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Abstract: Biometrics, e.g., fingerprints, the iris, and the face, have been widely used to authenticate
individuals. However, most biometrics are not cancellable, i.e., once these traditional biometrics
are cloned or stolen, they cannot be replaced easily. Unlike traditional biometrics, brain biometrics
are extremely difficult to clone or forge due to the natural randomness across different individuals,
which makes them an ideal option for identity authentication. Most existing brain biometrics are
based on an electroencephalogram (EEG), which typically demonstrates unstable performance due
to the low signal-to-noise ratio (SNR). Thus, in this paper, we propose the use of intracortical brain
signals, which have higher resolution and SNR, to realize the construction of a high-performance
brain biometric. Significantly, this is the first study to investigate the features of intracortical brain
signals for identification. Specifically, several features based on local field potential are computed
for identification, and their performance is compared with different machine learning algorithms.
The results show that frequency domain features and time-frequency domain features are excellent
for intra-day and inter-day identification. Furthermore, the energy features perform best among
all features with 98% intra-day and 93% inter-day identification accuracy, which demonstrates the
great potential of intracraial brain signals to be biometrics. This paper may serve as a guidance for
future intracranial brain researches and the development of more reliable and high-performance
brain biometrics.

Keywords: biometrics; brain decoding; electroencephalogram; identification; intracranial brain
signals; local field potential

1. Introduction

Identification can be classified into three groups: something the user knows (e.g.,
passwords), something the user has (e.g., ATM cards), something the user is (e.g., biomet-
rics) [1]. Traditional methods in the first two categories, like passwords and ATM cards,
have demonstrated obvious drawbacks. They can be forgotten, lost, or stolen, leading to
unsuccessful authentication or information leakage [2]. Biometrics, which fall into the third
category, can overcome these drawbacks. They do not require memorization because they
are innate physiological or behavioral parts of the individual. They cannot be lost or stolen
for the same reason. Due to the biological uniqueness of individuals, biometrics contain
rich information to guarantee authentication security and biometrics are considered an
ideal method to validate authorized users [3].

Conventional biometrics, such as fingerprint [4,5], face [6], iris [7], and DNA [8], have
been extensively studied and widely adopted in real-life scenarios [9]. However, they
each possess their weaknesses [10–13]. For instance, DNA can be easily stolen from any
surface a target has touched; fingerprints can be faked through various methods, such
as plastic molds and latex milk; faces can be forged by 2D pictures and high-resolution
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photography. Additionally, these traditional biometrics are not cancellable, meaning that
if they are stolen, they cannot be replaced. A more secure biometric would meet two
criteria: it would be more difficult to steal and it would be cancellable. Recent studies have
demonstrated that the human brain can provide superior revocable biometrics [14–19].
In this case, brain electrical activity may meet above criteria, offering a more secure and
potentially cancellable biometric alternative.

Most existing brain biometrics are based on electroencephalograms (EEG), which
is collected above the scalp and is a type of non-invasive brain signals. Although EEG
has shown high individuality among different people [20], which proves its potential
as a biometric [21], existing EEG-based methods suffer from poor performance due to
several issues:

• (1) Low signal-to-noise ratio (SNR): The electrical signals in the brain decay signifi-
cantly as they pass through the skull and scalp, leading to low signal-to-noise ratio.
This results in insufficient reliability and limited revocability for EEG-based systems.

• (2) Unsatisfactory long-term stability: Previous studies have identified a significantly
decreasing trend in EEG performance over time [22].

To improve brain-based biometrics, determining how to achieve high reliability and
long-term stability is an essential but challenging problem that needs to be addressed.

Intracortical brain signals, recorded with electrodes placed directly on the cortex
reducing the signal attenuation, offer higher resolution and signal-to-noise ratio (SNR) com-
pared to EEG [23,24], making them a promising option for constructing high-performance
brain biometrics. Additionally, different from the EEG devices which are taken on before
the experiment and taken off after the experiment, the electrodes for collecting intracra-
nial brain signals are continuously implanted in the brain issues. For each take-on and
take-off behavior of the EEG devices, the electrode impedance between the EEG electrode
and the scalp could change significantly leading to the obvious signal noise, which is
eliminated by the implanted electrodes of intracranial brain signals. To the best of our
knowledge, this is the first study to investigate the features of intracortical brain signals for
identification. In this paper, three groups of features are analyzed: time domain features,
frequency domain features and time-frequency domain features. We also utilize 5 different
classifiers to compare the performance of these features. The results show that frequency
features and time-frequency features are excellent for intra-day and inter-day identification.
In addition, energy features perform best among all features. This study can serve as a
guidance for future intracranial brain researches and the development of more reliable and
high-performance brain biometrics.

2. Methods
2.1. Brain Biometric Identification System

As shown in Figure 1, brain biometric systems typically consist of two parts: data
acquisition part and decision-making part. The data acquisition stage involves capturing
brain electrical activity using electrodes while the subject engages in certain paradigms.
The collected data is then digitized and sent for preprocessing to enhance signal quality.
Once the feature set has been extracted, biometric computations are performed using either
simple statistical analyses or more complex machine learning approaches such as Neural
Network (NN) or Support Vector Machine (SVM). The output of the system will be the
identity label of the user for identification. Classifiers can combine the training module and
identification module into one module, allowing them to complete both the matching score
calculation and decision-making. It is important to note that the collected brain signals are
usually contaminated with different kinds of noise and has a relatively low signal-to-noise
ratio (SNR). Therefore, signal preprocessing is necessary to enhance signal quality before
feature extraction and biometric computations.
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Figure 1. Structure of brain biometric identification system.

2.2. Preprocessing

Local field potential (LFP) is a type of intracranial brain signals, which is collected by
implanted microelectrodes in the midst of the population of neurons. Compared with EEG,
LFP has the advantages of higher resolution and is more stable due to the fixed electrodes
in the brain. The raw LFP is typically contaminated with electrical artifacts and the most
common of these are 50 Hz noises from nearby electronics and muscular artifacts from
the movements of the body. Therefore we preprocess the LFP to reduce or remove these
artifacts in order to improve signal quality. Additionally, brain waves can be divided into
five frequency bands:

• Delta waves: 0.5–4 Hz, associated with deep sleep and unconscious processes
• Theta waves: 4–8 Hz, related to drowsiness, light sleep, and some meditative states
• Alpha waves: 8–13 Hz, linked to relaxed wakefulness, eyes closed, and a calm state

of mind
• Beta waves: 13–30 Hz, associated with active thinking, problem-solving, and focused

attention
• Gamma waves: >30 Hz, related to high-level cognitive processing, memory, and per-

ception

To capture more effective information based on above frequency bands, we employ
a 0.5–300 Hz band-pass filter (i.e., a two-order Butterworth filter) and a 50-Hz notch
filter to preprocess the raw LFP signals and we split the signals into 2-s long samples for
feature extraction.

2.3. Feature Extraction

Feature extraction is a crucial stage in the processing and analysis of LFP signals,
as the quality of the extracted features directly impacts the performance of the identification
system. These features can be classified into three groups of domains: time domain,
frequency domain, and time-frequency domain.

2.3.1. Time Domain

The Autoregressive (AR) model is indeed a widely used time-domain feature in brain
biometrics. The AR model represents a type of random process in which the output
variable depends linearly on its own previous values and a stochastic term (an imperfectly
predictable term). In the context of LFP signals, the AR model can be used to capture the
temporal dependencies and patterns within the data. The general form of an AR model of
order p is:

Xt = c +
p

∑
i=1

aiXt−i + et (1)
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where Xt is the output variable at time t; c is a constant term; ai are the coefficients of the
model; Xt−i are the previous values of the output variable; et is the stochastic term (also
known as the error term or residual) at time t. By fitting an AR model to LFP signals, you
can extract coefficients as features that represent the underlying dynamics of the brain
activity, which can then be used for biometric identification or other applications.

There are two common methods for the realization of AR models: Yule-Walker method
and Burg’s method. Yule-Walker method applies a p-th order AR model to the windowed
input signal by minimizing the forward prediction least square error and solving the
autoregressive parameters directly. Differently, Burg’s method estimates the parameters
using the Levinson-Durbin algorithm based on the last autoregressive-parameter estimated
from each model order p by minimizing both the forward and backward prediction er-
ror. Compared to the Yule-Walker method, Burg’s method is often preferred for its lower
computational complexity when estimating the parameters of an AR model [25]. Ad-
ditionally, to determine the optimal order p of the AR model, there are generally three
methods [26–29]:

• Minimizing the error of the predictor equation through experimental results with
different orders: This method involves testing different orders of the AR model and
selecting the one that results in the lowest prediction error.

• Minimizing the Akaike Information Criterion (AIC): AIC is a measure of the good-
ness of fit of a statistical model that takes into account the number of parameters used:

AIC(p) = Nlogε(p) + 2p (2)

where ε(p) is the modeling error and N is the length of the signal. The term 2p
represents the penalty for selecting higher order models. By minimizing the AIC,
we can find the optimal order of the AR model that balances model complexity and
prediction accuracy.

• Based on the eigenvalues of the matrix in the Yule-Walker equations: The Yule-Walker
equations are the following set of equations:

γm =
p

∑
k=1

akγm−k + σ2
e δm,0 (3)

where γm is the autocovariance function of Xt, σe is the standard deviation of the
input noise process, and δm,0 is the Kronecker delta function. This method involves
analyzing the eigenvalues of the matrix in the Yule-Walker equations to determine the
optimal order of the AR model.

By selecting the appropriate method for determining the optimal order and using
Burg’s method for parameter estimation, we can effectively apply an AR model to LFP
signals for biometric identification or other applications.

2.3.2. Frequency Domain

As mentioned above, brain signals can be separated into different frequency bands,
each of which is related to various brain activities. Converting LFP data into the frequency
domain allows for the extraction and distinction of the dominant frequency components.

Power Spectral Density (PSD) is a useful measure that describes the signal strength
distribution in the frequency domain. Fourier Transform (FT) is an effective method for
transforming EEG signals from the time domain into the frequency domain. Based on the
PSD obtained through squaring the absolute value of Fourier-transformed data in each
segment, several LFP features can be calculated for further recognition purposes:

• Mean/Variance of power spectrum: The variance of spectral power is calculated by:

σ2 =
1
N

N

∑
i=1

(xi − x)2 (4)
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where xi is a spectral power at each frequency bin, N is the number of frequency
bins, and x is an average of all spectral powers. These features x and σ2 measure the
dispersion of the power spectrum (PS), which can help differentiate between different
individuals.

• Energy: The energy of signals is computed with the Parseval’s spectral power ratio
theorem:

E(s) =
1
N

N

∑
n=1

s2
n (5)

where sn is the n-th sample of signal s and N is the total number of samples in the
signal. This feature reflects the power intensity of the brain signals.

• Concavity of spectral distribution: The maximum of the power spectrum is detected
and then its part is calculated and adopted as a criterion. Then the frequencies of
which power spectral values are under the criterion are squared and then summed as:

Fu =
N

∑
j=1

( f u
j )

2 (6)

where f u
j (j = 1, 2, · · · , N) is frequencies under the criterion. This feature captures the

shape of the spectral distribution, which can provide information about the underlying
brain activity [30].

• Nondominant region of the power spectrum: The non-dominate region of the signal
is defined as follows. Firstly, the maximum power spectrum of the signal is detected
and then a threshold is determined in proportion to the maximum power. Comparing
a spectral power at each frequency bin with the threshold, if the spectral power is
under the threshold, such a frequency is regarded as within the non-dominant region.
All spectral powers within the non-dominant region are accumulated and then it
becomes another spectral feature. The two spectral features are fused as a feature
vector and the fusion is given by:

λ = a1 × σ2 + a2 × l (7)

where l is the total spectral power in the non-dominant region, and a1:a2 is the fusion
ratio. This feature focuses on the less dominant frequency components, which can
provide additional information for recognition tasks [31].

By utilizing these features based on PSD, we can obtain a comprehensive represen-
tation of the LFP signals, which can be useful for various applications, such as biometric
identification and brain-computer interfaces.

2.3.3. Time-Frequency Domain

Discrete Wavelet Transform (DWT) is a wavelet transform algorithm that provides
both time and frequency information on the signals. Compared with DWT, Wavelet Packet
Decomposition (WPD) is more robust as it decomposes both the detail and approximation
coefficients, resulting in a more comprehensive representation of the signal. Specifically,
WPD builds the complete wavelet packet tree by passing the signal through more filters,
while in DWT, only the previous approximation coefficients are used to pass through
quadrature mirror filters. Reference [32] used a 4-level WPD to separate EEG signals into
5 subbands (delta, theta, alpha, beta, and gamma) and extracted features such as mean and
standard deviation values. By using WPD and Daubechies 4 wavelets, we can obtain a
more detailed and robust representation of the LFP signals, which can be useful for various
applications, such as biometric identification and brain-computer interfaces.
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2.4. Classifiers
2.4.1. Similarity-Based Algorithm

Similarity-based pattern recognition is indeed a classification approach used for au-
thentication or identification of individuals based on selected similarity evaluation met-
rics [33]. K-Nearest Neighbors (KNN) is a commonly used algorithm for identification.
KNN makes final decisions based on the majority rule, considering the closest or most simi-
lar points to the input data. By using similarity-based pattern recognition, we can effectively
authenticate or identify individuals in various applications, such as biometric identification.

2.4.2. Discriminant Analysis

Discriminant Analysis (DA), more specifically Linear Discriminant Analysis (LDA),
is a dimensionality reduction and classification technique that aims to separate data from
different classes by projecting them into a lower-dimensional space. The main goal of LDA
is to maximize the inter-class distance while minimizing the intra-class distance. By using
LDA, we can effectively separate and classify data in various applications, such as biometric
identification, pattern recognition, and dimensionality reduction tasks.

2.4.3. Support Vector Machine

An SVM (Support Vector Machine) is a powerful classification algorithm that uses
a hyperplane to separate two classes of data by maximizing the margin, which is the
distance between the nearest training points from different classes. SVMs have good
generalization capabilities. Kernels in SVM are divided into linear kernel and nonlinear
kernels. Linear kernel is computationally efficient, while nonlinear kernels are introduced
to map data to another space to make them more separable and the classifier’s complexity
is increased. One frequently used nonlinear kernel is the Radial Basis Function (RBF) kernel.
By using SVM with linear or nonlinear kernels, we can effectively classify data in various
applications, such as biometric identification and pattern recognition.

2.4.4. Neural Network

Neural Networks (NN) are indeed one of the most important and popular machine
learning techniques for mapping inputs to outputs. For instance, researchers utilized differ-
ent neural networks to analyze medical signals and achieved good performance [34–36].
The classic structure for implementing an NN is the multilayer perceptron (MLP), which
generally has three types of layers: input layer, hidden layer, and output layer. It uses the
feedforward and back-propagation algorithm to train the data and calculate the weight
matrix. Based on the weight matrix, the result can be predicted. Additionally, Deep Neural
Network (DNN) is an extension of MLP with two or more hidden layers. DNN can capture
more complex patterns and representations in the data. By using NNs, such as one-hidden
layer NNs or Deep Neural Networks (DNNs), we can effectively classify and recognize
patterns in various applications, including brain biometric recognition and other machine
learning tasks. In this paper, we designed a simple neural network of three layers, two
hidden layers with 50 and 30 neurons respectively, and an output layer of 10 neurons
(corresponding to the 10 rats). For the training of the neural network, we selected the ReLU
activation function and L2 regularization, and we used a learning rate of 0.001 and a total of
200 iterations with cross-entropy loss function. Additionally, we chose the Adam method
for stochastic optimization.

3. Experiments and Results
3.1. Surgery

Due to the difficulty of collecting intracranial brain signals in normal people, we
designed surgeries and experiments on rats. For these animal experiments, 10 adult male
Sprague-Dawley rats (300–350 g) were used. Note that all surgical and experimental
procedures in the Guide for The Care and Use of Laboratory Animals (China Ministry of
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Health) were strictly followed in this study, and our experiments were approved by the
Animal Care Committee of Zhejiang University, China.

Rats were anesthetized with propofol (10 mg/mL, i.p., 1 mL/100 g initial dose) and
mounted on a standard stereo-taxic apparatus (RWD Life Science, Shenzhen, China) for
brain surgery. The body temperature was retained with a heating pad, with the heart rate
(300–400 bpm) and pO2 (>90%) monitored during the surgery. The state of anesthesia was
examinated by toe-pinch test at regular intervals. Additional dose of propofol (10 mg/mL,
i.p., 0.6 mL) was injected if necessary. A 16-channel (2 × 8) handmade microelectrode array
(35 µm nichrome) was implanted of which the anterior 2 × 4 electrodes were in rostral
forelimb area (RFA) and posterior 2 × 4 lied in ipsilesional caudal forelimb area (CFA) with
a depth of 1.2–1.5 mm, while the electrodes were attached to the skulls with tiny screws
and dental cement.

Rats were trained to perform a running behavior task. A 80 cm × 9 cm × 12 cm tread-
mill was utilized to encourage the rats to run. Here, the speed was set to 10 m/min. The rats
were recovered for three to four weeks before training and routine experiments. The signal
acquisition lasted for two weeks. For each experiment day, we collected five minutes of
running data for each rat. The data were inspected visually to remove periods in which the
rats were not running. All data were recorded using a commercial multi-channel neural
signal acquisition system (Plexon TM, OmniPlex/128) with amplification of 1750.

3.2. Feature Optimization

In this paper, we utilized features of three domains for evaluation: time domain,
frequency domain and time-frequency domain. The input signals are 2-s long filtered LFP
samples for feature extraction as mentioned in Section 2.2.

Firstly, we employed AR features to represent the time domain features. As mentioned
above, we attempted to minimize the error of the predictor equation through experimental
results with different orders and minimize the Akaike Information Criterion (AIC) with
Burg’s method to find the optimal order of the AR model that balances model complexity
and prediction accuracy. In addition, we also compared the results based on the eigenvalues
of the matrix R̃ in the Yule-Walker equations and we found that Burg’s method is relatively
better in performance. Finally, we adopted an AR model of order 4 considering the balance
of computation complexity and performance and we took the coefficients of the AR model
as features, which are a 64-dim (4 × 16 channel) vector.

Secondly, for frequency domain features, we used fast fourier transform to obtain the
frequency distribution of input signals. Then we tried four features of five bands (Delta,
Theta, Alpha, Beta and Gamma) as described in Section 2.3.2 for selection of frequency
domain features, that is, the mean and standard deviation values of power spectrum, energy
values, concavity of spectral distribution and nondominant region of the power spectrum.
After comparing the identification performance of these four features, we chose the mean
and standard deviation values of power spectrum and energy features to represent the
frequency domain features, which are a 160-dim (10 × 16 channel) vector and a 80-dim
(5 × 16 channel) vector respectively.

Thirdly, DWT features and WPD features were selected to represent the time-frequency
domain features. Specifically, we compared different wavelets to receive the best perfor-
mance, such as Daubechies wavelets, Coiflets wavelets and Symlets wavelets. Additionally,
we tried different number of iterations for DWT features and different number of decom-
position levels for WPD features to obtain the best results. After comparison, for DWT
features, we decomposed the signals using Daubechies 4 wavelets for 5 iterations and
calculated the standard deviation values of the decomposed signals, which are a 96-dim
(6 × 16 channel) vector. As for WPD features, we used the Daubechies 4 wavelets at level
3 with Shannon entropy and estimated the coefficients as features, which are a 192-dim
(12 × 16 channel) vector.

Finally, we applied above 5 features of three domains to evaluate identification perfor-
mance: T-AR features (time domain), F-PS features (frequency domain), F-Energy features
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(frequency domain), TF-DWT features (time-frequency domain) and TF-WPD features
(time-frequency domain).

3.3. Intra-Day Identification

Firstly, we tried to evaluate the identification performance within day. Specifically,
we adopted the 80% data of an experimental day for training and the rest 20% data of the
same day for testing. Here we utilized the SVM classifier with linear kernel for computing
identification accuracy. The results are represented in Table 1. For time domain features,
T-AR features achieve 84% average identification accuracy of 14 days. For frequency
domain features, F-PS and F-Energy features obtain 87% and 98% average identification
accuracy of 14 days respectively. For time-frequency domain features, TF-DWT and TF-
WPD features reach 96% and 97% average identification accuracy of 14 days separately.
With these statistics, it is obvious that frequency domain and time-frequency domain
features have higher performance than time domain features, which shows that features of
intracranial brain signals related with frequency bands have higher reliability and more
effective information than time domain features.

Table 1. Intra-day Identification Performance of 5 Features using SVM(Linear).

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg

T-AR 0.89 0.85 0.85 0.91 0.92 0.90 0.91 0.74 0.91 0.78 0.72 0.85 0.72 0.84 0.84

F-PS 0.91 0.95 0.92 0.93 0.94 0.90 0.97 0.87 0.80 0.76 0.69 0.78 0.88 0.90 0.87
F-Energy 0.99 0.99 0.99 0.99 0.98 0.99 1.00 0.96 0.95 0.95 0.95 0.98 0.97 0.99 0.98

TF-DWT 0.98 0.97 0.98 0.99 0.97 0.98 0.99 0.95 0.95 0.94 0.88 0.93 0.93 0.97 0.96
TF-WPD 0.98 0.98 0.98 0.99 0.97 0.99 0.99 0.98 0.96 0.94 0.88 0.93 0.95 1.00 0.97

Additionally, F-Energy features have better performance than time-frequency domain
features (TF-DWT and TF-WPD). Specifically, the identification accuracy of F-Energy is
above 95% for all 14 days, compared with 10 days of TF-DWT and 11 days of TF-WPD,
which represents the better reliability of F-Energy features. This result might indicate that
energy of different frequency bands are more effective and stable for practical applications.

3.4. Inter-Day Identification

Furthermore, we designed the inter-day identification experiments to testify the capa-
bility of the training model using previous days data to predict the signals of new days.
Here we adopted the first day for training and the last 13 days for testing, the results of
5 features are shown in Table 2. It is obvious that the identification accuracy is slowly
descending along with the days for all 5 features. We take F-Energy as an example, the ac-
curacy of day-2 and day-3 can achieve 80% and 82%, while the accuracy of day-12 and
day-13 drops to 51% and 56%. The difference between the test accuracy of previous days
and following days may due to the electrode drifts. In fact, the implantable electrodes in
rats are not in constant positions owing to the behaviors of rats. With a tiny change of
the position, the collected signals can be quite different, which causes the identification
errors of the training model. However, if we utilize the training data and testing data in
the same day, this question can be handled. With the days grow, the position changes of
the electrodes are larger and the training model is more inaccurate. Among 5 features,
F-Energy feature has the highest average identification accuracy of 67%, which represents
that F-Energy feature is more reliable in practical use.
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Table 2. Inter-day Identification Performance of 5 Features using 1 Training Day.

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 Avg

T-AR 0.61 0.74 0.74 0.70 0.62 0.59 0.50 0.60 0.54 0.52 0.55 0.48 0.57 0.60

F-PS 0.61 0.70 0.73 0.70 0.67 0.65 0.58 0.50 0.43 0.45 0.50 0.57 0.57 0.59
F-Energy 0.68 0.80 0.82 0.78 0.72 0.73 0.62 0.66 0.57 0.61 0.63 0.51 0.56 0.67

TF-DWT 0.70 0.79 0.81 0.79 0.75 0.68 0.59 0.61 0.54 0.58 0.62 0.52 0.49 0.65
TF-WPD 0.68 0.80 0.81 0.78 0.70 0.68 0.56 0.59 0.53 0.55 0.61 0.53 0.56 0.64

Moreover, we think that the reasons for low inter-day identification accuracy could be
the simplicity of training models. Therefore, we attempted to adopt more training days and
evaluate the identification performance of lasting days. As shown in Figure 2, we utilized
training days from 1 to 13 and computed the average identification accuracy of lasting
days. The results show that as time increases, the accuracy is raising for all 5 features.
Significantly, if we take 13 days for training, the identification accuracy of F-Energy feature
can obtain 93% (91% for both TF-DWT and TF-WPD) as shown in Table 3, which is relatively
high. These results confirm our assumptions that with more training data, the inter-day
identification performance of intracranial brain signals can reach higher.

1 2 3 4 5 6 7 8 9 10 11 12 13
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Figure 2. Inter-day identification performance with different number of training days from 1 to 13 of
5 features using SVM classifier of linear kernel.

Table 3. Inter-day Identification Performance of 5 Features using 13 Training Days.

Features Test Day

T-AR 0.84

F-PS 0.81
F-Energy 0.93

TF-DWT 0.91
TF-WPD 0.91

3.5. Performance of Different Classifiers

Except for the SVM classifier with linear kernel, we also designed experiments with
other machine learning algorithms, such as KNN, LDA, SVM with RBF kernel and Neural
Network. For the KNN method, a k-value of three was selected by comparison with the
performance of different k-values to yield the best performance. While for the LDA and
SVM-RBF methods, we adopted the standard implementation. Additionally, we designed
a neural network of three layers, two hidden layers with 50 and 30 neurons respectively,
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and an output layer of 10 neurons. Specifically, we selected the ReLU activation function
and L2 regularization, and we used a learning rate of 0.001 and a total of 200 iterations
with cross-entropy loss function for training. Additionally, we chose the Adam method
for stochastic optimization. Here we realized the previous four classifiers with the Matlab
toolbox (Matlab 2021b version). As for the implementation of Neural Network, we utilized
pytorch models.

Here we chose T-AR, F-Energy and TF-DWT features as input to compare the intra-day
identification performance of three domain features with 5 different classifiers. For T-
AR features, LDA, SVM-Linear and Neural Network have similar performance with the
average 85% identification accuracy, while the average accuracy of KNN and SVM-RBF is
82% and 59% respectively as shown in Figure 3. Similarly, as shown in Figure 4, LDA, SVM-
Linear and Neural Network have the best performance with the average 98% identification
accuracy of F-Energy features, while the average accuracy of KNN and SVM-RBF is 91%
and 25% respectively. As for TF-DWT features, as shown in Figure 5, KNN algorithm and
Neural Network have the best performance with the average 98% identification accuracy,
while the average accuracy of SVM-Linear, LDA and SVM-RBF is 96%, 89% and 62%
respectively. These results show that neural network is optimal for identification of brain
biometrics, and SVM-Linear classifier is also fine. For the reason of low accuracy of SVM-
RBF may be that the input features might have linear correlation or the training data is not
enough for training SVM-RBF. Here we recommend researchers to use neural networks
for higher performance with more computation load or to adopt SVM-Linear classifier for
time efficiency.
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Figure 3. Intra-day identification accuracy of T-AR features.
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Figure 4. Intra-day identification accuracy of F-Energy features.
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Figure 5. Intra-day identification accuracy of TF-DWT features.

4. Discussion

In this paper, we collected the local field potential signals for identification to analyze
the features of intracranial brain signals. Specifically, we adopted three domain features for
evaluation: time domain features, frequency domain features and time-frequency domain
features. Similarly, researches on EEG signals also use these types of features for person
identification. For instance, Autoregressive (AR) model is a widely used time-domain fea-
ture in EEG biometrics and many researchers adopted AR features for identification [27–29].
Compared with their single approach to select the optimal model order p, we utilized three
optimization algorithms to determine the order p to obtain the best performance. Addition-
ally, researchers usually chose Power Spectral Density (PSD) to describe the signal strength
distribution in the frequency domain for EEG biometrics [30,31]. By comparison, due to
the higher resolution and signal-to-noise ratio (SNR) of LFP signals used in this paper, we
could obtain more accurate frequency distribution than EEG signals and the identification
performance (98% intra-day accuracy and 93% inter-day accuracy of energy features) is
relatively better. With the same reason, for time-frequency domain features, we could reach
better performance (97% intra-day accuracy and 91% inter-day accuracy of WPD features)
than EEG signals.

Additionally, we also compared the performance of 5 features of different domains
using 5 different classifiers. The results show that frequency domain features and time-
frequency domain features are better than time domain feature in intra-day and inter-day
performance. The reason for this may be that the time domain features are linear features
which are directly related to the raw brain waves. It is obvious that brain waves are
changing all the time, leading to the AR model is not always adequately accurate for
identification. Differently, frequency related features are based on particular bands, which
are relatively more stable. In addition, energy features have best identification performance
among 5 features. From this aspect, we think that energy of different frequency bands
might reflect intrinsic characteristics of brain waves, which contains the most effective
information in brain system. Furthermore, we find that time-frequency domain features also
perform well in both intra-day and inter-day experiments. Moreover, we testified 5 different
classifiers and found that Neural Network and SVM-Linear have higher performance.
For reaching higher evaluation metrics, we recommend Neural Network, which is complex
enough for different data; while for the time efficiency, we recommend SVM-Linear for
achieving similar performance of Neural Network but is faster for training and testing.
After all, we think that energy feature and time-frequency domain features are excellent for
biometric identification, and we put forward Neural Network and SVM-Linear for training
model of these intracranial brain features.

Furthermore, our research emphasis is on intracranial brain signals due to these signals
have better resolution and signal-to-noise ratio (SNR) than invasive signals (such as EEG),
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so we think that how to collect intracranial brain signals in invasive or harmless ways
of people is our future target. Nowadays, flexible electrodes have been experimented in
invasive brain signal collection, such as the threads of Neuralink, which can obtain the
accurate intracranial brain signals with minor damage on the brain surface. In this case, we
think that it would be convenient and harmless to collect intracranial brain signals with
the development of the flexible electrodes or other collection materials. In recent days,
the Neuralink company has received the FDA’s approval to launch their first-in-human
clinical study. Hence we think this might be ethically correct if the technology is used in
right ways.

5. Conclusions

In this paper, 5 features based on intracranial brain signals in three domains are
computed for identification, and their performance is compared with different machine
learning algorithms. The results show that frequency features and time-frequency features
are excellent both for intra-day and inter-day identification. Additionally, energy features
obtain best identification performance among 5 features with 98% intra-day and 93% inter-
day identification accuracy. Moreover, we testified 5 different classifiers and found that
Neural Network and SVM-Linear have higher and more stable performance. To the best of
our knowledge, this is the first study to investigate the features of intracortical brain signals
for identification and we hope this research can serve as a guidance for future intracranial
brain research and the development of more reliable and stable brain-based biometrics.
In future studies, we intend to optimize the methods to improve the inter-day identification
performance with reducing the noise of electrode drift. Furthermore, we plan to collect
the intracranial brain signals of human beings if possible and evaluate the performance of
three domain features.
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