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Abstract: A wealth of causal relationships exists in biological systems, both causal brain networks
and causal protein signaling networks are very classical causal biological networks (CBNs). Learning
CBNs from biological signal data reliably is a critical problem today. However, most of the existing
methods are not excellent enough in terms of accuracy and time performance, and tend to fall into
local optima because they do not take full advantage of global information. In this paper, we propose
a parallel ant colony optimization algorithm to learn causal biological networks from biological signal
data, called PACO. Specifically, PACO first maps the construction of CBNs to ants, then searches for
CBNs in parallel by simulating multiple groups of ants foraging, and finally obtains the optimal CBN
through pheromone fusion and CBNs fusion between different ant colonies. Extensive experimental
results on simulation data sets as well as two real-world data sets, the fMRI signal data set and
the Single-cell data set, show that PACO can accurately and efficiently learn CBNs from biological
signal data.

Keywords: causal biological networks; causal brain networks; causal protein signaling networks;
parallel ant colony optimization; pheromone fusion; CBNs fusion

1. Introduction

The rapid development of science and technology yields a huge amount of biological
signal data and also drives the development of related fields in biological systems [1,2].
For example, the invention of functional magnetic resonance imaging (fMRI) facilitates to
learn causal brain networks from brain activity [3–5], the creation of intracellular multicolor
flow cytometry allows more quantitative simultaneous observations of multiple signaling
molecules in many thousands of individual cells and making it easier to infer causal protein
signaling networks among protein biomolecules [6,7] and the invention of Single-cell
RNA sequencing (ScRNA-seq) yields large amounts of gene expression data, bringing
new research perspectives to learn the causal regulatory relationships between different
genes [8,9]. A causal biological network (CBN) is a set of nodes and directed edges that
can succinctly represent the causal relationships between different types of biological
nodes mentioned above [10]. Learning CBNs accurately and efficiently from biological
signaling data has been an important issue in recent years [11], and is important for a
deeper understanding of the underlying principles in biological mechanisms. In recent
years, many CBN learning methods have been proposed, which can be broadly classified
into two categories, one based on traditional machine learning and the other on deep
learning methods with complex model structures.

Traditional machine learning methods include Linear non-Gaussian Acyclic Model
(LiNGAM) [12] based methods, Bayesian Network (BN) based methods [13] and Granger
Causality (GC) [14] based methods. etc. Recently, Wei et al. [15] proposed a method for
learning CBNs based on BN with pruning strategies. Zhang et al. [16] proposed a CBNs
learning method based on truncated matrix power iteration. Gao et al. [17] proposed
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a Gaussian model for optimal learning of CBNs and showed significant performance
improvement. The advantages of these methods are simple models, relative flexibility, and
short running times, but the learned CBNs are often not accurate enough and easily fall
into local optima.

With the rapid development of deep learning, many deep learning methods are also
successfully used to learn CBNs. Yu et al. [18] proposed a graph neural network-based
CBNs learning method and successfully applied it to learn causal protein signaling net-
works. Fan et al. [8] used 3D convolutional neural networks in successfully learning more
accurate causal gene regulatory networks. Lu et al. [19] proposed a deep reinforcement
learning-based framework and Liu et al. used generative adversarial network [20] and re-
current generative adversarial network [21] for learning causal brain networks. Compared
with traditional machine learning methods, the accuracy of learning CBNs from biological
signal data using deep learning methods will be improved, but it will cost a lot of time
because the model structure is mostly complex.

To solve the above-mentioned problems of existing methods, in this paper, we propose
a novel CBNs learning algorithm called parallel ant colony optimization (PACO), which
utilizes a parallel ant colony optimization algorithm to learn CBNs from biological signal
data. The PACO algorithm consists of three main phases: initialization, parallel ant colony
optimization, and pheromone fusion and CBNs fusion phase. During the initialization
phase, PACO initializes the parallel ant colony and sets some initial parameters for the ant
colonies. In the parallel ant colony optimization phase, the K2 metric is used to measure
the quality of the learned CBNs and guides the ant colony search. PACO employs multiple
ant colonies to learn the best CBN with the highest K2 metric in parallel. In the pheromone
fusion and CBNs fusion phase, all ant colonies are guided to perform a more accurate
search by sharing pheromones from the colony with the highest K2 metric to other colonies.
Finally, PACO obtains the best CBN from all ant colonies according to the extraction rule.
Extensive experimental results on simulation data sets as well as on two real-world data
sets, the fMRI signal data set and the Single-cell data set, show that PACO outperforms
other state-of-the-art or classical methods in learning CBNs from biological signal data.
The main contributions of this paper can be summarized as follows:

• To the best of our knowledge, this is the first study to employ a parallel ant colony
optimization algorithm to learn CBNs from biological signal data. The incorporation
of parallelization allows for more accurate and efficient learning of CBNs, which will
provide a significant reference for the causal discovery and bioinformatics fields.

• PACO incorporates the parallel ant colony optimization and information fusion strat-
egy. This approach not only enhances the algorithm’s efficiency and reduces time
complexity, but also facilitates the extraction of shared information from multiple data
sets, thereby improving the accuracy of learn CBNs and more fully utilizes global
information, effectively reducing the probability of falling into a local optima.

• Numerous experiments conducted on simulation data sets, fMRI signal data sets and
Single-cell data set have demonstrated that the proposed method is capable of learning
CBNs from different biological signal data, thereby improving inference performance,
which has significant implications for a deeper understanding of the underlying causal
relationships in biological systems.

2. Related Work
2.1. Causal Biological Networks

The CBNs learned from different types of biological signal data can be specifically
subdivided into many types, such as causal brain networks, causal protein signaling
networks, causal gene regulatory networks and other CBNs, and we will describe the
related work of causal brain networks and causal protein signaling networks in detail in
the following. Table 1 shows the introduction of different CBN learning methods.
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Table 1. The introduction of different CBN learning methods.

Category Methods Years Category Methods Years

Causal
Brain

Network

spectral Dynamic
Causal Modeling (spDCM) 2014 [22]

Causal
Protein

Signaling
Network

Continuous
Optimization (NoTears) 2018 [23]

Ant Colony
Optimization (ACO) 2016 [24] Graph Neural

Network (DAG-GNN) 2019 [18]

Artificial Immune
Algorithm (AIA) 2016 [25] Reinforcement

Learning (RL) 2019 [26]

Generative Adversarial
Network (GAN) 2020 [20] Three Track

Neural Network (TTNN) 2021 [27]

Large-scale Dynamic
Causal Mode (PEB) 2020 [28] Latent Factor

Causal Models (LFCMs) 2022 [29]

Recurrent Generative
Adversarial Network (RGAN) 2021 [21] Truncated Matrix

Power Iteration (TMPI) 2022 [16]

Deep Reinforcement
Learning (DRL) 2022 [19] BN with Pruning

Strategies (CO-CDG) 2022 [15]

Amortization
Transformer (AT-EC) 2023 [30] Deconfounded Functional

Structure Estimation (DeFuSE) 2023 [31]

2.1.1. Causal Brain Networks

Causal brain networks consist of multiple brain nodes and causal interactions between
different nodes, and accurate learning of causal brain networks is valuable for understand-
ing the functioning of brain cognition and gaining insight into the pathogenesis of brain
diseases [32,33]. In recent years, many studies have emerged to learn causal brain networks
from fMRI signal data, Friston et al. [22] first proposed a spectral dynamic causal modeling
for learning causal brain networks from fMRI signal data. Zhang et al. [30] first proposed a
amortization transformer model for learning causal brain networks from fMRI signal data.
Li et al. [28] and Razi et al. [34] extended the model to learn the causal brain networks on
large-scale brain regions from fMRI signal data. Ji et al. first proposed to learn causal brain
networks using an artificial immune algorithm (AIA) [25] and a recurrent generative adver-
sarial network (RGAN) model [21], with greatly performance. Li et al. [35] explored the
dynamic abnormalities of brain function in Parkinson’s disease and the pathophysiological
significance behind them by constructing causal brain networks from fMRI signal data.

2.1.2. Causal Protein Signaling Networks

Causal protein signaling networks consist of multiple protein biomolecule nodes and
causal relationships between different nodes. Learning causal protein signaling networks
accurately from Single-cell data is important for understanding the causal relationships of
biomolecules in cells and for gaining insight into the pathogenesis of cell-based diseases.
Recently, Zhu et al. [26] designed a causal discovery model based on reinforcement learning
that employs a reinforcement learning framework for learning causal protein signaling
networks. Zheng et al. [23] first transformed the causal discovery problem from a com-
binatorial optimization problem to a continuous optimization problem by proposing a
continuous optimization structure approach (NoTears) and successfully used it for learn-
ing causal protein signaling networks. Baek et al. [27] proposed to learn causal protein
signaling networks using a three-track neural network. Li et al. [31] first proposed to
learn causal protein signaling networks based on the Deconfounded Functional Structure
Estimation. Squires et al. [29] proposed using latent factor causal models to learn causal
protein signaling networks. Whitaker et al. [36] discussed the effect of p38 MAPK protein
biomolecules on the relationship between cell cycle and apoptotic signaling pathways by
constructing and analyzing the BCL2 family of causal protein signaling networks.
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2.2. Ant Colony Optimization Algorithm

The ant colony optimization algorithm was originally proposed by Dorigo et al. [37]
based on the intelligent behavior of ant colonies during the foraging process. After more
than a decade of development, the ant colony algorithm has become one of the most
effective algorithms for solving combinatorial optimization problems in swarm intelligence
and has been widely used in various fields. Liu et al. [24] first used the ant colony algorithm
to learn the effective connectivity of causal brain networks from fMRI signal data and to
quantitatively characterize the strength of the connectivity. Liang et al. [38] proposed an
improved context-based ant colony optimization algorithm and applied it to travel route
planning. However, the tendency to fall into local optima is still one of the main factors
limiting the performance of the algorithm.

3. The Parallel Ant Colony Optimization Algorithm

In this section, we will introduce a new algorithm to learn CBNs more accurately and
efficiently from biological signal data.

3.1. Main Idea

To accurately and efficiently learn CBNs from biological signal data, we propose a
novel algorithm called the parallel ant colony optimization (PACO). The PACO algorithm
comprises three phases: initialization, parallel ant colony optimization, and pheromone
fusion and CBNs fusion. Specifically, the PACO algorithm is a score-and-search approach
for learning CBNs from biological signal data, utilizing the K2 metric to evaluate the
quality of CBNs and guide the parallel ant colony to search for the global optimal CBNs.
Additionally, we introduce a new information fusion mechanism that merges and updates
the pheromones of all colonies after the completion of the same iteration of all ant colonies,
serving as the initial pheromones of the colonies in the next iteration. When all iterations
are completed, the optimal CBNs learned by all colonies are merged into an adjacency
matrix. The final CBN is obtained by setting the extraction rules. Figure 1 illustrates the
flowchart of the PACO algorithm.

Data1

DataN

Output:the optimal CBNInput: 
biological signal data

Construct CBNs
by adding arcs

Optimize CBNs 
selectively

Initialization Parallel Ant Colony Optimization

CBNs 
 fusion

Pheromone 
 Fusion

Fusion and extract 
the optim

al CBN
 

 

 output 

Figure 1. The flowchart of the PACO algorithm.

3.2. Initialization

In the parallel ant colony optimization algorithm, a CBN can be represented as
G =< V , E >, where V is a set of biological nodes and E is a set of arcs with each arc
representing a causal interaction between two biological nodes. A CBN uses a graph
structure and a set of parameters to encode uniquely the joint probability distribution
of the domain variables X = {X1, X2, X3, · · ·Xn} :

P(X1, X2, X3, · · ·Xn) =
n

∏
i=1

P(Xi|∏(Xi)). (1)

First we initialize N ant colonies with Num ants in each colony, then we initialize an
empty CBN Gi(0)(1 ≤ i ≤ N) for each colony. Since ants produce pheromones and the
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concentration of pheromones changes continuously during the movement, we need to
initialize a pheromone matrix for each colony. Finally, we need to initialize some parameters
for the algorithm, such as the number of iterations NC, the number of iterations lstep for
local search, the initial information concentration τ0, etc. Additionally, we employ the K2
metric in PACO to evaluate the quality of CBNs. The K2 metric is a famous evaluation
measure for learning CBNs from biological signal data, and the initial expression for the K2
metric is:

P(G, D) = P(G) ·
n

∏
i=1

qi

∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri

∏
k=1

Nijk! (2)

where D is a given training set, G is a possible CBN, ri is the number of possible values of
the variable Xi, qi is the number of possible configurations for the variables in ∏(Xi), and
Nijk is the number of cases in D where Xi has its kth value and ∏(Xi) is instantiated to its
jth value.

3.3. Parallel Ant Colony Optimization

In this phase of the search process, we open N threads corresponding to N ant colonies
searching N biological signal data sets in parallel. In PACO, each ant k(k = 1, 2, · · ·Num)
in N ant colonies starts from the empty CBN Gi(0)(1 ≤ i ≤ N) and increases one arc at a
time until it is impossible to make the K2 metric of the CBNs higher by adding one arc. At
time t, the probabilistic transition rule that an ant selects a directed arc aij between two
biological nodes Xi and Xj from the current set of candidate arcs is defined as:

ai,j =

{
arg maxi,j∈DAk(t){[τij(t)] · [ηij(t)]β}, i f q ≤ q0,

aI,J , otherwise,
(3)

where τij(t) is the pheromone concentration, ηij(t) represents the heuristic information of
ai,j, and β is the weighted coefficient which controls ηij(t) to influence the selection of arcs.
DAk(t)(i, j ∈ DAk(t)) is the set of all candidate arcs whose heuristic information is larger
than zero; q0 (0 ≤ q0 < 1) is an initial parameter that determines the relative importance of
exploitation versus exploration (exploitation means selecting arcs by pheromone intensity
and heuristic information, and exploration means global random selecting arcs); q is a
random number uniformly sampled in [0,1]; and I and J are a pair of biological nodes
randomly selected according to the probability in the following way:

pk
i,j(t) =


[τij(t)]α · [ηij(t)]β

∑r,l∈DAk(t)[τrl(t)]α] · [ηrl(t)]β
, i f i, j ∈ DAk(t),

0, otherwise,

(4)

where α denotes the relative importance of τrl(t) left by ants. The heuristic function ηij is
defined as follows:

ηij(t) = ω · f (Xi, ∏(Xi ∪ Xj)− f (Xi, ∏(Xi)) (5)

where ω is a weighted factor concerned with the arc connecting intensity whose value is
defined as:

ω = 1 + In f (Xi, Xj) (6)

where In f (Xi, Xj) represents the mutual information between the two biological nodes Xi
and Xj. Because the mutual information In f (Xi, Xj) can objectively reflect whether the two
biological nodes in a CBN are dependent and how much the dependency is, thus when the
dependency intensity is stronger and the score-increase is larger, the heuristic information
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becomes greater, and vice versa. The mutual information between two biological nodes Xi
and Xj is defined as:

In f (Xi, Xj) = ∑
xi ,xj

P(xi, xj)log
P(xi, xj)

P(xi)P(xj)
(7)

after each iteration of the ant colony is performed, the PACO algorithm will carry out
the pheromone updating process, which includes local and global updating steps. For
the local optimization process, when an ant selects an arc aij, the pheromone level of the
corresponding arc is changed in the following way:

τij(t + 1) = (1− ρ)τij(t) + ρτ0 (8)

where 0 < ρ ≤ 1 is a parameter that controls the pheromone evaporation.

3.4. Pheromone Fusion and CBNs Fusion

The above search process is performed by N colonies in parallel. Each colony finds the
best solution from all feasible CBNs learned so far by means of the K2 metric, and performs
the global updating for each arc of the current best CBN. The global updating rules at the
tth iteration are shown in Eqations (9) and (10):

τij(t) = (1− ρ)τij(t− 1) + ρ∆τij(t) (9)

∆τij(t) =


1

| f (G+ : D)| , i f aij ∈ G+

τij(t− 1), otherwise
(10)

When all N colonies completed the above process, the algorithm enters the pheromone
fusion and CBNs fusion phase, which is divided into two parts: when the number of
iterations is not satisfied, the algorithm selects the pheromone matrix Mmax corresponding
to the CBN with the highest K2 metric from all ant colonies, and updates the pheromone
matrices M1 to MN of all ant colonies to Mmax to guide the continued search of the ant
colony during the next iteration. When the number of iterations reaches NC, the algorithm
merges all the optimal CBNs learned by N ant colonies into the adjacency matrix G. Then we
set the new extraction rule such that Gij = 1, (1 ≤ i, j ≤ N) when the value Gij ≥ 50% · N,
otherwise Gij = 0. Finally, we extract the optimal CBN G

′
learned from the N biological

signal data sets.
Based on the above description, the termination process of PACO is as follows: when

the current iteration number t reaches the preset iteration number NC, PACO merges the
N CBNs learned by the parallel ant colony, and then extracts and outputs the optimal CBN
G
′

according to the designed rules, and the algorithm terminates.

3.5. Algorithm Description and Analysis

The PACO in this paper consists of three main phases: initialization, parallel ant colony
optimization, and pheromone fusion and CBNs fusion phase, which are summarized
in Algorithm 1. For the initialization phase, first, the PACO algorithm initialize N ant
colonies and opens N threads for N colonies simultaneously. Then PACO generates an
initial set of empty CBNs Gi(0) (1 ≤ i ≤ N) and set some parameters for each colony.
Finally, N biological signal data sets are input to the algorithm. For the parallel ant colony
optimization phase, all ants in N colonies perform the search CBNs in parallel, starting with
one empty CBN per ant and adding one arc at a time until the CBN cannot be constructed to
have a higher K2 metric. The CBN learned is then locally optimized using Optimazation(),
a function that uses the standard addition, deletion, and inversion operators for arcs. At
this point, each ant colony obtains the optimal CBN for the current number of iterations t
and updates the global pheromone. For the pheromone fusion and CBNs fusion phase, the
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algorithm selects the pheromone matrix Mmax corresponding to the CBN with the highest
K2 metric from the N CBNs learned in the parallel ant colony optimization phase, and then
updates Mmax to the pheromone matrix M1 to MN to guide each ant colony to continue the
search in the next iteration. When the NC iterations are completed, the algorithm merges
N optimal CBNs learned by N ant colonies and extracts the optimal CBN G′ according to
the extraction rules we designed.

Algorithm 1: PACO
Input: Biological signal data sets.
Output: The optimal CBN G

′
.

1 Initialization:
2 Set some parameters: N, Num, NC, α, β, ρ, q0, qd, lstep, t = 0;
3 τij(0) = 1/n · | f (Gi(0) : D)|;
4 for i = 1 to N do
5 Initialize pheromone matrix Mi;
6 Gi(0) = ConstructGraph();
7 G+

i = Gi(0);
8 end
9 Open N threads:

10 for each thread parallelly do
11 repeat
12 for k = 1 to Num do
13 Ant k construct Graph (Gk);
14 Set a random number q[0, 1] and compare it with q0;
15 Add an arc arcab according to Equations (3) and (4);
16 Calculate the K2 metric of the Gk as f (Gk : D);
17 Update ηij according to Equations (5) and (6);
18 Update τij according to Equation (8);
19 if f (Gt+1

k : D) ≤ f (Gt
k : D) then

20 if t mod lstep = 0 then
21 Gk = Optimization(Gk);
22 end
23 end
24 G+

t = argmaxk f (Gk : D);
25 if f (Gk : D) ≤ f (G+

t : D) then
26 G+ = G+

t ;
27 end
28 Perform global pheromone updating by Equations (9) and (10);
29 end
30 Perform local optimization and update G+;
31 Pheromone fusion:
32 Select the Mmax of the CBN with the highest K2 metric;
33 Share Mmax to M1 to MN ;
34 t = t + 1;
35 until t is equals NC;
36 Fusion and extract the optimal CBN G

′
;

37 end
38 Close N threads;
39 Return: The optimal CBN G

′
.

Based on the description of Algorithm 1, the complexity of PACO can be simply
analyzed as follows: let the algorithm input N data sets, NC is the number of iterations,
and the number of ants per colony is Num. Then the time complexity of PACO can be
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expressed as O(N) + O(NC) ·O(3 · Num + N) ≈ O(n2). The time complexity of the non-
parallel Ant Optimization Colony (ACO) algorithm can be expressed as O(1) + O(N) ·
O(NC) ·O(3 · Num) ≈ O(n3). It is obvious that PACO increases the time cost O(N) mainly
in the pheromone fusion and CBNs fusion process compared to ACO, but for learning
CBNs with multiple biological signal data sets, the time cost of PACO is much less than
that of ACO, and the advantage becomes more and more obvious the larger the number N
of biological signal data sets is.

4. Experimental Result of Learning CBNs
4.1. Data Description
4.1.1. Simulation Data Sets

The generation of the simulation data sets is briefly described here, and more details can
be found in [26]. Given a number of nodes v, we generate a d× d upper triangular matrix as
the graph binary adjacency matrix, in which the upper entries are sampled independently
from Bern(0.5). We assign edge weights independently from Unif ([−1.5, −0.5] ∪ [0.5, 1.5])
to obtain a weight matrix W ∈ Rd×d , and then sample x = WTx + λ ∈ Rd from both
Gaussian and non-Gaussian noise models. We choose unit noise variance in both models and
use m = 200 samples as the sub-data set. The variables are then randomly ordered. Finally,
we generate 10 simulation data sets sim1 to sim10 and each simulation data set consists of
different numbers of nodes (v = 5, 10, 30, 50, 100) and different numbers of sub-data sets
(N = 20, 50) in series. The input of each colony in PACO corresponds to each sub-data set of a
simulation data set. Other algorithms take a complete simulation data set as input.

4.1.2. fMRI Signal Data Sets

A causal brain network for representing the effective connectivity of different brain
regions can be represented by a CBN. The Smith data set [39] is a set of fMRI signal data
sets given by Smith et al. The data set is availableat http://www.fmrib.ox.ac.uk/datasets/
netsim/index.html (accessed on 11 June 2023), which can be used to verify the accuracy
of different methods to identify functional and effective brain connectivity and contains
28 data sets. Each data set contains different number of brain regions (Nodes), scan time
(Session), repetition time of the pulse, noise, and several other influencing factors. We select
the second of 28 data sets, which has 10 nodes and contains 50 subjects with 11 edges in the
ground-truth to validate the performance of our method.

4.1.3. Single-Cell Data Sets

Learning causal protein signaling networks from human immune Single-cell data can
also be considered as the process of learning CBNs. The real multi-parameter fluorescence-
activated cell sortera data set [6] to learn causal protein signaling networks based on
expression levels of proteins and phospholipids, and the Single-cell data sets are availableat
https://www.science.org/doi/10.1126/science.1105809#supplementary (accessed on 11
June 2023). This is a widely used bioinformatics data set for research on graphical models.
The data set offers continuous measurements of expression levels of multiple phosphorylated
proteins and phospholipid components in human immune system cells. There are 14 sub-data
sets with respect to 14 different biochemical experiments, and the number of data points in
each sub-data set ranges from 723 to 917. There are 11 signaling nodes in each sub-data set,
and each signaling node represents a phosphorylated protein molecule in the research of the
human primary T cell signaling pathway. Over the past two decades, classical biochemistry
and genetic analysis have constructed a protein network that can be taken as a ground-truth
network. The ground-truth network contains 17 high-confidence causal edges.

4.2. Evaluation Metrics

We compared the learned CBN to ground-truth CBN on the for most common graph
metrics: (1) Precision; (2) Recall; (3) F1-measure(F1); (4) Structural Hamming Distance
(SHD); (5) Time. Specifically, Precision, Recall, and F1 can be defined asfollows:

http://www.fmrib.ox.ac.uk/datasets/netsim/index.html
http://www.fmrib.ox.ac.uk/datasets/netsim/index.html
https://www.science.org/doi/10.1126/science.1105809#supplementary
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Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1 =
2× Precision× Recall

Precision + Recall
. (13)

In this paper, we use edges to denote the directed connectivity relationship between two
nodes in a CBN. TP denotes the number of edges that exist in both the learned CBN and
the ground-truth CBN; FP denotes the number of edges that exist only in the learned CBN
compared to the ground-truth CBN; and FN denotes the number of edges that exist in the
ground-truth CBN but are not learned. Thus, Precision and Recall range from 0 to 1, and F1 is
their harmonic. SHD is the total number of edge additions, deletions, and reversals needed to
convert the learned CBN into the ground-truth network. The SHD can be calculated as

SHD = Redu + Miss + Reve, (14)

where Redu represents the number of redundant edges that need to be removed, Miss
represents the number of missing edges that need to be added, and Reve represents the
number of edges in the opposite direction that need to be reversed. To indicate the time
spent by the algorithm in seconds, we use the Time metric.

4.3. Contrast Algorithm Introduction and Experimental Setup

To intuitively illustrate the competitiveness of our PACO, we compare with 5 other
state-of-the-art or classic algorithms. These algorithms include: continuous optimization
for structure learning (NoTears) [23], deep reinforcement learning (DRL) [19] , greedy
equivalence search (GES) [40], DAG Structure Learning with Graph Neural Networks
(DAG-GNN) [18], Artificial Immune Algorithm (AIA) [25]. In addition, to demonstrate
the superiority of the parallel strategy of the PACO algorithm, we also compare it with the
non-parallel ant optimization colony (ACO) [24] as our ablation experiment. Among the
above algorithms, NoTears and DAG-GNN are two that have been successfully applied
to learn causal protein signaling networks and achieved good performance on Single-cell
data sets. DRL, GES, AIA and ACO are four algorithms to learn causal brain networks that
achieved good performance on Smith’s fMRI data set. We use the gCastle toolbox proposed
by [41] for the implementation of all publicly available comparison algorithms, and the
code is availableat https://github.com/huawei-noah/trustworthyAI (accessed on 11 June
2023). The code for PACO is availableat https://github.com/ZJH66/PACO (accessed on 11
June 2023).

To compare with other algorithms in a fair and appropriate way, we set the parameters
of all comparison algorithms to the default values in the citation. The parameters of
PACO include the weights for the pheromone trail (α) and for the heuristic information (β),
the controls of the pheromone evaporation (ρ), the relative importance of the exploitation
versus exploration (q0), the number of iterations (NC), and the number of ants (Num). After
a large number of experimental tests, we find that the set of parameters α = 1.8, β = 2,
ρ = 0.35, q0 = 0.75 performed well on most of simulation data sets, and the parameters NC
and Num are mainly associated with the stability and convergence speed of the algorithm.
Thus we test on the simulation data to determine a better parameter configuration of NC
and Num for PACO. We find that as Num and NC increase, the learning performance of
PACO gets better and better and takes more and more time, and the algorithm achieves the
highest accuracy and stabilizes when Num = 20 and NC = 10, from which we determine
the final parameters. During all experiments, we employ the control variate technique that
the value of a single parameter is changed, while keeping the values of other parameters
fixed. The parameter settings of all algorithms are shown in Table 2.

 https://github.com/huawei-noah/trustworthyAI
https://github.com/ZJH66/PACO
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Table 2. Parameter settings of 7 algorithms.

Algorithms Parameters

NoTears [23] λ1 = 0.1, maxiter = 100, threshold = 0.3
DRL [19] epoch = 50, α = 0.99
GES [40] k = 0.01, N = 10

DAG-GNN [18] epoch = 300, η = 10, γ = 1

AIA [25] Ps = 0.5, Pc = 0.6, Pm = 0.4,,
T = 150, N = 80, M = 70

ACO [24] α = 1.8, β = 1.5, ρ = 0.6,
q0 = 1.2, NC = 10, Num = 30

PACO α = 1.2, β = 2, ρ = 0.35, q0 = 0.75
NC = 10, Num = 20

We choose 5 evaluation metrics Precision, Recall, F1, SHD and Time to evaluate the
performance of different algorithm and compare PACO with 6 other algorithms using
10 simulation data sets, a set of real fMRI signal data set and a set of Single-cell data
sets. To reduce the effect of algorithm randomness on the experimental results, we run
all algorithms 10 times on all data sets and take the average. After the validation of the
performance and effectiveness of the PACO algorithm, we further compare it on real fMRI
signal data sets and real Single-cell data set. The experimental platform is a PC with Intel
Core i5-8300, 16 GB RAM, 2.30 GHz CPU, and Windows 10.

4.4. The Results of Learning CBNs from Simulation Data Sets

We comprehensively test and compare the above 7 algorithms on the generated
10 simulation data sets, each consisting of a different number of nodes v and a different
number of sub-data sets N. An algorithm performs well when it gets higher values of
Precision, Recall and F1 and lower values of SHD and Time. Note that when we test
PACO, we use the data set of all the sub-data sets concatenated, the number of colonies
N in the PACO algorithm is equal to the number of sub-data sets N in a simulation data
set, and the input of each colony is a sub-data set in a simulation data set. When we test
other algorithms, we need to concatenate all the sub-data sets of a simulation data set as
the input.

From Table 3, we can find that PACO outperforms the other 6 algorithms in all metrics
on the 10 simulation data sets. Specifically, following the two chains Sim1-Sim3-Sim5-Sim7-
Sim9 and Sim2-Sim4-Sim6-Sim8-Sim10, each chain has 5 data sets with gradually increasing
number of nodes, 5, 10, 30, 50, and 100, respectively, and the difference between the two
chains is that each data set in the first chain contains 20 sub-data sets, while each data set in
the second chain consists of 50 sub-data sets. Overall, the F1 of all algorithms, including
PACO, decreases as the number of nodes v and the number of sub-data sets N increase.
While the Time increases with the number of nodes as well as the number of sub-data sets.
When the number of nodes increases to 100, PACO still achieves F1 values of 0.71 and 0.70
on both Sim9 and Sim10 with Time of 5.87 s and 7.66 s, respectively, which is far ahead of
the other algorithms and keeps the highest performance. Then we divide the number of
nodes into 5 groups to see the impact of the number of sub-data sets on the performance
of the algorithm. It is obvious that as the number of sub-data set increases from 20 to 50,
theF1 and SHD of most of the compared algorithms get worse and the time cost of all
algorithms increases, but the F1 and SHD of PACO get better instead, and we think that
the pheromone fusion and CBNs fusion rules we set play a role. In addition, we found
that the larger the number of nodes and the larger the number of sub-data set, the more
obvious the time advantage of the PACO algorithm. For example, for the Sim10 data set,
the number of nodes are 50 and sub-data sets are 100, the time cost of ACO is 13.67 s, while
the time cost of PACO is 7.66 s, which is a significant improvement in time performance,
which demonstrates the superiority of our parallel strategy on large-sample multi-data set
data. For a more visual representation of the stability of the algorithm, we plot the average
results on the above 10 simulation data sets in a box plot, as shown in Figure 2.
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Table 3. Comparisons of 7 algorithms on 10 simulation data sets.

Data (v,N) Metrics
Algorithms

NoTears DRL GES DAG-GNN AIA ACO PACO

Sim1(5,20)

Precision 0.62 0.61 0.55 0.38 0.60 0.57 0.79
Recall 0.66 0.51 0.35 0.27 0.60 0.62 0.75
F1 0.64 0.56 0.45 0.32 0.60 0.59 0.77
SHD 3 4 5 6 4 3 2
Time (s) 2.76 14.12 5.19 36.12 1.98 0.79 0.51

Sim2 (5,50)

Precision 0.59 0.62 0.51 0.35 0.60 0.56 0.75
Recall 0.61 0.52 0.35 0.35 0.50 0.62 0.77
F1 0.60 0.57 0.43 0.35 0.55 0.59 0.76
SHD 3 4 6 7 5 3 2
Time (s) 4.51 19.25 10.32 45.34 2.73 1.42 0.78

Sim3 (10,20)

Precision 0.59 0.62 0.53 0.40 0.60 0.56 0.77
Recall 0.53 0.51 0.43 0.30 0.54 0.56 0.75
F1 0.56 0.56 0.48 0.35 0.57 0.56 0.76
SHD 9 9 12 13 10 7 4
Time (s) 4.12 17.22 8.91 39.73 2.36 1.34 0.68

Sim4 (10,50)

Precision 0.57 0.55 0.49 0.38 0.60 0.52 0.75
Recall 0.55 0.51 0.45 0.40 0.52 0.54 0.75
F1 0.56 0.53 0.47 0.39 0.56 0.53 0.75
SHD 9 10 13 15 9 10 3
Time (s) 7.89 25.64 13.67 48.26 4.41 2.86 0.91

Sim5 (30,20)

Precision 0.55 0.62 0.54 0.37 0.58 0.53 0.73
Recall 0.50 0.52 0.34 0.27 0.59 0.53 0.71
F1 0.53 0.57 0.44 0.32 0.59 0.53 0.72
SHD 17 15 19 23 14 17 9
Time (s) 7.54 24.33 14.98 54.66 4.61 3.64 1.56

Sim6 (30,50)

Precision 0.56 0.63 0.55 0.39 0.61 0.54 0.75
Recall 0.56 0.61 0.35 0.31 0.54 0.56 0.73
F1 0.56 0.62 0.45 0.35 0.58 0.55 0.74
SHD 15 13 18 21 15 16 7
Time (s) 9.14 30.55 7.16 50.37 5.69 4.79 1.95

Sim7 (50,20)

Precision 0.55 0.61 0.48 0.36 0.62 0.60 0.73
Recall 0.53 0.51 0.44 0.27 0.52 0.62 0.71
F1 0.54 0.56 0.46 0.31 0.57 0.61 0.72
SHD 36 34 43 48 33 30 19
Time (s) 13.36 45.62 18.96 75.33 5.97 5.65 2.73

Sim8 (50,50)

Precision 0.54 0.59 0.51 0.38 0.63 0.57 0.72
Recall 0.52 0.53 0.32 0.27 0.54 0.61 0.70
F1 0.53 0.56 0.43 0.32 0.58 0.59 0.71
SHD 37 34 41 49 33 32 21
Time (s) 16.64 57.89 23.67 86.51 7.15 7.11 3.15

Sim9 (100,20)

Precision 0.52 0.56 0.55 0.38 0.61 0.55 0.71
Recall 0.52 0.54 0.35 0.42 0.52 0.53 0.71
F1 0.52 0.55 0.45 0.40 0.57 0.54 0.71
SHD 68 60 79 86 57 61 48
Time (s) 32.76 98.75 41.63 139.87 10.36 10.88 5.87

Sim10 (100,50)

Precision 0.49 0.51 0.45 0.35 0.58 0.54 0.71
Recall 0.51 0.51 0.47 0.33 0.60 0.54 0.69
F1 0.50 0.51 0.46 0.34 0.59 0.54 0.70
SHD 71 71 77 90 55 60 46
Time (s) 42.36 135.5 52.36 159.62 16.98 13.67 7.66

The bold values indicate that the algorithm achieved the best results.
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Figure 2. The average results of 7 algorithms on 10 simulation data sets corresponding to 5 metrics.
The box represents the middle 50% of the data, with a horizontal line inside the box representing
the mean. The horizontal axis represents 7 algorithms, and the vertical axis is the value of the
evaluation metrics.

The above experimental results can fully demonstrate that our proposed algorithm has
a more stable performance in all evaluation metrics and a significant improvement in time
performance and learning accuracy compared to other algorithms. Next, we will further
discuss the performance of the algorithm on real fMRI signal data sets and Single-cell
data sets.

4.5. The Results of Learning Causal Brain Networks from fMRI Signal Data Sets

In this section, we test the performance of algorithms to learn brain effective connec-
tivity networks from fMRI signal data. The results are shown in Table 4, and the causal
brain networks learned by each algorithm are shown in Figure 3. Note that for PACO, we
input 50 subjects simultaneously into 50 ant colonies for parallel search, and for the other
algorithms, we input 50 sub-data sets in series into the algorithm consecutively.

Combining Table 4 and Figure 3, we can find that DAG-GNN identifies 5 true effective
connectivity edges, and the time cost 22.6 s, and the performance of each metric is much
lower than other algorithms, which we speculate that this is due to the complex deep
learning model used by the algorithm and the assumption that the acyclic graph constraint
will lead to a significant performance degradation when generating cyclic graphs. NoTears
and DRL identify 7 and 8 true effective connectivity edges, respectively, but the 2 algorithms
themselves take more time due to the deep learning and reinforce learning model used.
GES identifies 8 true effective connectivity edges, but the Precision is low due to the large
number of redundant edges generated; AIA identifies the 7 true effective connectivity
edges, and performance is moderate in all metrics, with no outstanding advantages. ACO
identifies 9 true effective connectivity edges, Recall, Precision and F1 are 0.82. PACO
identifies 9 true effective connectivity edges and outperforms ACO on all evaluation
metrics. Moreover, ACO consumes 0.98 s while PACO consumes 0.49 s, which is almost a
times improvement in time performance, which proves that our pheromone fusion and
CBNs fusion mechanism and parallel search strategy have achieved significant results. In
summary, PACO can learn causal brain networks more accurately and efficiently.
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Figure 3. The ground-truth and the causal brain networks learned from fMRI signal data set. The
horizontal and vertical coordinates indicate the corresponding brain regions of interest and the blue
grid indicates effective connectivity between the two corresponding brain regions.

Table 4. Comparisons of 7 algorithms on the fMRI signal data set.

Algorithms Precision Recall F1 SHD Time (s)

NoTears 0.47 0.64 0.54 9 9.20
DRL 0.57 0.73 0.64 6 16.10
GES 0.38 0.73 0.50 13 2.91
DAG-GNN 0.33 0.45 0.38 13 22.60
AIA 0.64 0.64 0.64 5 1.35
ACO 0.82 0.82 0.82 3 0.98
PACO 0.83 0.91 0.87 2 0.49

The bold values indicate that the algorithm achieved the best results.

4.6. The Results of Learning Causal Protein Signaling Networks from Simulation Data Sets

We further validate the performance of the PACO algorithm on the Single-cell data
set. For PACO, we input 14 sub-data sets simultaneously into 14 ant colonies for parallel
search, and for other algorithms, we input 14 sub-data sets in series into the algorithm
consecutively. The results are shown in Table 5, and the causal protein signaling networks
learned by each algorithm are shown in Figure 4.

Combining Table 5 and Figure 4, we can find that PACO outperforms all other algo-
rithms in all evaluation metrics, where SHD is 15 with both NoTears and DRL, but PACO
is far ahead of NoTears and DRL in terms of time. NoTears, DRL, and DAG-GNN are
at the same level of accuracy in learning causal protein signaling networks, and all learn
nearly half of the connected edges of protein signals correctly, but all three algorithms
have a significant disadvantage in time performance due to the relatively complex neural
networks and deep learning models they all use. The Recall of GES is 0.41, but the Precision
is 0.2, which leads to an F1 of only 0.27 and a SHD of up to 30, obviously learning a large
number of redundant signal connection edges. AIA and ACO algorithms also have the
same characteristics as GES algorithm in terms of evaluation metrics. The above three
algorithms have short running time but less accuracy. PACO has an obvious advantage in
accuracy with Precision, Recall and F1 of 0.53, which proves that our pheromone fusion
and CBNs fusion strategy can improve the accuracy of the algorithm in learning CBNs, and
also has an obvious advantage in time, which proves that our parallel strategy is effective.
In summary, PACO can learn causal protein signaling networks accurately and efficiently.
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Figure 4. The ground-truth and the causal protein signaling networks learned from Single-cell data.
The connection curves in the graph represent the signaling networks between the 11 phosphorylated
protein biomolecules.

Table 5. Comparisons of 7 algorithms on the Single-cell data set.

Algorithms Precision Recall F1 SHD Time (s)

NoTears 0.44 0.47 0.45 15 35.30
DRL 0.47 0.47 0.47 15 63.20
GES 0.20 0.41 0.27 30 11.60
DAG-GNN 0.44 0.41 0.42 17 122.70
AIA 0.19 0.35 0.24 31 3.80
ACO 0.25 0.47 0.33 26 3.10
PACO 0.53 0.53 0.53 15 1.90

The bold values indicate that the algorithm achieved the best results.

5. Conclusions

In this paper, we introduce a novel parallel ant colony optimization algorithm (PACO)
for learning CBNs from biological signal data. Our experiments on the generated simulation
data set, the real fMRI signal data set and the real Single-cell data set show that PACO has
significant improvements in accuracy performance and time performance compared to the
state-of-the-art algorithm and the advantage of this method will be more obvious when
dealing with large scale multiple data sets. Compared with the non-parallel ant colony
optimization (ACO) algorithm, PACO shows a significant improvement in accuracy and
time performance, which proves the effectiveness of the parallel strategy and pheromone
fusion and CBNs fusion mechanism. In future work, we plan to further investigate the
acyclicity constraint during parallel ant colony optimization to reduce the search space to
improve the performance.
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