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Abstract: Background: Ascending thoracic aortic aneurysm is a chronic degenerative pathology
characterized by dilatation of this segment of the aorta. Clinical guidelines use aortic diameter and
growth rate as predictors of rupture and dissection. However, these guidelines neglect the effects of
tissue remodeling, which may affect wall thickness. The present study aims to systematically review
observational studies to examine to what extent wall thickness is considered and measured in clinical
practice. Methods: Using PubMed and Web of Science, studies were identified with data on ascending
aortic wall thickness, morphology, aortic diameter, and measurement techniques. Results: 15 included
studies report several methods by which wall thickness is measured. No association was observed
between wall thickness and aortic diameter across included studies. Wall thickness values appear
not materially different between aneurysmatic aortas and non-aneurysmal aortas. Conclusions: The
effects on and consequences of wall thickness changes during ATAA formation are ill-defined. Wall
thickness values for aneurysmatic aortas can be similar to aortas with normal diameters. Given the
existing notion that wall thickness is a determinant of mechanical stress homeostasis, our review
exposes a clear need for consistent as well as clinically applicable methods and studies to quantify
wall thickness in ascending aortic aneurysm research.

Keywords: aortopathy; growth and remodeling; measurement techniques

1. Introduction

Ascending thoracic aortic aneurysm (ATAA) is a chronic degenerative pathology
characterized by dilatation of the ascending thoracic segment of the aorta [1]. The rupture
of ATAA leads to a potentially lethal emergency with a pre-hospital mortality of 40%,
followed by an increased chance of death of 1% per hour without surgical intervention [2].

ATAA is characterized by a disproportionate degeneration of the media compared to
healthy aortas. This eventually results in the remodeling of the aortic extracellular matrix,
leading to fewer vascular smooth muscle cells and the degradation of elastin fibers [3].
However, the pathophysiology of aneurysm formation is not entirely understood.

Clinical guidelines use aortic diameter and its growth rate as predictors of rupture and
dissection [2], which is the result of aortic tissue ceasing to withstand mechanical stress.
These predictors are based on deriving the mechanical stress conditions of the aortic wall
under the assumption that wall stress is positively related to diameter. However, according
to Laplace’s law, this assumption also requires constant wall thickness over time since wall
stress depends on its two main geometrical features, i.e., radius and wall thickness, under
a certain pressure condition [4]. Indeed, several observational studies quantifying aortic
diameter prior to dissection have demonstrated that most dissections occur in smaller aortic
diameters, rendering diameter alone a poor marker for risk stratification [5–7]. Admittedly,
blood vessels functionally respond to mechanical stress and undergo long-term growth
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and remodeling via the adaptation of geometry, structure, and material properties [8]. For
example, in the event of increased pressure or increased radius leading to increased wall
stress, the vessel wall may respond to normalize wall stress by adaptive thickening to
normalize wall stress [9]. This kind of adaptation is pursued by the vessel to maintain a
mechanical homeostatic state, which is regulated through transmural stress distribution [10].
Unfortunately, studying these conditions in a patient context is cumbersome, causing a lack
of evidence for defining the boundaries of these characteristics of growth and remodeling.

Since tissue mechanical stress in the vessel wall is primarily a function of radius and
wall thickness, the role of wall thickness in ATAA formation in clinical practice warrants
proper attention.

Therefore, we conducted a scoping review of the literature to examine to what extent
wall thickness is considered and measured in clinical research and practice. We followed
the PRISMA systematic review methodology to acquire observational clinical studies with
explicit data on ascending aortic wall thickness, morphology, and aortic diameter, with a
concrete description of the measurement technique.

2. Methods
2.1. Protocol and Registration

In this study, the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(Prisma) statement [11] is applied. This review was not prospectively registered.

2.2. Search Strategy and Study Selection

For the initial search in this review, the PubMed and Web of Science databases have
been searched using the following terms: ((aneurysm) AND ((thoracic) OR (ascending)))
AND (wall thickness). The search period was set from the earliest available date till August
2021. The last update on the search was on the 3rd of August 2021.

The articles included had to be written in English, with the primary analysis of tissue
data (tissue or image analysis) collected from human ascending aorta focusing on aneurysm.
Papers focusing on aortic dissection as well as case reports, review articles and articles
that did not present data on overall wall thickness or at least thickness of the intima or
media, were excluded from this review. Additionally, papers that focused on validating
computational models were excluded, mainly because the focus of these studies is on the
validation of the model and not on clinical research.

2.3. Study Selection and Data Extraction

The original study idea and the search strategy were conceived by two researchers
(G.P.D. and K.D.R.). Screening and selection of papers, based on the title and the abstract,
and the inclusion and exclusion criteria were established by one researcher (G.P.D.). After
selecting the papers, two researchers (G.P.D. and S.P.) analyzed the full-text papers inde-
pendently. When available, the following data were extracted from the papers and filled
in on a scoresheet: study design, follow-up time, inclusion- and exclusion criteria, size
of the study population, technique of wall thickness measurement, the main conclusion
regarding wall thickness, overall outcome of the paper, wall thickness data and aortic
diameter data. Moreover, the papers were scored on how much they focused on wall
thickness in the methods, results, and discussion section (see Supplementary S1). The two
reviewers (G.P.D. and S.P.) discussed their individually filled scoresheets between them.
Discrepancies were resolved by reaching an agreement based on a consensus discussion
between the two reviewers. If necessary, adjudication was performed through discussion
with a third supervisory author (K.D.R.).

2.4. Risk of Bias

The risk of bias, and thereby validity, of the included studies in this review, has
been independently rated by two reviewers (G.P.D. and S.P.). Any discrepancies while
discussing the ratings were resolved by reaching an agreement based on consensus. Using



Bioengineering 2023, 10, 882 3 of 17

the National Heart, Lung, and Blood Institute, Quality Assessment Tool for Observational
Cohort and Cross-Sectional Studies checklist [12], cohort and cross-sectional studies were
assessed on their research question, study population, participation rate, in- and exclusion
criteria, sample size, exposure measures, outcome measures, blinding, loss to follow-up,
confounding variables and overall quality. Case-control studies were assessed by using the
National Heart, Lung, and Blood Institute, Quality Assessment of Case-Control Studies
checklist [12] rating: research question, study population, sample size, in- and exclusion
criteria, case and control definition, exposure prior to condition, exposure definition,
blinding of assessors, correction for confounding and overall rating of quality.

2.5. Summary of Measures

The primary outcome measure in this review is aortic wall thickness. Wall thickness
measures in the included studies were obtained via different measurement techniques.
In studies that recorded multiple wall thicknesses taken on the same tissue (e.g., anterior
wall, inner- and outer curvature, posterior wall), the average wall thickness was recorded.
The average standard deviation of wall thickness in these studies was determined by first
calculating the variance of the standard deviations (taking the squares of all standard
deviations). Subsequently, the average of the calculated variance was determined, after
which the root of the mean variance resulted in the average standard deviation for wall
thickness [13]. In this review, we decided to present all wall thickness measurements
as median and quartiles since some original papers mentioned median and quartiles
because of non-normally distributed wall thickness. For normally distributed measures,
the presented mean is equal to the median. The first quartile (Q1) was calculated as median—
0.67·standard deviation [14]. The third quartile (Q3) was calculated as median + 0.67·standard
deviation [14]. For articles that presented an SEM, the standard deviation was calculated by
multiplying the SEM by the square root of the sample size. Aortic diameter was defined
as a secondary outcome measure. For each study, the average group aortic diameter was
obtained via the descriptive characteristics of the included studies or manually calculated
in case the study presented the mean diameter separate for each individual participant.

The obtained measurements on wall thickness were visualized using boxplots that
show ATAA wall thickness plotted against tissue type and measurement technique. More-
over, a scatter plot has been constructed to visualize the correlation between ATAA diameter
and ATAA wall thickness. Since different measurement techniques and tissue types were
visualized in this scatterplot, it was not possible to calculate a slope in this scatterplot.

3. Results
3.1. Study Selection

Using the search strategy, we retrieved 172 articles from PubMed and 143 from the Web
of Science. After removing the duplicates (n = 83), 232 articles were screened, resulting in
23 eligible studies for full-text analysis. The study selection process is illustrated in Figure 1.
After a review of the full articles, eight articles were excluded from analysis because wall
thickness or overall wall thickness was not presented (n = 6), it was unclear which layer of
tissue was measured (n = 1) or data on the ascending aorta were not presented (n = 1). This
resulted in 15 studies, with a total of 1556 ATAA tissue samples, which were included in
this review [15–29].

3.2. Risk of Bias

Results for the quality assessment of the ten included cohort and cross-sectional
studies, using the National Heart, Lung, and Blood Institute, Quality Assessment Tool for
Observational Cohort and Cross-Sectional Studies checklist, are reported in Table 1. Five
papers were deemed of good quality, four papers were of fair quality, and the quality of
one paper was rated as poor. It is notable that none of the studies provided a sample size
justification. The fact that several papers also have a low sample size might contribute to
the risk of bias. Moreover, four out of ten papers did not correct for potential confounding
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variables, and three out of ten did not clearly describe the study population, which puts
them at high risk of bias. On the contrary, all studies did clearly define the outcome and
exposure measures and provided a well-described research question/objective.
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For the five included case–control studies, using the National Heart, Lung, and Blood
Institute, Quality Assessment of Case-Control Studies checklist, the quality assessment is
reported in Table 2. The quality of three papers was scored as good, one paper had a fair
quality, and one paper was scored as being of poor quality. None of the studies provided a
sample size justification which, in combination with the often-low sample size, contributes
to the risk of bias. All papers did provide a clear research question and clearly described
the in- and exclusion criteria which resulted in a good definition of cases and controls. Two
studies [15,19] were rated as having a high risk of bias as they did not properly describe the
study population and did not correct for confounding variables. In addition, one of these
studies had a high loss to follow-up, while the other study selected cases and controls from
different populations. Therefore, caution is needed when interpreting the results of these
two studies.
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Table 1. Outcome of quality assessment for cohort and cross-sectional studies.

Cohort and
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Angouras, 2019 [16] Y Y NR Y N Y Y Y Y NA Y NA Y N F
Cavinato, 2019 [17] Y Y NR Y N Y Y Y Y NA Y NA Y NA G

Forsell, 2014 [18] Y Y NR Y N Y Y Y Y NA Y NA Y Y G
Fukui, 2005 [19] Y N NR Y N Y Y Y Y NA Y NA N N P

Hardikar, 2020 [20] Y Y Y Y N Y Y Y Y N Y NA Y Y G
Iliopoulos, 2009 [22] Y Y NR Y N Y Y Y Y NA Y NA Y NA G
Khanafer, 2011 [23] Y N NR Y N Y Y Y Y NA Y NA Y N F
Puyvelde, 2016 [25] Y Y Y N N Y Y Y Y NA Y NR Y Y G

Shahmansouri, 2016 [26] Y N NR Y N Y Y Y Y NA Y Y CD Y F
Smoljkić, 2017 [27] Y Y NR Y N Y Y Y Y NA Y N NR N F

Y: yes; NR: not reported; N: no; NA: not applicable; CD: cannot determine; F: Fair; G: Good; P: Poor.

Table 2. Outcome of quality assessment for case–control studies.
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Y: Yes; N: No; NA: Not Applicable; NR: Not Reported; P: Poor; G: Good; F: Fair.
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3.3. Study Characteristics

A summary of the characteristics of the included studies can be found in Table 3. The
selected studies consist of nine cross-sectional studies, five case–control studies and one
retrospective cohort study. The amount of collected ATAA tissue samples ranged from 6 to
490 between studies. The mean age range of the study populations was between 43 and
70 (population means). The percentage of female sex among studies varied between 12 and
50. Details for each study are given in Table 3. Primarily, studies reported wall thickness in
aneurysm patients with a tricuspid aortic valve. Moreover, four studies also included ATAA
patients with bicuspid aortic valves to compare these with ATAA patients with tricuspid
aortic valves. Four studies included a control group of healthy aortic tissue samples to
compare with aneurysm tissue. One study focused on differences between aneurysm-
and dissection tissue. The main exclusion criteria employed in the included articles were
dissected aortic tissue and genetic tissue disorders, e.g., Marfan or Loeys-Dietz. In most
included studies, ATAA wall thickness was not the primary outcome measurement. ATAA
diameter had a prominent role in most included studies since this is the used parameter in
current clinical practice.

Overall thickness questionable (see Figure 8 in [21]). The unit of thickness is in cm.
Range for wall thickness was 1.5–2.7 mm (refer Figure 5 in the [23])

3.4. Wall Thickness Characteristics

The included studies reported several different wall thickness measurement meth-
ods. These methods consisted of an eyepiece micrometer, laser micrometer, line laser
triangulation sensors, histomorphometry, digital caliper, electronic caliper, dial gauge,
epiaortic ultrasound, measurement trough metal plate, and electronic image analysis. For
each measurement method, the wall thickness measurements were further divided into
intima-media thickness (IMT) and intima-media-adventitia thickness (IMAT) measures.
The ranges of medians of wall thickness measurements for aneurysm patients with different
measurement modalities were as follows: medical images 1.3–2.5 mm (IMT), histology
1.3–1.67 mm (IMT) and 1.6–2.5 mm (IMAT), and fresh tissue 1.7–3.1 mm (IMAT). On the
other hand, histology IMAT was obtained (range: 1.7–2.6 mm) for NA patients (Figure 2).

In Figure 3, wall thicknesses were plotted against the diameters for every study.
The wall thicknesses shown in the figure were the result of a combination of multiple
wall thickness measurement methods as described previously. The range of IMT was
1.3–2.5 mm, and IMAT ranged from 1.6 to 3.1 mm. The corresponding ranges of diameters
were 40.9–51.0 mm and 45.0–66.0 mm. The measurement ranges included samples from
patients with bicuspid and tricuspid aortic valves.
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Table 3. Characteristics of included studies.

No. Study Study
Design

Study
Population Conclusion

Method Result Discussion Total Score

1 Amemiya et al.,
2020 [15] Case-control

351 ATAA patient tissue samples
with BAV (183, age 56 [46, 66], 21%

female), and without BAV (168,
age 66 [59, 74], 21% female). In

total, 145 TAD patient tissue
samples with BAV (8, age 43

[38, 53], 0% females), and without
BAV (137, age 65 [55, 76], 37%

female).

Media thickness of 5
µm thick

paraffin-embedded
tissue slices

measured using an
eyepiece micrometer

Medial wall thickness
(TAA) = 1.3 [1.1, 1.5]; Medial

wall thickness
(TAD) = 1.5 [1.3, 1.8]

Medial degenerative changes
(MDC) were observed.

Non-BAV is associated with
higher MDC scores as

compared to BAV aortas.
Higher MDC scores are

correlated with increased
aortic diameters.

1

2 Angouras et al.,
2019 [16] Cross-sectional 17 ATAA patient tissue samples.

Age 70 ± 3, 24% female.

Laser micrometer
was made (Ls-3100;

Keyence Corp,
Osaka, Japan).

Analysis performed
for all four

circumferential
anatomical locations

of the aortic ring.

Anterior = 2.37 ± 0.06; Right
lateral = 2.19 ± 0.06;

Posterior = 2.33 ± 0.08; Left
lateral = 2.66 ± 0.07

Region and not the wall
thickness was the cause of

reduced delamination strength
of aortic tissue. Aortic

diameter, which is the main
indicator for surgical

intervention had no effect on
delamination and tensile

strength of the tissue.

1

3 Cavinato et al.,
2019 [17] Cross-sectional

12 unruptured ATAA tissue
specimens obtained from
19 patients. No mean age

available.

High spatial
resolution line laser

triangulation sensors
(optoNCDT 1700BL,

Micro-Epsilon
Messtechnik GmbH

& Co. KG, Germany)

The mean thickness of tissue
specimens was 3.10 mm

(please refer the paper for
local variations in tissue

thickness measurements).

No significant correlation
found between in vivo rupture
pressure and specimen mean

or minimum thickness or
maximum stresses.

1

4 Forsell et al.,
2014 [18] Cross-sectional

27 tissue specimens from 24
patients undergoing aortic, valve

disease, or both surgeries
(13 BAV, age
60.4 ± 14.1)

(11 TAV, age 59.2 ± 9.4)

Calliper
measurements on

excised tissue

Increased wall thickness
observed in TAV patients

(2.0 [1.9, 2.3]) as compared to
BAV patients (1.7 [1.6, 2.0])

BAV aneurysmal tissue
depicted lower wall thickness

as compared to TAV
aneurysmal tissue. BAV

aneurysmal tissues showed
higher strength as compared
to TAV aneurysmal tissues.

0
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Table 3. Cont.

No. Study Study
Design

Study
Population Conclusion

Method Result Discussion Total Score

5 Fukui et al.,
2005 [19] Cross-sectional

29 ATAA specimens were
obtained from 18 patients

undergoing aneurysm
replacement surgery. No clinical

characteristics mentioned

Measurements on
tissue specimens
were performed

using a dial gauge.

Wall thickness of ascending
aortic specimens was 1.7

[1.5, 1.8].

No significant correlations
among maximum diameter,
wall thickness, and mean
infinitesimal strain in the

in vivo state.

0

6 Hardikar et al.,
2020 [20] Cross-sectional

72 consecutive patients
undergoing aortic surgeries.
(58 ATAA, age 61.95 ± 12.1,
16% female) (14 TAD, age
62.40 ± 9.7, 36% female)

Thickness of all four
quadrants at

mid-ascending level
of the aorta was

measured using two
methods: surgical

vernier caliper (after
resection of tissue),

and from CT images
pre-operatively.

Average wall thickness was
different for aneurysm

(1.88 ± 0.28) and dissection
(2.02 ± 0.39). Preferential

thinning on the convexity of
the aorta was observed with

increase in diameter.

Risk of acute aortic events
must not be based only on

diameter. Aortic wall
thickness is an important

parameter for risk assessment.

0

7 Iliopoulos et al.,
2009 [21] Case-control

Fresh tissue wall thickness
calculation (ATAA n = 490;

Control n = 212).
Histomorphometry wall thickness

calculation (ATAA n = 104;
Control n = 60). ATAA age 69 ± 2,
35% female. Control age 69 ± 2,

33% female)

Histomorphometry—
5 µm thick section
images captured

using digital camera
(Altra20) and

analyzed using
image analysis

software (Image-Pro
Plus). Fresh

biomechanical
testing—non-

contacting laser
micrometer (LS-3100)

Overall thickness
questionable (see Figure 8

in [21]). The unit of
thickness is in cm.

Measurements on fresh tissue
displayed lower wall thickness

in ATAA specimens as
compared to controls. No
significant differences in

overall wall thickness between
ATAA and controls from

histological analysis. Failure
stress and peak elastic

modulus correlated negatively
with wall thickness (strongly),
and ATAA diameter (weakly).

2
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Table 3. Cont.

No. Study Study
Design

Study
Population Conclusion

Method Result Discussion Total Score

8 Iliopoulos et al.,
2009 [22] Cross-sectional

12 ATAA patients, age 69 ± 9, 42%
female. In total, 279 specimens of

which 271 were submitted for
mechanical testing.

Laser beam
micrometer (LS3100,

Keyence Corp,
Osaka, Japan) with
resolution of 1 µm.

Analysis performed
for all four

circumferential
anatomical locations

of the aortic ring.

Anterior = 1.76 ± 0.37; Right
lateral = 1.66 ± 0.34;

Posterior = 1.66 ± 0.28; Left
lateral = 1.79 ± 0.28

No regional variations in wall
thickness and failure strain
were observed in the ATAA
tissue. Negative correlations
were found between failure
stress and wall thickness in

longitudinal and
circumferential directions.

1

9 Khanafer et al.,
2011 [23] Cross-sectional

97 aneurysm tissue specimens
from 13 patients with age ranging

from 39 to 75 years—
68 circumferential-oriented

specimens (42 greater curvature;
26 lesser curvature) and
29 longitudinal-oriented

specimens (16 greater curvature;
13 lesser curvature)

Digital caliper
Range for wall thickness was
1.5–2.7 mm (refer Figure 5 in

the [23])

Inverse correlation between
peak stress and wall thickness

was observed in
both—circumferential and

longitudinal directions.

2

10 Koullias et al.,
2005 [24] Case-control

20 patients undergoing coronary
artery bypass graft surgery, age
64.0 ± 2.61, 30% female. In total,
33 patients undergoing elective
aneurysm repair surgery, age

64.8 ± 4.7, 12% female. Patients
with a documented diagnosis of
Marfan syndrome or evidence of

dissection or aortitis of any
etiology were excluded.

6- to 15-MHz
echocardiographic

probe (Phillips model
21390A, Andover,

Mass)

Mean value of wall thickness
measurement for all

non-aneurysmatic tissues
was 0.26 ± 0.02 and

0.25 ± 0.02 for aneurysmatic
tissues.

Dramatic level of aortic tissue
deterioration is observed

when the diameter reaches a
critical value of 6 cm.

0
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Table 3. Cont.

No. Study Study
Design

Study
Population Conclusion

Method Result Discussion Total Score

11 Puyvelde et al.,
2015 [25]

Retrospective
cohort

94 ATAA patients, age 62 ± 12.6,
28% female and 87 TAD, age

57.8 ± 15.1, 31% female.

Digitalized
histological images

processing (software-
AxioVision, CarlZeiss

Meditec AG, Jena,
Germany) of medial

wall thickness.

Medial wall thickness
ATAA = 1.53 ± 0.29;
TAD = 1.50 ± 0.31

Patients with TAD exhibited a
significant inverse association
between medial wall thickness
and aortic diameter, while in

ATAA this relation was absent.

2

12 Shahmansouri
et al., 2016 [26] Cross-sectional

Patients with BAV (6 males) and
TAV (7 male, 1 female)

undergoing aneurysmal repair
surgery. Average age of study
population is 68 ± 12 years.

Digital caliper

TAV: IC = 2.39 ± 0.43;
Anterior = 2.18 ± 0.49;
Posterior = 2.72 ± 0.68;

OC = 1.992 ± 0.578
BAV: IC = 2.47 ± 0.37;
Anterior = 2.56 ± 0.67;
Posterior = 2.68 ± 0.49;

OC = 2.48 ± 0.50

Regional variation in thickness
observed; however, such

regional variation for
toughness and incremental
modulus was not observed.

Toughness measure correlates
with collagen fiber content in

the tissue.

1

13 Smoljkić et al.,
2017 [27] Cross-sectional

6 ATAA patients in total. BAV
patients with age 58.25 ± 6. 1

CABG patient aged 60. In total,
2 female patients.

In vivo IMT
measurement by
images obtained
through epiaortic

ultrasound probe; Ex
vivo IMT

measurement on
histological samples
(at 20 locations and

then averaged)
through ImageJ; Ex

situ IMAT
measurement

through metal plates
and image analysis

using MATLAB.

Means of each technique not
mentioned. Range for

in vivo (IMT): 1–2; ex vivo
(IMT): 1.3–2; ex situ (IMAT):

2.2–3.5

Mechanical or geometrical
information only cannot

provide sufficient information
regarding rupture risk. Wall

thickness measurements show
high variability between
patients but also between
measurement methods.

1
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Table 3. Cont.

No. Study Study
Design

Study
Population Conclusion

Method Result Discussion Total Score

14 Stern et al.,
2019 [28] Case-control

TAV-ATAA (28, age 65.7 ± 11.3,
43% female); BAV-ATAA (19, age

52.8 ± 14, 5% female);
non-aneurysmal (30, age
54.4 ± 12.8, 33% female).

Image acquisitions
were performed

using Zeiss
AxioVision

microscope (Carl
Zeiss, Oberkochen,

Germany) to
measure intima and

media thickness.

Media thickness significantly
reduced in TAV-ATAA

patients (1.22) compared to
the control group (1.46). The
media thickness in patients

with a BAV (1.35 mm)
displayed no significant

differences compared to TAV
patients and the control
group. Intimal thickness
significantly increased in

TAV-ATAAs (1.80) compared
to BAV-ATAA patients (0.50).

No significant intimal
thickness difference was

observed between
TAV-ATAAs and control

group (0.75).

BAV-ATAA and the
TAV-ATAA are two

independent diseases. The
TAV-associated aneurysm is

characterized by a pronounced
aortic wall degeneration
suggesting strong wall

weakening, whereas BAV
aneurysm-associated wall
changes are limited to a

tendency towards increased
calcification.

1

15 Tang et al.,
2005 [29] Case-control

Patients with ATAA (29) age
67.5 ± 14.4, 31% female; patients

with non–aneurysmal aortas
included CABG (10) + cardiac
transplantation (3) + cadaveric
organ donors (15). Age of the
control group is 60.9 ± 11.1,

21% female.

Wall thickness was
determined from

elastin van Gieson
(EVG)–stained,

transverse sections of
aortic specimens

under magnification
using Image 1.62c
software (Scion).

Total wall thickness
of—non-aneurysmal:
2.61 ± 0.17; smaller

aneurysms (15): 2.66 ± 0.15;
larger aneurysms (14):

2.54 ± 0.25.

Media becomes thinner as
aneurysm develops. Actual
mass of media is increased,
not decreased. Density of

medial VSMCs is preserved in
ascending thoracic aortic

aneurysms. Increased
destruction, most likely via
MMP-9, and not decreased
synthetic activity, underlies

the impaired presence of
matrix proteins in the

aneurysmal aortic wall.

2

ATAA: ascending thoracic aortic aneurysm; TAD: thoracic aortic dissection; BAV: bicuspid aortic valve; TAV: tricuspid aortic valve; IC: inner curvature; OC: outer curvature; IMT:
intima-media thickness; IMAT: intima-media-adventitia thickness. All thickness measurements are in millimeters. Age in years. Results given as Mean ± standard deviation or Median
[25th percentile, 75th percentile].
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Figure 2. Observing a large range in wall thickness measurements utilizing different measurement
techniques. TAA: thoracic aortic aneurysm; NA: non-aneurysm; IMT: intima-media thickness; IMAT:
intima-media-adventitia thickness; mm: millimeters; All results are displayed as median [inter-
quartile range]. For normally distributed measures the mean is equal to the median. The first quartile
(Q1) was calculated as median—0.67·standard deviation [14]. The third quartile (Q3) was calculated as
median + 0.67·standard deviation [14]; In the TAA group, results for tricuspid and bicuspid aortic valves
are displayed; * TAA with bicuspid aortic valve disease; # range of wall thickness is used instead of
IQR. Data obtained from [15–29].
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ibility and repeatability analysis. It was found that only Cavinato et al. [17] confirmed the 
repeatability of their method. The method they presented entailed performing wall thick-
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They concluded that the method was repeatable. The rest of the included studies did not 
state the reproducibility or repeatability of the wall thickness measurement methods in-
corporated in their study. Taken together, there currently exists a lack of consistency 

Figure 3. Overall absence of a clear relation between wall thickness and diameter between studies;
CT: computed tomography; IMT: intima-media thickness; IMAT: intima-media-adventitia thickness;
TAV: tricuspid aortic valve; BAV: bicuspid aortic valve; NA: non-aneurysm; mm: millimeters; median
measurements for wall thickness are displayed; average measurements for diameter are displayed.
Data obtained from [16–25,27–29].

4. Discussion
4.1. Wall Thickness Data

To our knowledge, this is the first scoping review on the role of aortic wall thickness in
ascending thoracic aortic aneurysm formation. At the outset of this review, we investigated
in each study the methods for estimating wall thickness (medical imaging, histology or
fresh tissue analysis). A varied range in medians of wall thickness measurements was
observed, even within measurement techniques. The lowest range that was observed in
IMT measurements was on samples measured using histology (~0.5 mm), and a greater
range was observed on measurements obtained through medical images (~1 mm). Similarly,
the lowest range for IMAT measurements was observed for histological measurements
(~1.5 mm), and the measurements on fresh tissue samples ranged greater (~1.5 mm). The
reason for the observed variation in ranges could be attributed to the devices used in each
study, loading conditions (in vivo, ex vivo), the interpretation by different observers, as
well as the differences in population characteristics (Table 3). Additionally, to verify the
validity of each measurement method, all included studies were scrutinized for repro-
ducibility and repeatability analysis. It was found that only Cavinato et al. [17] confirmed
the repeatability of their method. The method they presented entailed performing wall
thickness measurements using laser triangulation sensors on fresh tissue samples (Table 3).
They concluded that the method was repeatable. The rest of the included studies did
not state the reproducibility or repeatability of the wall thickness measurement methods
incorporated in their study. Taken together, there currently exists a lack of consistency
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across and of quality within studies concerning the measurement of ascending aortic wall
thickness. Method and population variability could partially explain the spread in wall
thickness we observed.

4.2. Interpretation

A key finding is that no noticeable variation in wall thickness with respect to aortic
diameters was observed (Figure 3). This finding is opposed to a perceived general char-
acteristic of aortic aneurysms, which is outward hypotrophic remodelling [20,30]. The
findings from histopathological studies also describe hyperplasia of VSMCs leading to
either thickening or maintenance of thickness instead of thinning of the aortic wall under
aneurysmatic conditions [29]. This phenomenon was hypothesized to be a response of
VSMCs towards insults to the aortic wall due to hemodynamic forces [29]. Such a hypoth-
esis has been confirmed from animal studies suggesting that the aortic wall undergoes a
similar remodelling response when subjected to insult-causing hemodynamic forces [31].
The remodelling response exhibited by the VSMCs “actively” tends to maintain a homeo-
static stress state of the vessel wall by regulating the constituents, which leads to variations
in the vessel wall thickness given the hemodynamic loading, cell signalling and cell–matrix
transduction [8,32]. The variations in the wall thickness ultimately affect the stress state
of the tissue and thereby enter a vicious cycle leading to aneurysm formation [33]. The
consideration of active cellular contributions to the stress state of the tissue is contrary to
considering solely passive vessel material. For example, the wall thickness of a cylinder
with a passive (and incompressible) material will always decrease when subjected to in-
creased transmural pressure. Though with some caution, we interpret the lack of a clear
correlation between wall thickness and diameter as an indication that the ascending aorta
is not a passive elastic but an active structure showing variable degrees of (mal-)adaptation
and/or remodelling. For this hypothesis, which is partly at odds with the outward hy-
potrophic paradigm, there is a pressing need for well-designed studies to better understand
how stresses are acting in vivo at the constituent level, which in turn may provide a better
understanding of aneurysm formation.

This present review of clinical studies reveals that there is an extensive reliance on ex
vivo techniques for determining wall stresses (global and constituent level) and stiffness of
the tissue. This is simply due to the fact that the determination of mechanical stresses at
the microstructural level of the tissue has been deemed infeasible because of the limited
availability of pressure–radius signal, absence of axial force–stretch data, disturbance by
involuntary movements of the subject, etc. [34]. Taken together, the interdependency of wall
thickness and diameter, particularly in ATAA formation, is interrelated with mechanical
stress homeostasis, as regulated at tissue, i.e., the cell–matrix interaction, level.

4.3. Limitations

Notwithstanding the role of mechanical stresses in aneurysm formation and the
adaptation of the aortic wall, observing the differences in adaptations across populations,
with and without genetic disorders, becomes imperative to delve deeper into understanding
the interplay between biomechanical and biochemical aspects, ultimately defining the state
of aneurysmatic aortic wall. However, we observed an absence of studies presenting
wall thickness data on genetic diseases. The reason for this might be that in clinical
practice, genetic predisposition is key to diagnosis and follow-up, while the biomechanics
of aneurysm formation may then not appear directly relevant clinically.

Another factor known to determine aortic diameter is the body surface area (BSA) [15].
Several studies reported the use of BSA either to calculate its effect on aortic wall stress [20],
normalize ATAA diameter to find failure stress [22], or to calculate the aortic size index
(ASI) [27]. Nevertheless, none of the reviewed studies mentioned the effect of BSA on aortic
wall thickness.

Yet, another patient factor that is associated with modifications within the extracel-
lular matrix of the aortic wall is age. Age-related modifications may involve collagen
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cross-linking, elastin fiber re-organization, and VSMC senescence [3,8]. Although studies
considered patient populations within an expected 60–65-year age range, the disparity
between but also within some studies is substantial (43–75 years; also see Table 3). This may
partially explain the (apparent) lack of correlation between wall thickness and diameter
we identified.

At a similar level, the skewed as well as variable sex distribution in the studies we
reviewed limits generalization to wider (ATAA) patient populations.

On another note, diabetes status has been conceived to have a protective effect on
aneurysm rupture [35]. The effect of diabetes on wall thickness variations also remained
unreported in the reviewed studies. Therefore, focused research on the effect of diabetes on
wall thickness changes may provide further insight into underlying mechanisms potentially
opposing aneurysm growth or rupture/dissection.

The included papers presented the data on ATAA wall thickness and ATAA diameter
in different ways, e.g.: mean ± SD, median ± range. Some papers provided a list of all
measurements; moreover, different units of measurement were used between papers. This
caused a limitation for our review, as some of the data had to be recalculated from the
reported data. Imprecision may have occurred since the calculations in our review were
based on rounded numbers from the included papers. Furthermore, the heterogeneity in
outcome due to the various wall thickness measurement methods and differences in tissue
stress state made it inappropriate to calculate correlations between ATAA wall thickness
and ATAA diameter. In addition, calculating correlations stratified for each measurement
technique was also not possible because the number of studies per stratum was too small.

Lastly, our review carries limitations posed by language restrictions as well as the
emergent yield of mainly cross-sectional and case–control studies, which by themselves
have limited validity [36].

Taken together, the lack of methodological consistency across studies and (inherent) the
limitations of individual studies, as well as the limitations of our review, there is a pressing
need for prospective, possibly multi-centric studies using the same (single or multiple)
wall thickness measurement methods to advance the pathophysiological understanding of
ATAA formation in a clinical context.

5. Conclusions

In conclusion, multiple measurement techniques and wall thickness measures (IMT or
IMAT) were reported across different studies, thereby exposing a lack of a standard for the
assessment of aortic wall thickness in ascending aortic aneurysm research. Qualitatively,
the variations in wall thickness measurements (aneurysmatic and normal aortas alike)
appear to show no clear association with diameter. Given the existing notion that wall
thickness is a determinant of mechanical stress homeostasis, our review exposes a clear
need for consistent as well as clinically applicable methods and studies to quantify wall
thickness in ascending aortic aneurysm research.
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