40 646 651 649 5 3 1.1 0.66

Mean 625.13 625.73 622.58 8.85 11.50 1.95 2.53
SD 50.24 50.38 56.27 10.07 10.08 2.21 2.21
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3.3. Time Comparison

The time consumed was recorded for both manual and AI processing methods. In
each image, the average time for manual upper airway segmentation was 6 min 28 s.
The time to average manual CSAmin determination was 21 min 10 s. With respect to AI
processing, fully automatic algorithms of all four models can complete the segmentation
and localisation tasks in the test group (all 40 images) within 1 s.

4. Discussion

With this study, we successfully explored the possibility that the AI models we de-
veloped were able to predict 3D information (CSAmin) from 2D data to solve clinical
challenges. Regarding AI applications, airway segmentation and CSAmin localisation tasks
are basic and initial steps in the development of AI systems for pathology detection and
disease diagnosis in airway assessment. From the clinical perspective, this study provides
an innovative upper airway analysis method that will help improve clinicians’ efficiency.

Nowadays, a few studies have explored and discussed the possibilities of applying
AI techniques in upper airway analysis [26–30]. For example, Çağla et al. [31] developed
an automatic pharyngeal airway segmentation in CBCT images by using a CNN system;
a dice ratio of 0.919 and a weighted IoU of 0.993 were achieved. Antonio et al. [32]
developed a fully automatic and end-to-end airway segmentation method based on the
U-Net architecture, and the results showed the EXACT’09 public dataset achieved the
highest sensitivity among three different test sets. And Rosalia et al. [33] applied a deep
learning-based fully CNN technique to segment the sinonasal cavity and pharyngeal airway.
A mean volume difference of 1.93 ± 0.73 cm3 was found between manual segmentation
and AI processing.

However, most studies used 3D CT or CBCT images as training data to develop
algorithms and AI models. In dentistry, only patients with severe craniomaxillofacial
deformities are required to undergo CT or CBCT scans owing to the relatively higher cost
and radiation dose than 2D radiography. Compared with 3D techniques, 2D images are
more commonly applied in daily dental practice, which makes them an important tool for
the early detection of potential airway problems. There have never been similar studies
reported to infer CSAmin information from CBCT scans based on 2D data. Our study is the
first to establish a fully automatic AI-driven system to evaluate the upper airway using 2D
images. Compared with the detection of craniofacial hard tissues such as the skull, teeth
and alveolar bone, airway structure detection is quite complicated owing to the complexity
of the structures, uncertainty of landmarks and slight differences in the greyscale between
air and soft tissue [34–36]. Given the sharing of convolution kernel parameters and sparsity
of connections between layers, the CNN deep learning algorithms developed in this study
allowed computer models comprising multiple convolutional layers to efficiently extract
the boundaries and features of upper airway regions.

It is also extremely time-consuming to manually determine CSAmin, a crucial parame-
ter in airway assessment, in three dimensions; the judgement cannot be based solely on 2D
images because data from the third dimension are lacking. However, CNNs can predict
3D information from 2D data after realising a large amount of 3D feature data [24,25]. We
utilised this strength of CNN deep learning algorithms and successfully developed a fully
automatic AI-driven system for upper airway segmentation and CSAmin localisation using
2D radiographic airway images.

4.1. AI-Driven Segmentation Accuracy

The developed AI system was accurate and rapid in terms of upper airway segmen-
tation. Regarding segmentation accuracy, all the four AI models achieved a precision of
>90.0% and recall of >88.0% in the entire upper airway. Because of the lack of comparable
studies on airway segmentation, we compared our accuracy with that reported in other
studies on tooth detection involving deep learning methods and CNNs. Chen et al. [37] de-
veloped a fast region CNN method for detecting and numbering teeth in dental periapical
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films and reported a precision and recall of approximately 90%. Leite et al. [16] evaluated
the performance of a new AI-driven system for tooth detection and segmentation and
reported a sensitivity and precision of up to 90%. In addition to the high consistency with
the above-mentioned studies, our segmentation models were ‘fully automatic’, whereas
their AI segmentation systems required manual modifications after AI processing.

Owing to the irregular morphology and high variability in the nasopharynx region,
the accuracy of segmentation in the nasopharynx was relatively lower than that in the
retropalatal pharynx and retroglossal pharynx. Because the retropalatal and retroglossal
segments are the main obstruction sites in the upper airway [38], the accuracy of segmenta-
tion in these two segments is critical for upper airway assessment. Our results showed that
the precision of segmentation in the retropalatal pharynx and retroglossal pharynx was
92.0%, providing reasonably accurate anatomical information for clinical reference.

No differences were noted in the accuracies of the four AI segmentation models. The
AI models with more convolutional layers (DeepLab101 and UNet36) did not show signifi-
cantly better performance than the DeepLab50 and UNet18 models, perhaps because 2D
data are relatively ‘simple’, with little heterogeneity and diversity. Therefore, the limited
convolutional layers were sufficient for segmentation tasks and achieving good perfor-
mance. For more comprehensive tasks, algorithms with a higher number of convolutional
layers may show obvious superiority.

4.2. AI-Driven CSAmin Localisation Accuracy

Automatic CSAmin localisation was achieved using the established segmentation
systems. In spite of the significance of CSAmin, the automatic localisation of CSAmin from
2D images is challenging because of a lack of 3D data, which renders manual determination
impossible. In this study, we developed a new AI-driven algorithm to automatically predict
the CSAmin height using 2D airway images, thereby facilitating the evaluation of CSAmin
in LCs. The kappa test revealed a high consistency between manual processing using
3D images and AI prediction from 2D images (0.944). Our study therefore successfully
validated the AI algorithms developed to accurately determine the CSAmin localisation
based on 2D images.

Based on the results of our test set of 40 images, in 27 (67.5%) and 13 (32.5%) images,
CSAmin localised to the retropalatal region and retroglossal region, respectively, consistent
with previous retrospective clinical studies that demonstrated that the retropalatal region
was the most common site for airway collapse in patients with OSA [39,40].

The calculated height errors of CSAmin localisation obtained from the 2D images were
merely 1.95 and 2.53 mm for the manual and AI processing methods, respectively. The
height error differences between the two segmentation ground truths demonstrated that
the airway structure boundaries were slightly overestimated or underestimated during
the AI processing. However, a height error of 2 mm was equivalent to 4–6 slices out of
over 500 in a CBCT scan (0.8–1.2% of error), which did not affect the accuracy of CSAmin
determination by the AI models in specific segments (kappa value: 0.944).

4.3. Limitations and Prospects

The purpose of using 3D CBCT scans in this study was to obtain exact CSAmin data.
Considering ethical considerations in clinical practice that CBCT scans and LCs cannot
be ethically obtained simultaneously from the same patient, we used 2D upper airway
midsagittal images obtained from CBCT scans as the training dataset to establish CNNs.
Previous studies have reported that both LCs and CBCT scans are reliable for the evaluation
of upper airway structures and that there are no significant differences in the dimension
measurements between the two techniques [23,41]. Although 2D midsagittal plane images
are not an ideal source of training data, our study successfully established AI algorithms
and systems with reasonably high accuracy. Further studies should consider the application
of LCs to AI upper airway assessment to verify the practicality of the method.
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In future, a larger number of subjects with different ethnicities, genders and ages
should be recruited to develop more robust algorithms. In terms of future clinical applica-
tions, various learning material datasets, including those with clinical information, should
be used to develop customised airway assessment systems for individual subjects.

5. Conclusions

In conclusion, we successfully developed an accurate and efficient fully automatic
AI-driven system for upper airway segmentation and CSAmin localisation based on 2D
radiographic upper airway images. The AI models we developed are able to predict
3D CSAmin information from 2D images for screening out potential airway problems,
which provides an innovative upper airway analysis method that can improve clinicians’
efficiency greatly.
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