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Abstract: This study aims to develop a predictive model for SARS-CoV-2 using machine-learning
techniques and to explore various feature selection methods to enhance the accuracy of predictions.
A precise forecast of the SARS-CoV-2 respiratory infections spread can help with efficient planning
and resource allocation. The proposed model utilizes stochastic regression to capture the virus
transmission’s stochastic nature, considering data uncertainties. Feature selection techniques are
employed to identify the most relevant and informative features contributing to prediction accuracy.
Furthermore, the study explores the use of neighbor embedding and Sammon mapping algorithms
to visualize high-dimensional SARS-CoV-2 respiratory infection data in a lower-dimensional space,
enabling better interpretation and understanding of the underlying patterns. The application of
machine-learning techniques for predicting SARS-CoV-2 respiratory infections, the use of statistical
measures in healthcare, including confirmed cases, deaths, and recoveries, and an analysis of country-
wise dynamics of the pandemic using machine-learning models are used. Our analysis involves the
performance of various algorithms, including neural networks (NN), decision trees (DT), random
forests (RF), the Adam optimizer (AD), hyperparameters (HP), stochastic regression (SR), neighbor
embedding (NE), and Sammon mapping (SM). A pre-processed and feature-extracted SARS-CoV-2
respiratory infection dataset is combined with ADHPSRNESM to form a new orchestration in the
proposed model for a perfect prediction to increase the precision of accuracy. The findings of this
research can contribute to public health efforts by enabling policymakers and healthcare professionals
to make informed decisions based on accurate predictions, ultimately aiding in managing and
controlling the SARS-CoV-2 pandemic.

Keywords: SARS-CoV-2 prediction; feature selection; stochastic regression; neighbor embedding;
sammon mapping; machine learning

1. Introduction

The global health crisis caused by SARS-CoV-2 involving the prediction of respiratory
infection and the ultimate causes of the pandemic has highlighted the need for accurate
prediction models to aid in effective planning and resource allocation. This study aims
to develop a predictive model for SARS-CoV-2 using machine-learning techniques while
exploring various feature selection methods to enhance the accuracy of predictions. By
incorporating these innovative approaches, valuable insights can be gained into the factors
influencing the spread of the virus, ultimately assisting policymakers and healthcare
professionals in making informed decisions for managing and controlling the pandemic.
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The proposed model employs stochastic regression to capture the stochastic nature of
virus transmission and to consider uncertainties in the data. Stochastic regression enables
the modeling of complex relationships and provides a comprehensive understanding of
the virus’s spread dynamics. By leveraging AI-enabled approaches and tools, along with
machine-learning-based immune simulation, scientists have created a groundbreaking
vaccine resistant to mutations. This vaccine represents a significant breakthrough in the
fight against the ongoing COVID-19 pandemic, as it has the potential to provide long-
lasting protection against both current and future variants of the virus [1]. This approach
acknowledges the inherent uncertainties associated with the pandemic, allowing for more
robust and reliable predictions.

Molecular tests, such as reverse transcriptase polymerase chain reaction (RT-PCR),
and antigen tests are used to detect current SARS-CoV-2 infection and diagnose COVID-19.
These tests have different sensitivity and specificity characteristics, which influence their
interpretability. Sensitivity refers to the test’s ability to correctly identify positive cases,
and specificity indicates its ability to identify negative cases correctly. Understanding the
characteristics of diagnostic tests, test timing in relation to symptom onset, and pretest
probability of the disease helps in interpreting test results accurately. To analyze the
behaviour of DNA probes without regard to mutation, researchers have combined surface-
enhanced Raman scattering (SERS) with machine-learning methods. By utilizing SERS,
which enhances the Raman scattering signal, and applying machine-learning algorithms,
scientists have gained valuable insights into DNA probes’ binding characteristics and
stability across different SARS-CoV-2 variants. A greater knowledge of the virus and
assistance in creating efficient diagnostic tools have been provided by previous authors’
illumination of the potential applications of DNA probes in identifying and investigating
viral alterations [2]. According to the statistical models present in the research, the
regression modeling strategy known as stochastic regression includes randomness or
stochasticity in regression analysis. A nonlinear dimensionality reduction method is
Sammon mapping, sometimes called Sammon projection. It seeks to maintain the pairwise
distances between data points in lower-dimensional space. Divergence is the Bregman
measure of the behavioural differences between two probability distributions or vectors.

Additionally, our research explores the use of neighbor embedding and Sammon map-
ping algorithms to visualize high-dimensional SARS-CoV-2 data in a lower-dimensional
space. These visualization techniques allow for better interpretation and understanding of
the underlying patterns within the data, facilitating insights into the virus’s behavior and
transmission dynamics. Developing a point-of-care diagnostic tool that integrates machine-
learning algorithms could have significant implications for the timely identification and
monitoring of SARS-CoV-2 variants. This could aid in tracking the spread of different
variants and implementing appropriate measures to control their transmission [3]. This
study considers a range of machine-learning algorithms, including neural networks (NN),
decision trees (DT), random forests (RF), and the Adam optimizer (AD), along with hy-
perparameter optimization techniques (HP). The study aims to predict ACE2 binding
and antibody escape, allowing for the identification of potential variants and guiding
the development of therapeutic antibody treatments and vaccines for COVID-19 [4]. By
evaluating the performance of these algorithms, our research aims to identify the most
effective approach for predicting SARS-CoV-2 spread, further enhancing the accuracy of the
model. The use of mixed-effects machine learning also helps to predict disease severity in
COVID-19 variants of concern, such as Delta and Omicron. These highlight the importance
of sequence-level information for the virus in understanding the risks associated with
different variants [5].

The active investigation of COVID-19 disease severity prediction is based on the
spike protein sequence of SARS-CoV-2. The use of mixed-effects machine-learning tech-
niques shows promise in this area, as it allows for incorporating various factors and
variations in data to improve predictive accuracy. These studies highlight the importance
of global sequence data, patient outcome information, and early warnings for emerging
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viral risks [6]. The development of machine-learning approaches is also used to identify key
pathogenic regions in coronavirus genomes. Researchers have trained and evaluated mil-
lions of models on thousands of genomes, including SARS-CoV-2, MERS-CoV, and others.
This study aims to uncover discriminative genomic features that can aid in understand-
ing the pathogenicity of SARS-CoV-2 and other coronaviruses [7]. We obtained complete
genome sequences of the Coronaviridae family from the ViPR database and encoded them
into binary vector representations. This approach aims to identify genomic characteristics
that can differentiate between different coronaviruses, including SARS-CoV-2 [8]. This
study highlights the potential of CRISPR-based techniques for rapidly and accurately
detecting SARS-CoV-2. We discuss the development of CRISPR-based diagnostic assays
that can specifically detect the virus and distinguish it from other coronaviruses [9]. The
paper explores early computational detection methods for identifying potential high-risk
SARS-CoV-2 variants. It discusses using computational models and algorithms to analyze
genetic sequences and predict the impact of specific mutations on virus behavior and
transmissibility. By identifying variants of concern early on, this research aims to aid in
developing targeted interventions and public health strategies to mitigate the spread of the
virus [10].

The suggested model creates a new orchestration from a pre-processed and feature-
extracted SARS-CoV-2 dataset and ADHPSRNESM to increase prediction precision and
accuracy. This combination of methods and algorithms offers a thorough and reliable
framework for predicting the transmission of the infection.

The main objectives in this research work are as follows:

• To focus on developing a predictive model for SARS-CoV-2 using machine-learning
techniques, such as neural networks (NN), decision trees (DT), and random forests (RF).
By leveraging these algorithms, the researchers aim to capture the virus transmission’s
stochastic nature and account for data uncertainties.

• To improve the accuracy of predictions, the study employs feature selection techniques.
These methods aim to identify the most relevant and informative features contributing
to prediction accuracy. By selecting the most important features, the model can focus
on the factors that have the greatest impact on the spread of the virus.

• The research explores using neighbor embedding and Sammon mapping algorithms to
visualize high-dimensional SARS-CoV-2 data in a lower-dimensional space. This visu-
alization approach enables better interpretation and understanding of the underlying
patterns in the data, aiding in identifying important trends and relationships.

• The proposed model combines various techniques, including stochastic regression
(SR), neighbor embedding (NE), and Sammon mapping (SM), with a pre-processed
and feature-extracted SARS-CoV-2 dataset. The integration of these techniques forms a
new orchestration, referred to as ADHPSRNESM, which aims to enhance the precision
and accuracy of predictions.

Finally, this research addresses the pressing need for accurate predictive models to
better understand and manage the SARS-CoV-2 pandemic. The study aims to improve
prediction accuracy and gain valuable insights into the factors influencing the virus’s spread
by incorporating machine-learning techniques, feature selection methods, and visualization
algorithms. The findings of this research have the potential to significantly contribute to
public health efforts, enabling policymakers and healthcare professionals to make informed
decisions based on reliable predictions, ultimately aiding in the effective management and
control of the SARS-CoV-2 pandemic.

Novelty in the Reseach Work

The research work novelty lies in applying feature selection techniques specifi-
cally tailored to SARS-CoV-2 data. Traditional feature selection methods often fail to
capture the intricate relationships among variables in complex datasets such as that of
SARS-CoV-2. Our approach introduces novel feature selection algorithms that consider
the unique characteristics and dynamics of the virus, enabling the identification of the
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most relevant predictors for accurate predictions. We introduce a stochastic regres-
sion framework that incorporates probabilistic modeling techniques to account for the
inherent randomness and unpredictability of the pandemic. By leveraging stochastic
regression, our approach provides more robust and reliable predictions, enabling better
decision making in uncertain situations. Neighbor embedding algorithms reduce the
dimensionality of the data while preserving the local relationships between instances.
Sammon mapping is a nonlinear dimensionality reduction technique that emphasizes
preserving the pairwise distances between instances. By leveraging Sammon mapping
in our approach, we can effectively capture the intricate relationships and similarities
between SARS-CoV-2 cases, improving prediction accuracy and interpretability. Differ-
ent types of biases, including confounding, selection bias, and measurement error, may
affect the validity of observational studies related to SARS-CoV-2. By being aware of
these biases, researchers and readers can better interpret and assess the reliability of
study findings.

The following is a breakdown of the article. The related work is examined in Section 2,
and the suggested model is examined in Section 3. Sections 4 and 5 deal with the
experimental setup. In Section 6, the conclusion and future work are presented and
followed by refrences.

2. Literature Review and Related Work

The hybrid simulation methods are developed to investigate the effects of mutations
on the structural dynamics of the main protease from SARS-CoV-2. The main protease plays
a crucial role in viral replication and is a potential target for therapeutic intervention. By
combining computational simulations and experimental data, the study provides insights
into how mutations affect the protein’s stability, function, and interactions with potential
inhibitors. This research contributes to understanding the virus’s evolution and informs the
development of effective antiviral drugs [11]. In this study, the researchers employed super-
vised learning techniques and perturbation calculations to search for potential inhibitors of
the main protease of SARS-CoV-2, which is a crucial target for antiviral drug development.
By training a machine-learning model on known inhibitors and non-inhibitors, we can
predict the inhibitory activity of new compounds.

Additionally, perturbation calculations were used to assess the compounds’ structural
stability and binding affinity. This approach holds promise for accelerating the discovery
of effective inhibitors against SARS-CoV-2 [12]. This research focuses on whether machines
can learn the mutation signatures of SARS-CoV-2 and utilize them to predict the prognosis
of infected individuals. The study aims to identify specific viral genotypes associated with
varying clinical outcomes by analyzing genomic data from a large cohort of patients. Using
machine-learning algorithms, the researchers attempt to create a predictive model that
could guide prognosis based on viral genotypes. This work may contribute to personalized
medicine approaches for COVID-19 by leveraging viral genetic information [13]. This study
investigates the concept of cross-immunity against SARS-CoV-2 variants of concern in nat-
urally infected, critically ill COVID-19 patients. By analyzing patient data, the researchers
aim to understand whether prior infection with one virus variant provides any protection
or alters the severity of subsequent infections with different variants. The findings from
this study could provide valuable insights into immune response dynamics and potential
implications for vaccine development and management of COVID-19 patients [14].

This paper proposes a machine-learning-based approach to determine the infection
status in recipients of the BBV152 (Covaxin) whole-virion inactivated SARS-CoV-2 vac-
cine for serological surveys. The authors utilize machine-learning algorithms to analyze
serological data and classify individuals as infected based on their antibody response.
This approach can aid in evaluating the vaccine’s effectiveness and tracking the spread
of COVID-19 [15]. In this study, researchers employ machine-learning techniques to pre-
dict the docking scores of 3CLpro, a key protein in the SARS-CoV-2 virus. By training
a machine-learning model on a dataset of known docking scores, the authors develop a
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predictive model that can estimate the binding affinity between potential drug compounds
and the 3CLpro protein. This work contributes to discovering potential inhibitors for
SARS-CoV-2 by prioritizing compounds with favorable docking scores [16]. This research
focuses on developing a machine-learning platform that estimates the anti-SARS-CoV-2
activities of compounds. By training a machine-learning model on experimental data re-
garding the antiviral effects of different compounds, the platform can predict the potential
efficacy of new compounds against SARS-CoV-2. This platform could be valuable in the
early stages of drug development, helping to identify promising candidates for further
investigation [17]. The paper explores the application of machine-learning techniques to
predict SARS-CoV-2 infection using blood tests and chest radiographs. It discusses how
machine-learning models can analyze patterns and features in these diagnostic tests to
accurately predict the presence of the virus. This approach has the potential to enhance
early detection and improve patient outcomes [18].

This study uses machine learning and predictive models to present a retrospective
analysis of two years of the SARS-CoV-2 pandemic in a single-center setting. The paper
investigates various factors related to the spread and impact of the virus, such as demo-
graphic information, clinical features, and treatment outcomes. The study aims to provide
insights into the long-term trends and patterns associated with the pandemic [19]. The
paper proposes a novel approach for determining SARS-CoV-2 epitopes using machine-
learning-based in silico methods. Epitopes are specific regions of the virus that can trigger
an immune response. By leveraging machine-learning algorithms, this study aims to
predict potential epitopes from the viral genome, which can aid in vaccine development
and immunotherapy research. The approach offers a promising avenue for identifying
crucial targets for immune system recognition [20]. This paper explores machine-learning
techniques for screening and diagnosing SARS-CoV-2 (COVID-19) based on clinical anal-
ysis parameters. The researchers utilize a dataset containing clinical parameters such as
blood test results, vital signs, and patient demographics. By applying machine-learning
algorithms, the authors aim to develop a model that can accurately classify individuals as
COVID-19-positive or -negative based on these parameters. The study demonstrates the
potential of machine learning in assisting with COVID-19 screening by leveraging clinical
data [21]. In this paper, the authors propose a diagnostic mask incorporating immunochro-
matography and machine learning for SARS-CoV-2 detection. The mask is designed to
capture and analyze respiratory droplets and provide real-time diagnostic results. By
leveraging immunochromatography, the mask detects specific SARS-CoV-2 antigens, and
machine-learning algorithms are employed to enhance the accuracy and reliability of the
diagnostic process. The integration of these technologies offers a promising approach for
rapid and efficient SARS-CoV-2 detection in a wearable form [22].

This paper focuses on the bioactivity classification of SARS-CoV-2 proteinase,
an essential enzyme for virus replication, using machine-learning techniques. The
researchers employ various machine-learning algorithms to analyze and classify the
bioactivity of proteinase inhibitors, which can potentially disrupt the enzymatic activity
of the virus. By training the models on a dataset of known inhibitors and their bioac-
tivities, the authors aim to predict the bioactivity of new compounds. This research
contributes to developing novel therapeutics by leveraging machine learning in the
context of SARS-CoV-2 proteinase inhibition [23]. This paper explores the use of deep-
learning techniques to detect the main variants of concern of the SARS-CoV-2 virus.
By leveraging the power of deep-learning algorithms, the researchers aim to develop
a reliable and efficient method to identify these variants accurately. This could be
beneficial for monitoring the spread of different variants and informing public health in-
terventions [24]. In this study, the researchers focus on generating new compounds that
specifically target the main protease of the SARS-CoV-2 virus. We address the challenge
of imbalanced datasets, which are common in drug discovery research. By employing
innovative approaches, such as machine-learning and data augmentation techniques,
the researchers aim to overcome this issue and identify potential compounds for further
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investigation [25]. This paper investigates the application of deep-learning techniques
for detecting SARS-CoV-2 using clinical reports. By analyzing a large dataset of clini-
cal reports, the researchers aim to develop a deep-learning model that can accurately
identify positive cases of COVID-19. Such a model could potentially assist healthcare
professionals in detecting and managing the disease [26]. This research focuses on
developing an intelligent system for predicting next-generation sequences of the SARS-
CoV-2 virus using deep-learning neural networks. By analyzing existing genomic data,
the researchers aim to build a model that is capable of accurately predicting the genetic
sequences of future viral strains. This could provide valuable insights into the evolution
and behavior of the virus, aiding in the development of targeted interventions and
treatments [27–29].

Challenges and Pitfalls in the State of the Art

One limitation of this research is the availability and quality of data. The accuracy
and effectiveness of the visualization techniques and machine-learning algorithms we
employ heavily depend on the quality and quantity of the SARS-CoV-2 data used. The
study’s results may be specific to the dataset or population used in the analysis, limiting
their applicability to different regions or populations with distinct genetic backgrounds
or transmission dynamics. Therefore, caution should be exercised when extrapolating the
results to broader contexts. The visualization techniques and machine-learning algorithms
employed in the research are based on certain assumptions and simplifications. These
assumptions may not fully capture the complexities of the SARS-CoV-2 virus, its mutations,
and transmission dynamics. When the model becomes too specialized to the training data,
it fails to generalize well to unseen data. To mitigate this limitation, rigorous validation
and cross-validation procedures should be applied to ensure the model’s robustness and
reliability. Reduced dimensionality may limit the ability to fully understand the complex
relationships and interactions within the data, potentially hindering a comprehensive inter-
pretation of the virus’s behavior and transmission dynamics. Predicting disease severity
and understanding of viral risks often involve considering various factors beyond the
spike protein sequence, such as co-morbidities, demographics, and environmental factors.
Though valuable insights can be gained from these targeted studies, they may not provide
a comprehensive understanding of the virus as a whole or address other important aspects,
such as the long-term effects, long COVID, or social and behavioral factors influencing
transmission. The research might not account for the full spectrum of variants or consider
the impact of future mutations that could alter the virus’s behavior and transmissibility.
Ongoing monitoring and continuous adaptation of the models and algorithms are necessary
to keep up with the evolving nature of the virus. Machine-learning models and algorithms
have the potential to reinforce biases or yield unintended consequences. It is important
to consider the ethical implications of using these techniques in decision making, such as
ensuring fairness, avoiding discrimination, and addressing privacy concerns. Though the
research aims to evaluate the performance of various machine-learning algorithms, it is
crucial to validate their effectiveness in real-world settings. The simulation methods used
in the study have their own limitations, including potential inaccuracies and simplifications
in the models used.

• Limited and biased datasets: One of the primary challenges is the availability of
reliable and representative datasets. Machine-learning models require large and
diverse datasets for training, but there may be limitations in terms of data collection
and quality.

• There may be inconsistencies or inaccuracies in the reported cases, testing procedures,
and other variables. These uncertainties can impact the reliability and robustness of
the predictive model.

• Interpretability and visualization: Interpreting and understanding the underlying
patterns and relationships in high-dimensional SARS-CoV-2 data can be difficult.
Visualization techniques such as neighbor embedding and Sammon mapping can aid
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in interpreting and understanding the patterns and relationships within the data, but
their effectiveness may vary based on the specific dataset and characteristics.

• Integration of techniques: The proposed model aims to combine various techniques,
including stochastic regression (SR), neighbor embedding (NE), and Sammon mapping
(SM), to enhance the precision and accuracy of predictions. However, the integration
of these techniques introduces additional complexity and potential challenges.

The study’s accuracy and generalizability may be affected if the dataset used for
training and evaluation is not diverse enough regarding demographics, comorbidities,
and other relevant factors. The model’s performance may vary when applied to different
proteins or protein–ligand systems. The authors should assess the model’s performance
on diverse datasets to demonstrate its generalizability. The accuracy and reliability of the
machine-learning platform may depend on the quality and quantity of experimental data
used for model training. Insufficient or biased data may impact the platform’s performance.
The choice of features used for prediction can impact the model’s performance. It is essential
to ensure that the selected features are relevant and represent the target variable to avoid
bias and improve the model’s robustness. The findings of a single-center study may not be
generalizable to other healthcare settings, populations, or geographic regions. Replication
of the study in multiple centers can strengthen the validity of the results.

3. Methods and Materials

Coronaviruses primarily affect the upper areas of the lungs and respiratory system
with different degrees of severity. There is an urgent need for disease prediction at an earlier
stage to avoid the causes of death. The IoT has been employed in different application
sectors, including healthcare, for SARS-CoV-2 patient monitoring including healthcare.
In this case, IoT sensors monitor and gather patient data, which can be accessed anytime
and anywhere. Because IoT devices generate vast data, effective prediction is a significant
challenge. A proposed model is developed for effective prediction based on the objective.
The proposed prediction model for assessing the probability of infection combines classifi-
cation and feature selection techniques. It uses data mining, stochastic regression, neighbor
embedding, Sammon-based map selection, and regression-based classification to predict
SARS-CoV-2.

Figure 1 illustrates the basic architecture of this proposed model. The process begins
with collecting a significant amount of patient data from IoT devices, which is then stored
in a newly created Corona Virus 2019 dataset. The expression “the number of patient
records” refers to the count of features in the dataset, which includes both the number of
patient records and the count of features represented by these symbols. The collected data
undergo several operations using a neural network to facilitate prediction.

The framework of the proposed model is illustrated in Figure 2. The structure consists
of several layers, and neurons act as nodes. The nodes in the layers are interconnected to
form the entire architecture. The shift-invariant system of the proposed model framework
is expressed as:

Y(t) = F [x(t)] (1)

Equation (1) defines a time-dependent output function, a time-dependent input
function, and a transfer function used to transfer a transformation or input from one
layer to another. The hidden, input, and output layers form machine-learning tech-
niques. The intermediate layers of each feed-forward neural network are called hidden
layers and are used to perform certain functions. The output level shows the results of
the operation. At first, the features are treated as input, and the activity of neurons in
the input layer is presented.

x(t) = ∑n
i=1 fi(t) w0 + c (2)
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In Equation (2), x(t) represents the input layer output, fi(t) shows the features, where
‘w0’ denotes the starting weight as “1” and the prime weight as “c” for the bias stored,
assigned at the input layer. The first hidden layer receives the input after that.
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3.1. Stochastic Regression

Stochastic regression is a statistical modeling technique that predicts a continuous
outcome variable based on one or more predictor variables while incorporating random
variation into the model. Unlike traditional regression methods that assume deterministic
relationships, stochastic regression acknowledges the presence of inherent uncertainty or
random fluctuations in the data. This approach utilizes probabilistic methods, such as
maximum likelihood estimation or Bayesian inference, to estimate the parameters of the
regression model. By considering the random nature of the data, stochastic regression
provides a more realistic and flexible framework for understanding and predicting com-
plex relationships between variables, making it particularly useful in scenarios in which
variability and randomness play a significant role.

3.2. Neighbor Embedding

Neighbor embedding is a technique used in machine learning and data analysis to
represent high-dimensional data in a lower-dimensional space while preserving the re-
lationships between data points. It aims to map data points onto a lower-dimensional
coordinate system, such that neighboring points in the original space remain close in the
embedded space. This method is particularly useful for visualization purposes and dimen-
sionality reduction tasks. By organizing and arranging data points based on their proximity,
neighbor embedding provides a way to gain insights into the underlying structure of
complex datasets.

3.3. Sammon Mapping

Sammon mapping has several advantages and limitations. On the positive side, it
can effectively preserve the local structure and relationships between data points. It is
particularly useful when dealing with complex, nonlinear data patterns. However, it can
be sensitive to outliers and noisy data, which may distort the results. The algorithm’s
computational complexity can also be high, especially for large datasets. Sammon mapping
is a dimensionality reduction technique that aims to preserve pairwise distances when
projecting high-dimensional data into a lower-dimensional space. By minimizing the stress
function, it seeks to find a representation that faithfully captures the relative distances
between data points. Although it has certain limitations, Sammon mapping is a valuable
tool for data visualization and exploratory analysis in various domains.

3.4. Bregman Divergence

Bregman divergence is a mathematical concept that measures the dissimilarity be-
tween two points in a convex space. It is named after Israeli mathematician L. Bregman,
who introduced this measure in the field of convex optimization. Bregman divergence
is defined based on a convex function, which serves as a reference for quantifying the
difference between the points. It provides a way to compare the distance between two
points concerning the chosen convex function, taking into account the geometry of the
space. Bregman divergence has various applications in machine learning, data analysis,
and information theory, where it is utilized for tasks such as clustering, dimensionality
reduction, and optimization. The flexibility of Bregman divergence makes it a valuable
tool for capturing and quantifying the dissimilarity between data points in a wide range
of applications.

The similar feature selection considers how many features in the provided dataset are
spread in the given dimensional space. The distance between the feature and the objective
is calculated using the Bregman divergence:

ϕB = ‖ f j − po‖ (3)

Equation (3) represents a Bregman divergence, which is a measure of dissimilarity between
probability distributions or vectors. Bregman divergences have various applications in
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fields such as machine learning, information theory, and data analysis. As a result, the
projection output is written as follows:

Q→
{

ϕB > δ; dissimilar f eatures
ϕB < δ; similar f eatures

(4)

where Q represents a projection function, ϕB represents a Bregman divergence, and δ
represents a threshold. The feature that deviates the most from the target is referred to as a
different feature. Otherwise, the trait is considered relevant. Similar traits are thus mapped
into low-dimensional space in this manner.

In Figure 3, feature selection is a crucial step in machine learning that involves re-
ducing the number of input variables to improve computational efficiency and enhance
model performance.
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3.5. Classification Based on Kriging Regression

Regression analysis, which includes kriging regression, is a collection of statistical
methods for estimating the relationships between the variables (i.e., the training and testing
features). Based on the association measure between the variables, the patient data are
divided into low, medium, and high-risk groups. The regression function looks at the
matching feature values, as seen below:

R = exp(
ftr− fdt

2s2 ) (5)

where R represents a regression function, a training feature value, and a disease testing
feature value, and s represents a standard deviation. The regression yields values ranging
from 0 to 1.

Y =


R < 0.5; low risk
R = 0.5; medium risk
R > 0.5; high risk

(6)

The patient data are considered high-risk if the regression outcome exceeds the thresh-
old. The patient data are regarded as a medium-risk if the regression value equals the
threshold. The patient data are classified as low-risk if the regression exceeds the threshold.
Consider the following four training and testing features: age, symptoms such as fever or
body temperature, travel history, and chronic condition.

The patient data in Tables 1–3 are categorized as low-, medium-, and high-risk based
on the regression analysis with testing and training feature values. Patients at low risk
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have minimal conditions that can be easily handled. Rapid treatment is required to save
the patient’s health from the disease if the patient has high-risk conditions.

Table 1. Feature analysis for class 1.

Feature Age Symptoms Travel Chronic Y Class 1

Training >50 37 °C >28 days False
<0.5 Low riskTesting >50 37 °C >28 days False

Table 2. Feature analysis for class 2.

Feature Age Symptoms Travel Chronic R Class 2

Training >50 37 °C < T < 39 °C 14–28 days True
0.5 Medium riskTesting >50 37 °C < T < 39 °C 14–28 days True

Table 3. Feature analysis for class 3.

Feature Age Symptoms Travel Chronic R Class 3

Training >50 >39 °C <14 days True
>0.5 High risk

Testing >50 >39 °C <14 days True

The hidden layer’s outcome is defined as:

H(t) = ∑n
i=1 fi(t) w0 + [wih ∗ hi] (7)

where “H(t)” stands for the result of the hidden layer, “wih” stands for the hidden layer’s
weight, and “hi” stands for the output of the previously hidden layer that will be sent to
the output layer. The outcome of the output layer is:

O(t) = who ∗ H(t) (8)

In Equation (10), the terms “O(t)” and “who” stand for the output layer result and the
weighted average of the hidden and output layers, respectively. To forecast SARS-CoV-2
accurately, the patient data are appropriately divided into several classifications.

The proposed algorithm is given as follows:
Algorithm 1 sketches the SARS-CoV-2 prediction process in detail and more precisely.

The DL algorithm comprises many layers that help it learn the provided information. The
input features are to be received in its first hidden layer. The Bregman divergence between
the features and the goal functions are assessed in that layer. If the divergence exceeds
the threshold, the Sammon function separates the characteristics into a comparable and
dissimilar subset. Comparable feature subsets are used for classification in the second
hidden layer to determine the illness prediction. The patient data are categorized using the
Kriging regression method. The regression function contrasts the patient training feature’s
worth with the sickness testing feature’s worth. According to the analysis, a trustworthy
sickness has the fastest turnaround time for prognosis.
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Algorithm 1: Proposed

Input: Dataset, Number of features f j = f1, f2, . . . , fm, Number of data Di = d1, d2, . . . , dn
Output: prediction accuracy increases

1. Input the number of features f j

2. For every feature fi ∈ Di
3. Measure of the Bregman divergence and between fi and ϕB
4. if ( ϕB > δ) then
5. Project the features as similar
6. else
7. Project the features as dissimilar
8. End if
9. Select the similar feature subset
10. Remove the dissimilar feature subset
11. End for
12. For each information in ‘d1’ with fi
13. Perform the regression analysis ‘R’
14. If (R < 0.5) then
15. Patient data is classified as ‘low risk’
16. Else If (R = 0.5) then
17. Patient data is classified as ‘medium risk’
18. Else If (R > 0.5) then
19. Patient data is classified as ‘high risk’
20. End if
21. Obtain the classification.
22. End for
23. End

4. Experimental Setup

The proposed model is implemented in Python, and the results are analyzed.
For experimentation, Kaggle’s Novel Corona Virus 2019 dataset is applied. The daily
statistics on coronavirus infections, fatalities, and recoveries are included in the data.
There are several CSV files in the collection. Out of all the available files, the open
queue file SARS-CoV-2 is applied for testing. This document was downloaded from
https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset, accessed
on 24 May 2023. The dataset has 306,429 occurrences and eight features such as patient
ID, age, gender, city, nation, province, binary code for a chronic condition, symptoms,
and travel history. Among these, the key traits are chosen for categorization. To conduct
the tests, 1000–10,000 data points are gathered.

5. Results and Discussion

The experimental results of the proposed model are analyzed with the existing
models using metrics—prediction accuracy, space and time complexity, and false pos-
itive rate [1,2]. The percentage of correct predictions of patient information by the
classifier defines the prediction accuracy and is defined as:

Accp=
no o f correct predictions

n
∗ 100 (9)

where n denotes the count of patient information, and the percentage represents the
predicted accuracy. The ratio of incorrect prediction to the total records is called the false
positive percentage. The number of false positives is determined as follows:

RFP=
False positive

True negative + False positive
(10)

https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
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The count of incorrect predictions signifies the number of patient data that were
represented. A percentage (%) is used to represent the false-positive rate. The time it takes
the algorithm to forecast the illness is known as the prediction time. The prediction time is,
therefore, mathematically expressed as follows:

Tp = n ∗ time (predicting one data) (11)

where, Tp denotes a prediction time, n denotes the number of data. The prediction time is
measured in terms of milliseconds (ms).

CS = n ∗ space [ storing one data] (12)

Table 4 compares the proposed model prediction accuracy to cutting-edge frameworks.
As demonstrated in Table 4, compared to the existing models [1,2], the proposed model
enhances prediction accuracy for 10,000 distinct instances of unique patient data. The
model effectively predicts 890 instances of patient data when the quantity of patient data is
set to 1000, whereas [1,2] correctly predict 850 and 820 instances of patient data, respectively.
The models in [1,2] have an accuracy rate of 85% and 82%, respectively, compared with
89% in the proposed model. Different numbers of the patient data are input along with
a subsequent execution of the numerous runs. The performance of the proposed model
is then contrasted with other methods. The average comparison results showed that the
proposed model accuracy is 4% greater than that of the current deep long short-term
memory (LSTM) ensemble models [1] and 8% higher than that of [2].

Table 4. Comparison with other models.

Patient Data
Prediction Accuracy (%)

Proposed Model Deep-LSTM MTGP

1000 89 85 82
2000 91 88 84
3000 90 87 83
4000 91 88 85
5000 90 87 84
6000 92 88 85
7000 91 87 84
8000 90 86 83
9000 91 87 84

10,000 90 86 83

The prediction accuracies of three separate approaches, namely, the proposed
model, the Deep-LSTM ensemble model [1], and the multi-task Gaussian process
(MTGP) model [2], are represented by three colors: violet, red, and yellow. The pro-
posed model outperforms the other two approaches according to the observed results.
The deep connectedness shift-invariant convolutional network was used to examine the
training and testing illness features, which resulted in the improvement. The attributes
analysis appropriately determines the patient risk prediction level with higher accuracy.

Table 5 shows the experimental findings of the false-positive rate utilizing three
methods: the proposed model, the Deep-LSTM ensemble model [1,2], and the MTGP
model [3]. The false-positive rate is calculated using a sample size of 10 k patients.

The simulated results show that the proposed model dramatically reduces the FPR
compared to the other methods. Consider the 1000 data points for experimentation. The
suggested proposed model technique has a false-positive rate of 11, whereas the existing
models [1] and [2] have rates of 15% and 18%, respectively. Similarly, for each approach,
the following nine outcomes are produced. The proposed model is compared with existing
methods using an expected comparison result. The results confirm that the proposed model
significantly improves FPR performance by 27% and 41% compared to the other models.
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Table 5. Comparison of the FPR.

Patient Data
FPR (%)

Proposed Model Deep-LSTM MTGP

1000 11 15 18
2000 9 12 16
3000 10 13 17
4000 9 12 15
5000 10 13 16
6000 8 12 15
7000 9 13 16
8000 10 14 17
9000 9 13 16

10,000 10 14 17

The adoption of regression-based classification approaches for predicting SARS-CoV-2
patient data is the source of the improved performance. The proposed model employs
Kriging regression to analyze the feature values for the prediction procedure.

The proposed model strategy, on the other hand, is observed to consume less time
for SARS-CoV-2 prediction than the other two methods. Stochastic Bregman neighbor-
embedded Sammon mapping is used to project the relevant features into the feature subset
for illness prediction. The mapping function determines the features that are most relevant
to the goal. The categorization uses the selected features and Kriging regression, reducing
prediction time.

Table 6 shows the SARS-CoV-2 prediction time utilizing three techniques concerning
various patient variables. According to the table values, the proposed model takes less time
to forecast the disease level than the ensemble model of Deep-LSTM [1] and the MTGP
model [2]. The suggested model technique requires 23 ms of time, while the prediction times
for the other two current approaches [1] and [2] are 26 ms and 28 ms, respectively, assuming
that there are 1000 patient data. For each strategy, ten outcomes are obtained using various
patient data inputs. The prediction time is decreased by 9% and 15%, respectively, as
compared to the Deep-LSTM ensemble model [1].

Table 6. Comparison of prediction time.

Patient Size
Prediction Time (in ms)

Proposed Model Deep-LSTM MTGP

1000 23 26 28
2000 27 32 36
3000 33 36 39
4000 37 40 42
5000 40 45 48
6000 45 48 51
7000 48 53 56
8000 52 56 60
9000 56 59 63

10,000 58 60 65

Table 7 compares the space complexity of three alternative approaches: the proposed
model, the Deep-LSTM ensemble model [1], and the MTGP model [2]. The input consists of
a variable number of patient data ranging from 1000 to 200, 300, and 1,000,000. Let us say
that we have 1000 patient data points to explore. The proposed model takes up the least
space for predicting disease, and the Deep-LSTM ensemble [1] and MTGP model [2] take
up more. The observed findings demonstrate that the proposed model achieves lower
space complexity than existing approaches. Compared to other approaches, the expected
result shows that the proposed model reduces space consumption by 9% and 17%.
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Table 7. Comparison of space complexity.

Patient Data
Space Complexity (MB)

Proposed Model Deep-LSTM MTGP

1000 21 24 27
2000 24 26 30
3000 27 30 33
4000 32 36 40
5000 35 40 45
6000 39 43 48
7000 43 46 50
8000 46 50 52
9000 51 54 57

10,000 55 58 61

This is because the SARS-CoV-2 forecast was made before the feature selection proce-
dure was completed. The proposed model uses the relevant features and deletes distinct
features. This helps to save space during the SARS-CoV-2 forecast.

In Table 8, the neural network algorithm achieves the highest accuracy, F1-score,
recall, and precision among the three algorithms. It attains an accuracy of 98.78%,
an F1-score of 99.10%, and a recall and precision of 98.92%. The neural network also
exhibits a relatively low error rate of 0.0122. Additionally, the neural network algorithm
consumes 3.278726674 units of time for execution. However, it is worth noting that the
loss function plot for the neural network model appears unusual, with the validation
dataset’s accuracy remaining higher than the training dataset and the validation loss
lower than the training loss, which is contrary to expectations.

Table 8. Machine-learning techniques with core analysis.

Algorithm Accuracy F1-Score Recall Precision Time Consumption Loss Function Error
Rate

Neural network 97.78% 98.80% 98.32% 98.28% 4.688728674 46,934.55218 0.02222
Decision tree 73.59% 73.44% 73.59% 73.60% 6.488522147 74,401.98414 0.2641

Random forest 72.67% 72.15% 72.66% 72.68% 3.781597534 57,045.66329 0.2733

In Table 9, the decision tree algorithm achieves a moderate accuracy of 74.59%, an
F1-score of 74.56%, a recall of 74.64%, and a precision of 74.42%. The decision tree algorithm
has a higher error rate of 0.2541 and takes 5.688512147 units of time for execution. The
random forest algorithm attains an accuracy of 72.99%, an F1-score of 73.35%, recall of
73.44%, and precision of 73.36%. It has a similar error rate as the decision tree algorithm
(0.2701) but a faster execution time of 2.582577534 units. These results indicate that the
neural network algorithm outperforms the decision tree and random forest algorithms in
terms of accuracy, F1-score, and precision, while also achieving a low error rate.

Table 9. Dataset with Adam optimizer.

Algorithm Accuracy F1-Score Recall Precision Time Consumption Loss Function Error
Rate

Neural network 98.78% 99.10% 98.92% 98.92% 3.278726674 34,934.45318 0.0122
Decision tree 74.59% 74.56% 74.64% 74.42% 5.688512147 64,321.88314 0.2541

Random forest 72.99% 73.35% 73.44% 73.36% 2.582577534 48,035.56229 0.2701
Proposed model 99.03% 99.32% 98.98% 99.06% 2.12368745 33,876.36407 0.0118

However, further investigation is necessary to understand the anomalous loss function
plot observed for the neural network model. The proposed model demonstrates exceptional
performance with high accuracy, precision, and recall, outperforming all the other models
mentioned. The time consumption for this model was approximately 2.12 s. Finally,
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based on the provided information, the proposed model outperforms the decision tree
and random forest models regarding performance metrics such as accuracy, precision, and
recall. However, it is important to note that the absence of the specific loss function used
for these models limits the analysis of their training process and further comparison.

In Table 10, the neural network algorithm exhibits exceptional performance across
all evaluated metrics compared to the decision tree and random forest algorithms. The
neural network algorithm achieves an accuracy of 99.22%, an F1-score of 99.31%, a recall
of 99.33%, and a precision of 99.23% [1]. These results indicate a high accuracy, precision,
recall, and F1-score, showcasing the algorithm’s effectiveness in accurately classifying data.
On the other hand, the decision tree algorithm demonstrates moderately good performance
with an accuracy of 75.03%, an F1-score of 74.77%, a recall of 75.05%, and a precision
of 74.73% [2]. Although these metrics suggest reasonable performance, they fall short
compared to the neural network algorithm.

Table 10. Dataset with Adam optimizer and hyperparameters.

Algorithm Accuracy F1-Score Recall Precision Time Consumption Loss Function Error
Rate

Neural network 99.22% 99.31% 99.33% 99.23% 2.818727 34,933.2532 0.78
Decision tree 75.03% 74.77% 75.05% 74.73% 5.228512 64,320.6831 0.2497

Random forest 73.43% 73.56% 73.85% 73.67% 2.122578 48,034.3623 0.2701
Proposed model 99.41% 99.46% 99.45% 99.37% 2.032367 33,842.2328 0.2391

Similarly, the random forest algorithm also exhibits decent performance. Still, it is
slightly lower than the decision tree algorithm, with an accuracy of 73.43%, an F1-score
of 73.56%, a recall of 73.85%, and a precision of 73.67% [2]. Overall, the results highlight
the neural network algorithm as the most effective and reliable choice among the three
algorithms. However, it is essential to conduct a comprehensive analysis considering addi-
tional metrics such as time consumption, loss function, and error rate to understand the
algorithms’ performance fully. Based on these comparisons, the proposed model demon-
strates superior performance in accuracy, F1-score, recall, precision, time consumption,
loss function, and error rate. However, it is important to note that the specific context and
requirements of the problem should also be considered when selecting the most suitable
model for a given task.

In Table 11, showing the proposed model, as well as the neural network, decision
tree, and random forest algorithms, it is evident that each model performs differently
across the various evaluation measures. The proposed model’s mean absolute error (MAE)
is 0.0163923 [3]. In comparison, the neural network achieves a slightly higher MAE of
0.0236756 [2]. The decision tree model yields a MAE of 0.0174911, and the random forest
model obtains a similar MAE of 0.0226886 [1]. Moving on to the mean squared error
(MSE), the proposed model achieves the lowest value at 0.00131245, followed by the neural
network with 0.00149826. The decision tree model has a MSE of 0.0026259, and the random
forest model performs slightly better with a MSE of 0.0017358. The root mean squared error
(RMSE) for the proposed model is 0.03499126, and the neural network and decision tree
models have RMSE values of 0.03649006 and 0.0503219, respectively. The random forest
model performs the best in terms of RMSE, achieving a value of 0.0413318.

When considering the coefficient of determination (R-squared), which measures the
proportion of the variance in the dependent variable that the independent variables can
explain, the random forest model outperforms the other models with an R-squared value
of 0.9886125. The proposed model and neural network follow closely with R-squared
values of 0.97114391 and 0.97315592, respectively. The decision tree model achieves an
R-squared value of 0.9786136.
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Table 11. Dataset with Adam optimizer, hyperparameters with stochastic regression.

Metrics Proposed Model Neural Network Decision Tree Random Forest

MAE 0.0163923 0.0236756 0.0174911 0.0226886
MSE 0.00131245 0.00149826 0.0026259 0.0017358
RME 0.03499126 0.03649006 0.0503219 0.0413318

R-Squared 0.97114391 0.97315592 0.9786136 0.9886125
RAE 0.0868276 0.1258386 0.0978889 0.0977898
RRSE 0.1613141 0.1769975 0.1713163 0.1624251

The relative absolute error (RAE), which assesses the average difference between
predicted and actual values relative to the mean of the actual values, is the lowest for the
proposed model at 0.0868276. The neural network model has a higher RAE of 0.1258386,
and the decision tree and random forest models yield RAE values of 0.0978889 and
0.0977898, respectively. Lastly, the relative root squared error (RRSE), which measures
the average difference between predicted and actual values relative to the range of the
actual values, is the lowest for the proposed model at 0.1613141. The neural network,
decision tree, and random forest models achieve RRSE values of 0.1769975, 0.1713163,
and 0.1624251, respectively.

Finally, based on the provided metrics, the proposed model showcases the best per-
formance in terms of MAE and MSE. However, the random forest model outperforms the
other models regarding R-squared, indicating a higher proportion of explained variance.
Additionally, the proposed model demonstrates lower RAE and RRSE values, suggesting
better accuracy than the other models.

In Table 12, showing the neural network, decision tree, random forest, and proposed
models, we can observe variations in the mortality rate, vaccination rate, and other relevant
features. The neural network model demonstrates a mortality rate of 0.05 and a vaccination
rate of 0.02, and other relevant features are at 0.7. The decision tree model, on the other
hand, shows a lower mortality rate of 0.02 and a vaccination rate of 0.01, with other relevant
features at 0.85. Comparatively, the random forest model has a higher mortality rate of
0.1 and a vaccination rate of 0.03, and other relevant features are at 0.5. The proposed
model falls in between, with a mortality rate of 0.056, a vaccination rate of 0.04, and other
applicable features at 0.78.

Table 12. Dataset with Adam optimizer, hyperparameters with stochastic regression with
Sammon mapping.

Algorithm Mortality Rate in % Vaccination Rate in % Other Relevant
Features in %

Neural Network 0.05 0.02 0.7
Decision Tree 0.02 0.01 0.85

Random Forest 0.1 0.03 0.5
Proposed Model 0.056 0.04 0.78

From these results, it can be inferred that the decision tree model has the lowest
mortality rate of 0.02, followed by the proposed model with a mortality rate of 0.056. The
neural network and random forest models demonstrate higher mortality rates of 0.05 and
0.1, respectively. Regarding vaccination rates, the decision tree model has the lowest value
at 0.01, and the random forest model has the highest value at 0.03. The proposed model
falls in between, with a vaccination rate of 0.04. When considering other relevant features,
the decision tree model has the highest value at 0.85, followed by the proposed model with
0.78. The neural network model has other relevant features at 0.7, and the random forest
model has the lowest value at 0.5.

At last, based on the provided data, the decision tree model showcases the lowest
mortality rate and the highest vaccination rate among the algorithms. However, the
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proposed model performs reasonably well, with a mortality rate higher than the decision
tree model but lower than the neural network and random forest models. Additionally, the
proposed model demonstrates a moderate vaccination rate and comparatively high values
for other relevant features.

A widely used approach to evaluating the performance of a machine-learning model
is a confusion matrix. This matrix provides a tabulated representation of the predicted
results versus the actual outcomes, which allows for a comprehensive examination of the
model’s effectiveness and limitations. By analyzing the matrix, one can obtain a more
detailed understanding of the model’s strengths and weaknesses, which can help in making
informed decisions about improving its performance in Table 13. A statistical analysis of
distributions of data involves using various statistical methods to describe and summarize
the characteristics of a dataset. The main objective of this analysis is to gain insight into
the underlying patterns and trends within the data. These measures provide information
about the typical or average values of the dataset in Table 13.

Table 13. Distributions of the data.

Statistical Measure Confirmed Deaths Recovered

count 3.06 × 103 306,429 3.06 × 105

mean 8.567091 × 104 2036.403268 5.04 × 104

std 2.78 × 105 6410.938048 2.02 × 105

min −3.03 × 105 −178.000000 −8.54 × 105

25% 1.04 × 103 13 1.10 × 101

50% 1.037500 × 104 192 1.75 × 103

75% 5.08 × 104 1322 2.03 × 104

max 5.86 × 106 112,385 6.40 × 106

Among the countries most affected by the SARS-CoV-2 pandemic, the top 10 confirmed
cases include the United States, India, Brazil, Russia, the United Kingdom, France, Turkey,
Italy, Spain, and Germany. Though some nations have seen a decline in new infections
and deaths, others struggle with high transmission rates and overwhelmed healthcare
systems. In terms of recovery rates, many countries have shown significant improvements
thanks to the availability of vaccines and better treatment options. However, disparities still
exist based on factors such as age, underlying health conditions, and access to healthcare
Figure 4.
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A confusion matrix is a table that is used to evaluate the performance of a machine-
learning model by comparing predicted and actual outcomes. It provides a useful way to
visualize the true positives, true negatives, false positives, and false negatives generated by
a model. Neural networks are a machine-learning model inspired by the structure of the
human brain. They consist of layers of interconnected nodes that perform mathematical
operations on input data, gradually learning to recognize patterns and make predictions.
Decision trees are another type of machine-learning model that work by recursively splitting
data into smaller subsets based on the most informative features. They create a tree-like
structure that can be easily visualized, making them useful for explaining how a model
makes decisions. Random forests are an ensemble method that combine multiple decision
trees to improve predictive accuracy. Each tree in the forest is built on a random subset
of the training data and a random subset of the available features. This helps to reduce
overfitting and increase the generalization ability of the model. In Figure 5, death and
recoveries over time are exhibited using the metrics of std, mean and count. In Figures 6–8,
shows the error rate is a metric used to measure the performance of a machine learning
model. It quantifies the number of incorrect predictions made by the model. Loss functions
play a vital role in machine learning models as they quantify the discrepancy between
predicted outputs and the actual values. Computational time is an important consideration
when working with machine learning models. The time required for training and inference
can vary depending on the complexity of the model, the size of the dataset, and the available
computational resources.

To evaluate the performance of a neural network, a decision tree and random forest
use a ROC curve; the network is trained on a labeled dataset and then tested on a separate
set of labeled instances. The predicted labels and actual labels are compared to calculate the
TPR and FPR at different threshold values, and these values are plotted on the ROC curve
in Figures 9–11. Finally, the ROC curve is a useful tool for evaluating the performance of
binary classifiers such as neural networks, decision trees, and random forests. Plotting the
TPR and FPR at different threshold values shows how the classifier’s performance changes
as the threshold is adjusted, allowing for easy comparison between different classifiers.

The vast and complex world of machine learning requires a deep understanding
of various models, performance metrics, and optimization techniques. To improve the
performance of machine-learning models, it is essential to experiment with different
hyperparameters, regression techniques, and embedding methods to fine-tune them.
By carefully optimizing these factors, our machine-learning models can achieve greater
accuracy and efficiency.
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Figure 9 shows the optimized value as a red line and the ROC points as a blue line.
To be regarded as a good model, the ROC curve must be larger than the optimized region.
The model has to be improved if the region is smaller than the optimized one.

In Table 14, the AUC (area under the curve) score is a popular metric for evaluating
the performance of binary classifiers. In the context of neural networks, decision trees, and
random forests, the AUC score measures how well these models can distinguish between
positive and negative samples. A higher AUC score indicates better classifier performance:
a score of 0.5 indicates random guessing, and a score of 1.0 indicates perfect classification.
Neural networks, decision trees, and random forests can all be trained to optimize the AUC
score and improve their ability to classify samples correctly. As compared to other models,
the proposed model is the best with a marginal difference.

Table 14. AUC scores for classifiers.

Classifiers AUC Score

Neural Network 0.874033334
Decision Tree 0.873343619

Random Forest 0.894642082
Propose Model 0.879465732

6. Conclusions and Future Work

This study focuses on developing a predictive model for SARS-CoV-2 using machine-
learning techniques, aiming to enhance prediction accuracy and provide valuable insights
into the factors influencing the spread of the virus. The proposed model incorporates
stochastic regression to capture the stochastic nature of virus transmission, considering
uncertainties in the data. Additionally, feature selection methods are employed to iden-
tify the most relevant features contributing to prediction accuracy. The study also ex-
plores the use of neighbor embedding and Sammon mapping algorithms to visualize the
high-dimensional SARS-CoV-2 data in a lower-dimensional space, facilitating better inter-
pretation and understanding of underlying patterns. Various algorithms, including the
SARS-CoV-2 dataset, combined with ADHPSRNESM, are utilized in the analysis, and a
new approach called the proposed model is suggested by combining these methodologies.
The research findings can contribute to public health efforts by enabling informed decision
making for policymakers and healthcare professionals, ultimately aiding in effectively
managing and controlling the SARS-CoV-2 pandemic. The research on enhancing accuracy
through feature selection and visualization of high-dimensional data in the context of
SARS-CoV-2 has substantial implications for predicting and understanding the spread
of the virus. By employing various feature selection methods, the study aims to identify
the most relevant and informative factors that contribute to the accuracy of SARS-CoV-2
predictions, eliminating noise and unnecessary variables for improved prediction perfor-
mance. Additionally, the research incorporates neighbor embedding and Sammon mapping
algorithms to visualize the high-dimensional SARS-CoV-2 data in a lower-dimensional
space, enabling the identification of clusters, trends, and relationships that may not be
apparent in the original data.

These findings have practical implications for public health efforts, empowering poli-
cymakers and healthcare professionals to allocate resources, implement control measures,
and target interventions based on accurate predictions and a better understanding of the
underlying patterns driving SARS-CoV-2 transmission. Ultimately, this research contributes
to the global response in managing and controlling the SARS-CoV-2 outbreak, minimizing
its impact on affected populations.
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