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Abstract: Dental X-ray images are important and useful for dentists to diagnose dental diseases.
Utilizing deep learning in dental X-ray images can help dentists quickly and accurately identify
common dental diseases such as periodontitis and dental caries. This paper applies image processing
and deep learning technologies to dental X-ray images to propose a simultaneous recognition method
for periodontitis and dental caries. The single-tooth X-ray image is detected by the YOLOv7 object
detection technique and cropped from the periapical X-ray image. Then, it is processed through
contrast-limited adaptive histogram equalization to enhance the local contrast, and bilateral filtering
to eliminate noise while preserving the edge. The deep learning architecture for classification
comprises a pre-trained EfficientNet-B0 and fully connected layers that output two labels by the
sigmoid activation function for the classification task. The average precision of tooth detection using
YOLOv7 is 97.1%. For the recognition of periodontitis, the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve is 98.67%, and the AUC of the precision-recall (PR) curve is
98.38%. For the recognition of dental caries, the AUC of the ROC curve is 98.31%, and the AUC of the
PR curve is 97.55%. Different from the conventional deep learning-based methods for a single disease
such as periodontitis or dental caries, the proposed approach can provide the recognition of both
periodontitis and dental caries simultaneously. This recognition method presents good performance
in the identification of periodontitis and dental caries, thus facilitating dental diagnosis.

Keywords: periodontitis; dental caries; dental X-ray; deep learning; YOLOv7;
convolutional neural network

1. Introduction

With the continuous improvement of artificial intelligence (AI) technology and big
data availability, applications in medical imaging research are increasingly emphasized [1].
AI has shown great potential to assist in disease diagnosis and treatment planning in
dentistry [2–4]. Deep learning models have demonstrated outstanding abilities in learning
complex patterns from large image datasets, giving rise to numerous applications in the
field of dentistry [2,5–9]. Deep learning of dental radiographs has emerged as an efficient
and precise method for detecting dental diseases. By applying the convolutional neural
network, an effective system can be established for the recognition of dental diseases.

Oral disease is an important problem of global public health, especially common dental
diseases such as periodontitis and dental caries. Periodontitis, a chronic inflammatory
disease of the teeth and gums, is characterized by the destruction of surrounding tissues
including the periodontal ligament and the alveolar bone. Periodontitis is mainly caused by
dental plaque, which produces a series of inflammatory reactions and destroys periodontal
tissues. It is found that periodontitis may increase the risk of cardiovascular disease
or be related to other major systemic diseases [10]. Dental caries is a disease that can
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damage tooth structure and is mainly caused by acid erosion. The acid is mostly produced
by intraoral bacteria. Periodontitis and dental caries are the main oral diseases with
high prevalence that influence the quality of life [11]. Periodontitis and dental caries are
two of the most prevalent oral diseases globally, affecting a significant proportion of the
population. These two diseases can have a profound impact on oral health and overall
well-being. Therefore, the prevention of periodontitis and dental caries is an important
task for dentists. Moreover, early diagnosis has always been a crucial part of the treatment
of periodontitis and dental caries. The detection of periodontitis and dental caries mainly
depends on clinical and radiographic examinations. Dentists typically evaluate various
aspects of a patient’s oral condition to provide a comprehensive diagnosis and treatment
plan. Using AI-assisted technology to concurrently recognize both periodontitis and dental
caries aligns closely with how dentists diagnose patients in clinical practice. Saving time
and reducing loading for dentists and minimizing patients’ discomfort associated with
multiple examinations can be realized.

The applications of AI to dental X-ray images can assist dentists in quickly and
accurately identifying common dental diseases. The related work on the applications of AI
for dental X-rays is discussed below.

A deep learning-based convolutional neural network (CNN) algorithm was developed
in [12] for the predictions of periodontally compromised teeth (PCT) for premolars and
molars individually. The study used 16 convolutional layers and 3 fully connected dense
layers in the deep CNN model to classify the teeth into healthy teeth, moderate PCT, and
severe PCT. In [13], a vector of the severity of alveolar bone loss from the teeth was used
as the input feature of XGBoost to classify the four-class severity degree of periodontitis
from a panoramic radiograph. In [14], periapical radiographs were used to calculate the
radiographic bone loss (RBL) values and classify the severity of RBL into mild or severe, as
well as classify the defect morphology. These two tasks were performed by a multi-task
classification approach using the InceptionV3 model.

In [15], the modified linearly adaptive particle swarm optimization was combined with
a backpropagation neural network to distinguish between normal and caries affected teeth.
In [16], the prediction of dental caries of premolars and molars was based on a pre-trained
GoogLeNet InceptionV3 CNN network for preprocessing and transfer learning. In [17], a
system for predicting dental caries was developed using Laplacian filtering, window-based
adaptive thresholding, morphology, statistical features, and a backpropagation neural
network. In [18], Hu’s moment was used to train support vector machine and k-nearest
neighbors for the classification of four levels of dental caries. In [19], both raw periapical
images and the enhanced images were the inputs of an ensemble deep convolutional neural
network model for dental caries detection. In [20], informative features were extracted from
teeth on panoramic radiographs via deep learning networks, and each extracted feature
set was used to train the classification model. The caries screening was determined by a
majority voting method.

In [21], deep convolutional neural networks with region proposal techniques were
used to detect decay, periapical periodontitis, and periodontitis on periapical radiographs.
The three diseases were individually classified into mild, moderate, and severe levels.
In [22], the periapical radiograph subregion was cropped to obtain a single-tooth image.
Then, the crown region and the root region were cropped according to the identified cervical
line. The detection of caries from the crown region and periapical periodontitis from the
root region was based on a deep learning model constructed of two cascaded ResNet-18
backbones and two individual convolutional layers.

Most of the studies on AI-assisted technology for dental diseases are for the prediction
of a single disease such as periodontitis or dental caries. This paper proposes a deep
learning-based method to detect periodontitis and dental caries simultaneously. The image
processing technologies are also incorporated to improve performance.
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2. Materials and Methods

Figure 1 shows the flowchart of the training process for the proposed method to detect
periodontitis and dental caries simultaneously. The single-tooth X-ray images are detected
by the YOLOv7 [23] algorithm and cropped from periapical X-ray images. After performing
resizing and augmentation, the single-tooth X-ray images are enhanced by contrast-limited
adaptive histogram equalization (CLAHE) and bilateral filtering (BF). The enhanced images
are further resized as the inputs for the deep-learning CNN, which is trained using transfer
learning to determine whether the single-tooth X-ray image belongs to normal tooth,
periodontitis, dental caries, or both diseases of periodontitis and dental caries.
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2.1. Dataset

A total of 1525 periapical X-ray images were obtained from a dental clinic in Hualien,
Taiwan. In periapical X-ray images, periodontitis can be detected by the presence of
alveolar bone loss around the tooth. Dental caries can be recognized by the radiolucency
of enamel and dentin in the tooth structure. In this study, a normal tooth was defined as
when the characteristics of periodontitis and dental caries are not detected in the X-ray
image. Both anterior and posterior teeth are included in our dataset. The teeth with
root canal therapy and dental restoration are included. The teeth on periapical X-ray
images were annotated by a senior dentist with over 28 years of expertise. This study
used two labels of periodontitis and dental caries to classify a single-tooth X-ray image
belonging to normal tooth, periodontitis, dental caries, or both diseases. Each label is 0 or 1,
and thus the corresponding classification of the single-tooth X-ray image is normal (0,0),
periodontitis-only (1,0), dental caries-only (0,1), or both diseases of periodontitis and dental
caries (1,1).

The single-tooth X-ray images were cropped from periapical X-ray images by the
YOLOv7 object detection model. A total of 2850 single-tooth X-ray images were selected in
the experiments and resized to 200 × 200 pixels. Data augmentation was used to increase
the number of images. The augmentation for single-tooth images included horizontal flip,
vertical flip, and the rotations of 90◦, 180◦, and 270◦. The total dataset was divided into
the training dataset (n = 8000), the validation dataset (n = 2000), and the testing dataset
(n = 1000), as listed in Table 1. This study used 10-fold cross-validation by randomly divid-
ing the dataset into ten subsets to evaluate the performance of the deep learning models.
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Table 1. Numbers of single-tooth X-ray images in the experiments.

Dataset Normal Periodontitis Dental
Caries

Both
Diseases Total

Original
Training and

Validation 700 1000 400 500 2600

Testing 100 50 50 50 250

Augmentation
Training and

Validation 3300 1000 1600 1500 7400

Testing 300 150 150 150 750

Total

Training 3200 1600 1600 1600 8000

Validation 800 400 400 400 2000

Testing 400 200 200 200 1000

2.2. Proposed Method

Table 2 presents a comprehensive overview of the hardware and software platforms
employed in the experimental setup. The hardware platform consists of a 12th Gen Intel
Core i5-12400 CPU, an NVIDIA GeForce RTX 3070 GPU, and 32 GB DDR4 DRAM with
3200 MHz. On the software side, the platform includes Python version 3.7.16, Tensorflow
version 2.9.1, and PyTorch version 1.7.1. These specifications are employed to facilitate the
implementation and evaluation of the proposed methods in our study.

Table 2. Hardware and software platforms.

Hardware Platform Version

CPU 12th Gen Intel Core i5-12400
GPU NVIDIA GeForce RTX 3070

DRAM 32 GB DDR4 3200 MHz

Software Platform Version

Python 3.7.16
Tensorflow 2.9.1

PyTorch 1.7.1

This study used YOLOv7 to obtain single-tooth images from periapical X-ray images to
avoid the time-consuming task of manual cropping. YOLO (you only look once) is a classic
one-stage, real-time object detection system known for its lightweight, low dependency,
and highly efficient algorithm. Compared to two-stage object detection, the one-stage
approach eliminates the need for candidate pre-screening, enabling end-to-end object
detection and obtaining the final classification in a single pass. YOLO has demonstrated
superior performance in object detection compared to other algorithms [24]. YOLOv7
has achieved remarkable advancements in both accuracy and processing speed [23]. The
remarkable advancements make it well-suited for precise and fast detection to obtain
single-tooth images from periapical X-ray images. To train the YOLOv7 model, the batch
size of 8 and the epoch of 50 were selected to make a trade-off between computational
resources and training accuracy.

In Figure 2, an illustrative example of single-tooth image detection from a periapical X-
ray image is depicted. It can be observed that YOLOv7 demonstrates precise localization by
accurately bounding the position of each tooth. Figure 3 shows the PR curve derived from
the predictions made by YOLOv7 on the testing dataset. Notably, the average precision
(AP) achieved an outstanding performance of 97.1% for tooth detection, manifesting its
excellent effectiveness.



Bioengineering 2023, 10, 911 5 of 13

Bioengineering 2023, 10, x FOR PEER REVIEW 5 of 13 
 

precision (AP) achieved an outstanding performance of 97.1% for tooth detection, mani-
festing its excellent effectiveness. 

 
Figure 2. Detection results by YOLOv7. 

 
Figure 3. PR curve of YOLOv7 detection. 

In addition to utilizing YOLOv7 for single-tooth image detection in periapical X-ray 
images, image enhancement techniques have been incorporated to enhance the perfor-
mance of deep learning algorithms. Contrast-limited adaptive histogram equalization 
(CLAHE) can enhance the local details of images [25,26]. The histogram of the local area 
is calculated to redistribute the image brightness. The bilateral filter (BF) [27] is a non-
linear filter for smoothing images while preserving edge information because not only the 
geometric distance between pixels but also the difference of gray-level values between 
pixels is considered. CLAHE and BF have been used for the preprocessing of the segmen-
tation of teeth in dental radiographs [28]. 

After performing resizing and augmentation of the cropped single-tooth X-ray im-
ages, the images are processed using CLAHE, BF, and the combination of CLAHE first 
and then BF, as illustrated in Figure 4. CLAHE is mainly used to enhance the local contrast 
of the X-ray image. After increasing the contrast, there may be some detailed noises. Then, 
the BF blurs the less relevant areas and reduces the noise but preserves the edge of the 
image. CLAHE can make the tooth outline sharper and help to reveal subtle details hidden 
due to low contrast. The BF further reduces noise in the image, yielding a smoother ap-
pearance while preserving the overall structure and contour of the tooth. The two image 
processing techniques can facilitate the feature extraction of CNN and improve the pre-
diction performance of deep learning. The processed images are further resized to 100×100 
as the inputs of the CNN model.  

Figure 2. Detection results by YOLOv7.

Bioengineering 2023, 10, x FOR PEER REVIEW 5 of 13 
 

precision (AP) achieved an outstanding performance of 97.1% for tooth detection, mani-
festing its excellent effectiveness. 

 
Figure 2. Detection results by YOLOv7. 

 
Figure 3. PR curve of YOLOv7 detection. 

In addition to utilizing YOLOv7 for single-tooth image detection in periapical X-ray 
images, image enhancement techniques have been incorporated to enhance the perfor-
mance of deep learning algorithms. Contrast-limited adaptive histogram equalization 
(CLAHE) can enhance the local details of images [25,26]. The histogram of the local area 
is calculated to redistribute the image brightness. The bilateral filter (BF) [27] is a non-
linear filter for smoothing images while preserving edge information because not only the 
geometric distance between pixels but also the difference of gray-level values between 
pixels is considered. CLAHE and BF have been used for the preprocessing of the segmen-
tation of teeth in dental radiographs [28]. 

After performing resizing and augmentation of the cropped single-tooth X-ray im-
ages, the images are processed using CLAHE, BF, and the combination of CLAHE first 
and then BF, as illustrated in Figure 4. CLAHE is mainly used to enhance the local contrast 
of the X-ray image. After increasing the contrast, there may be some detailed noises. Then, 
the BF blurs the less relevant areas and reduces the noise but preserves the edge of the 
image. CLAHE can make the tooth outline sharper and help to reveal subtle details hidden 
due to low contrast. The BF further reduces noise in the image, yielding a smoother ap-
pearance while preserving the overall structure and contour of the tooth. The two image 
processing techniques can facilitate the feature extraction of CNN and improve the pre-
diction performance of deep learning. The processed images are further resized to 100×100 
as the inputs of the CNN model.  

Figure 3. PR curve of YOLOv7 detection.

In addition to utilizing YOLOv7 for single-tooth image detection in periapical X-ray
images, image enhancement techniques have been incorporated to enhance the performance
of deep learning algorithms. Contrast-limited adaptive histogram equalization (CLAHE)
can enhance the local details of images [25,26]. The histogram of the local area is calculated
to redistribute the image brightness. The bilateral filter (BF) [27] is a non-linear filter for
smoothing images while preserving edge information because not only the geometric
distance between pixels but also the difference of gray-level values between pixels is
considered. CLAHE and BF have been used for the preprocessing of the segmentation of
teeth in dental radiographs [28].

After performing resizing and augmentation of the cropped single-tooth X-ray images,
the images are processed using CLAHE, BF, and the combination of CLAHE first and
then BF, as illustrated in Figure 4. CLAHE is mainly used to enhance the local contrast
of the X-ray image. After increasing the contrast, there may be some detailed noises.
Then, the BF blurs the less relevant areas and reduces the noise but preserves the edge
of the image. CLAHE can make the tooth outline sharper and help to reveal subtle de-
tails hidden due to low contrast. The BF further reduces noise in the image, yielding a
smoother appearance while preserving the overall structure and contour of the tooth. The
two image processing techniques can facilitate the feature extraction of CNN and improve
the prediction performance of deep learning. The processed images are further resized to
100 × 100 as the inputs of the CNN model.
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CNN model can be utilized to build a multi-label classifier for the prediction of
periodontitis and dental caries. In this study, we used Xception [29], MobileNetV2 [30],
and EfficientNet-B0 [31] to compare their performances and select the best one. The
deep learning architecture for classification consists of the pre-trained CNN model and
fully connected layers that output two labels by the sigmoid activation function for the
multi-label classification task. Transfer learning is applied by initializing the models with
pre-trained weights provided by Keras during the training process. Furthermore, Table 3
presents an overview of the hyperparameters employed specifically in the CNN models.
By adjusting these hyperparameters, better performance can be achieved.

Table 3. Hyperparameters in the CNN models.

Hyperparameter Value

Initial learning rate 0.001
Max epoch 50
Batch size 50

Learning drop period 4
Learning rate drop factor 0.316

2.3. Performance Metrics

To evaluate the performance of the proposed method, various metrics are used, in-
cluding accuracy, sensitivity, specificity, positive predictive value (PPV, precision), negative
predictive value (NPV), the area under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve, and the AUC of precision–recall (PR) curve. Accuracy, sensitivity,
specificity, PPV, and NPV are defined by true positive (TP), false negative (FN), true
negative (TN), and false positive (FP), as represented by Equations (1)–(5).

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Sensitivity (Recall) =
TP

TP + FN
, (2)

Speci f icity =
TN

TN + FP
, (3)

PPV (Precision) =
TP

TP + FP
, (4)

NPV =
TN

TN + FN
. (5)

3. Results

We compared the performances of three CNN models through a 10-fold cross-validation
analysis. The investigated models included Xception, MobileNetV2, and EfficientNet-B0.
Each model was trained using pre-trained weights provided by Keras for transfer learning.
Table 4 tabulates the results of performance metrics averaged from 10-fold cross-validation
for the various models. Notably, EfficientNet-B0 achieved the best result with the accuracy
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of 95.44%, the sensitivity of 93.28%, the specificity of 96.88%, the PPV of 95.24%, and the
NPV of 95.59% for periodontitis, and the accuracy of 94.94%, the sensitivity of 94.15%, the
specificity of 95.47%, the PPV of 93.30%, and the NPV of 96.08% for dental caries.

Table 4. Performance comparison of the various CNN models.

Model Disease
Accuracy Sensitivity Specificity PPV NPV ROC AUC PR AUC

(%) (%) (%) (%) (%) (%) (%)

Xception Periodontitis 89.76 89.26 90.59 86.40 92.54 94.58 93.34
Dental caries 88.13 86.98 88.41 83.50 91.21 93.49 90.44

MobileNetV2 Periodontitis 91.42 91.21 91.60 87.73 94.01 96.86 95.89
Dental caries 89.03 88.25 89.51 85.32 91.87 96.31 94.76

EfficientNet-B0 Periodontitis 95.44 93.28 96.88 95.24 95.59 98.67 98.38
Dental caries 94.94 94.15 95.47 93.30 96.08 98.31 97.55

Table 5 lists the minimum, maximum, and mean accuracy rates of each model across
10-fold cross-validation. Notably, EfficientNet-B0 demonstrated the highest mean accuracy,
achieving 95.44% for periodontitis and 94.94% for dental caries. These metrics indicate that
EfficientNet-B0 outperforms the other models evaluated in this study. Thus, EfficientNet-B0
was chosen as the CNN model in our method.

Table 5. Accuracy comparison of the various CNN models.

Model
Periodontitis Dental Caries

Minimum
(%)

Maximum
(%)

Mean
(%)

Minimum
(%)

Maximum
(%)

Mean
(%)

Xception 88.98 91.66 89.76 86.89 89.11 88.13
MobileNetV2 89.98 92.51 91.42 87.36 90.42 89.03

EfficientNet-B0 94.60 96.30 95.44 92.80 96.40 94.94

Table 6 provides the average evaluation metrics for each fold using EfficientNet-B0,
demonstrating the performance of the model across different subsets of the dataset. It
can be observed that the predictive accuracy rates for periodontitis and dental caries are
consistently above 92% for all the subsets in the 10-fold cross-validation. These findings
indicate the robust performance and strong predictive capabilities of the EfficientNet-B0
model in accurately classifying periodontitis and dental caries.

Table 6. Performance of EfficientNet-B0 on 10-fold cross-validation.

Disease TP FN TN FP
Accuracy Sensitivity Specificity PPV NPV ROC AUC PR AUC

(%) (%) (%) (%) (%) (%) (%)

Fold-1 Periodontitis 369 31 586 14 95.50 92.25 97.67 96.34 94.98 98.80 98.38
Dental caries 381 19 574 26 95.50 95.25 95.67 93.61 96.80 98.69 98.05

Fold-2 Periodontitis 361 39 585 15 94.60 90.25 97.50 96.01 93.75 98.07 97.78
Dental caries 363 37 565 35 92.80 90.75 94.17 91.21 93.85 97.20 96.22

Fold-3 Periodontitis 369 31 580 20 94.90 92.25 96.67 94.86 94.93 98.37 98.10
Dental caries 377 23 568 32 94.50 94.25 94.67 92.18 96.11 97.63 95.99

Fold-4 Periodontitis 371 29 576 24 94.70 92.75 96.00 93.92 95.21 98.68 98.36
Dental caries 372 28 572 28 94.40 93.00 95.33 93.00 95.33 98.10 97.45

Fold-5 Periodontitis 380 20 582 18 96.20 95.00 97.00 95.48 96.68 98.88 98.73
Dental caries 381 19 579 21 96.00 95.25 96.50 94.78 96.82 99.06 98.64

Fold-6 Periodontitis 376 24 583 17 95.90 94.00 97.17 95.67 96.05 99.05 98.87
Dental caries 384 16 580 20 96.40 96.00 96.67 95.05 97.32 98.77 98.45

Fold-7 Periodontitis 377 23 586 14 96.30 94.25 97.67 96.42 96.22 99.14 98.89
Dental caries 375 25 588 12 96.30 93.75 98.00 96.90 95.92 98.85 98.44

Fold-8 Periodontitis 382 18 575 25 95.70 95.50 95.83 93.86 96.96 98.70 98.51
Dental caries 378 22 578 22 95.60 94.50 96.33 94.50 96.33 98.70 98.15
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Table 6. Cont.

Disease TP FN TN FP
Accuracy Sensitivity Specificity PPV NPV ROC AUC PR AUC

(%) (%) (%) (%) (%) (%) (%)

Fold-9 Periodontitis 371 29 575 25 94.60 92.75 95.83 93.69 95.20 98.33 97.80
Dental caries 379 21 557 43 93.60 94.75 92.83 89.81 96.37 98.01 96.92

Fold-10 Periodontitis 375 25 585 15 96.00 93.75 97.50 96.15 95.90 98.63 98.36
Dental caries 376 24 567 33 94.30 94.00 94.50 91.93 95.94 98.13 97.20

Mean Periodontitis -- -- -- -- 95.44 93.28 96.88 95.24 95.59 98.67 98.38
Dental caries -- -- -- -- 94.94 94.15 95.47 93.30 96.08 98.31 97.55

Figures 5 and 6 exhibit the ROC curves for periodontitis and dental caries, respectively,
in each fold. The utilization of the EfficientNet-B0 model shows remarkable performance
for periodontitis and dental caries, with the AUC values reaching 98.67% and 98.31%,
respectively. Furthermore, Figures 7 and 8 illustrate the PR curves for periodontitis and
dental caries, respectively, in each fold. These curves further emphasize the excellent
performance of the EfficientNet-B0 model, with the AUC value of 98.38% for periodontitis
and 97.55% for dental caries.
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We conducted an ablation study to examine the impact of image processing techniques
on the performance of the EfficientNet-B0 model. The results, shown in Table 7, demonstrate
that incorporating image processing techniques improves the performance in recognizing
periodontitis and dental caries. With image processing, the model achieved higher accuracy.
Additionally, there were improvements in sensitivity, specificity, PPV, and NPV.

Table 7. Ablation study.

Method Disease Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

ROC AUC
(%)

PR AUC
(%)

With image
processing

Periodontitis 95.44 93.28 96.88 95.24 95.59 98.67 98.38
Dental caries 94.94 94.15 95.47 93.30 96.08 98.31 97.55

Without image
processing

Periodontitis 93.05 92.10 93.68 90.77 94.72 96.72 96.22
Dental caries 92.91 92.33 93.30 90.23 94.80 96.49 95.83

Moreover, the implementation of image processing techniques resulted in enhance-
ments in both the ROC AUC and the PR AUC. For the prediction of periodontitis, the ROC
AUC was improved from 96.72% to 98.67%, and the PR AUC increased from 96.22% to
98.38%. Similarly, in the case of dental caries prediction, the ROC AUC was enhanced
from 96.49% to 98.31%, and the PR AUC increased from 95.83% to 97.55%. Overall, image
processing is efficient to improve the prediction performance of two labels from all metrics.
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To improve the interpretability of the EfficientNetB0 model, the illustration utilizing
gradient-weighted class activation mapping (Grad-CAM) [32] is shown in Figure 9. The
examples, by superimposing the up-sampled heat maps over the single-tooth X-ray images,
effectively highlight the active regions within the images. These regions exert great influ-
ence on the classification results of the EfficientNet-B0 model. Figure 9 provides valuable
insights into the decision-making mechanism.
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4. Discussion

The study in [16] focused on detecting dental caries on one tooth per cropped image
based on deep learning for premolars and molars in periapical radiographs. The accuracy,
sensitivity, specificity, PPV, NPV, and ROC AUC for the model of predicting dental caries
for both premolars and molars in [16] were 82.0%, 81.0%, 83.0%, 82.7%, 81.4%, and 84.5%,
respectively. Our method for predicting dental caries provided the accuracy of 94.94%, the
sensitivity of 94.15%, the specificity of 95.47%, the PPV of 93.30%, the NPV of 96.08%, and
the ROC AUC of 98.31%, which outperforms [16], as shown in Table 8. In particular, our
method can recognize both periodontitis and dental caries simultaneously. In addition,
both anterior and posterior teeth are included in our dataset.

Table 8. Comparison of the proposed method with [16].

Method CNN Network Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

ROC AUC
(%)

[16] GoogLeNet
InceptionV3 82.0 81.0 83.0 82.7 81.4 84.5

Proposed
method EfficientNet-B0 94.94 94.15 95.47 93.30 96.08 98.31

For a single tooth, the deep learning model proposed in [22] needs to be executed
twice to obtain the detection of periapical periodontitis and caries. The first time is to obtain
the dental root result for the detection of periapical periodontitis and the second time is
to acquire the dental crown results for the detection of caries. However, the multi-label
deep learning architecture of our method only needs to be executed once to obtain the
recognition results among the four kinds of teeth. In [22], the sensitivity, specificity, PPV,
NPV, and ROC AUC for the performance of periapical periodontitis were 82.00%, 84.00%,
83.67%, 82.35%, and 87.90%, respectively. Our model performed with the sensitivity of
93.28%, the specificity of 96.88%, the PPV of 95.24%, the NPV of 95.59%, and the ROC AUC
of 98.67% for periodontitis. For the prediction of dental caries, the sensitivity, specificity,
PPV, NPV, and ROC AUC were 83.50%, 82.00%, 82.27%, 83.25%, and 87.50%, respectively,
in [22]; however, they were 94.15%, 95.47%, 93.30%, 96.08%, and 98.31%, respectively, in our
method, as shown in Table 9. In addition, cropping a single tooth is not a fully automated
method in [22]. Our method provides an automated tooth detection process using YOLOv7.
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Table 9. Comparison of the proposed method with [22].

Method CNN Network Disease Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

ROC AUC
(%)

[22]
Modified

ResNet-18 Backbone

Periapical
periodontitis 82.00 84.00 83.67 82.35 87.90

Dental caries 83.50 82.00 82.27 83.25 87.50

Proposed
method EfficientNet-B0

Periodontitis 93.28 96.88 95.24 95.59 98.67

Dental caries 94.15 95.47 93.30 96.08 98.31

The automatic evaluation of periodontitis and dental caries can facilitate the initial
screening of dental conditions, particularly benefiting people in underserved areas with
limited access to healthcare resources. It can promote regular dental check-ups, thereby
contributing to the overall maintenance of oral health. Additionally, the screening results
obtained through this method can assist healthcare decision-makers in investigating health-
care demands, optimizing the allocation of dental workforces, and effectively reducing the
urban–rural disparity in dental care accessibility. The simultaneous recognition method
has the potential to positively impact public health strategies, healthcare planning, and the
overall accessibility of dental care, especially for medically underserved populations.

This study focused solely on dental X-ray images, which may exclude important
clinical factors, such as the patient’s medical and dental history, symptoms, and other
clinical examination results. These clinical factors provide valuable information that can
contribute to the overall assessment of the patient’s condition. The exclusion of these
clinical factors could limit the performance of the proposed method. Therefore, future
research is suggested to evaluate both dental X-ray images and clinical factors before
annotation and training AI models. This integration can potentially enhance the accuracy
and effectiveness of AI-assisted technology.

5. Conclusions

Artificial intelligence technologies have made significant progress recently in the
applications of dentistry. This paper presents an effective method for the simultaneous
recognition of periodontitis and dental caries in dental X-ray images. The methodology
applies YOLOv7 for tooth detection, image processing technologies (contrast-limited adap-
tive histogram equalization and bilateral filtering), and the EfficientNet-B0 model. The
proposed method achieved good performance in terms of various performance metrics.
This deep learning-based method, which demonstrated promising capabilities, can be
beneficial to dentists for the identification of periodontitis and dental caries.
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