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Abstract: Purpose: In the past decade, there has been a rapid increase in the development of automatic
cardiac segmentation methods. However, the automatic quality control (QC) of these segmentation
methods has received less attention. This study aims to address this gap by developing an automatic
pipeline that incorporates DL-based cardiac segmentation and radiomics-based quality control.
Methods: In the DL-based localization and segmentation part, the entire heart was first located and
cropped. Then, the cropped images were further utilized for the segmentation of the right ventricle
cavity (RVC), myocardium (MYO), and left ventricle cavity (LVC). As for the radiomics-based QC part,
a training radiomics dataset was created with segmentation tasks of various quality. This dataset was
used for feature extraction, selection, and QC model development. The model performance was then
evaluated using both internal and external testing datasets. Results: In the internal testing dataset,
the segmentation model demonstrated a great performance with a dice similarity coefficient (DSC) of
0.954 for whole heart segmentations. Images were then appropriately cropped to 160 × 160 pixels.
The models also performed well for cardiac substructure segmentations. The DSC values were 0.863,
0.872, and 0.940 for RVC, MYO, and LVC for 2D masks and 0.928, 0.886, and 0.962 for RVC, MYO,
and LVC for 3D masks with an attention-UNet. After feature selection with the radiomics dataset, we
developed a series of models to predict the automatic segmentation quality and its DSC value for the
RVC, MYO, and LVC structures. The mean absolute values for our best prediction models were 0.060,
0.032, and 0.021 for 2D segmentations and 0.027, 0.017, and 0.011 for 3D segmentations, respectively.
Additionally, the radiomics-based classification models demonstrated a high negative detection rate
of >0.85 in all 2D groups. In the external dataset, models showed similar results. Conclusions: We
developed a pipeline including cardiac substructure segmentation and QC at both the slice (2D) and
subject (3D) levels. Our results demonstrate that the radiomics method possesses great potential for
the automatic QC of cardiac segmentation.

Keywords: radiomics; deep learning; quality control; cardiac magnetic resonance

1. Introduction

Cardiac magnetic resonance (CMR) is currently the gold standard noninvasive imaging
tool for the evaluation of heart function [1]. However, the foremost step in CMR analysis is
precise segmentation. In addition to clinical experience, accurate parameter quantification is
also essential for clinical decision making and risk stratification [2]. Unfortunately, manual
segmentation is a time-consuming process which also introduces intra- or interoperator
variability. Although automatic segmentation has advanced rapidly in recent years, human-
level quality control (QC) of automatic segmentation is still mandatory for clinical purposes.
This is particularly important for the segmentation of small objects, such as apical slices in
CMR imaging or small nodules in lung CT scans [3]. More importantly, low-quality and
inaccurate segmentation is hard to detect and may led to dramatic consequences. However,
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it is impractical to implement manual QC into an automatic pipeline. This highlights the
urgent need for the development of an automatic QC system.

The purpose of the automatic segmentation tools is to lessen the burden for doctors and
researchers, as well as to improve the stability and quality of segmentation. Additionally,
these tools should provide a quality score for each automatic segmentation. Therefore,
the absence of quality control is a limitation of automatic segmentation software, along
with high expenses, patent restrictions, etc.

In the past decade, there has been an increasing amount of research on medical image
QC systems. As a result, several automatic QC systems have been developed for medical
image segmentation. Kohlberger developed a classifier to predict the error in segmentation
methods without ground truth (GT) [4]; Alba developed an automatic QC system based on
the RF-based detector, a 3D-SPASM segmentation algorithm, and an anatomically driven
classifier [5]. Valindria proposed a reverse classification accuracy (RCA) method to predict
the performance of a segmentation model on new data without GT [6], and the RCA method
was further adopted by Robinson for cardiac segmentation [7]. More recently, deep learning
(DL)-based prediction models have gained popularity. Fournel developed a DL-based
automatic segmentation DSC prediction method and achieved good performances with
various types of disease [8]. Li proposed a pixel-level and image-level quality assessment
system [9]. All of the previous works have exhibited the importance of the QC system.

Radiomics has been developed for over a decade and has demonstrated impressive
performances in various tasks. Additionally, radiomics features are calculated using precise
equations, providing a significant advantage in terms of explainability. Furthermore,
the computation load for radiomics methods is also significantly lower than those of DL
methods. More importantly, CMR segmentation is an excellent imaging modality for
radiomics analysis. This technique allows for the extraction of 2D features from single slice
images as well as 3D features from reconstructed 3D images made up of 2D image stacks.
The applications of radiomics have facilitated cardiovascular disease phenotyping [10],
differential diagnosis [11], and prognosis prediction [12] etc. However, we observed that
few studies have used radiomics methods as tools for QC. Maffei proposed a radiomics-
based QC system for cardiac CT segmentation, but their models were quantitative (only
predict whether a segmentation is clinically acceptable or not), and the feature number used
in their study was tremendous (a total of 78,000 for 25 substructures) [13] . Although not
in the field of cardiovascular disease, Sunoqrot showed that radiomics information could
help to generate a quantitative quality score and facilitate the QC of prostate segmentation
on T2 images [14]; Wootton and Sakai also used radiomics to detect errors in radiation
therapy [15,16].

Based on current understanding and previous studies of radiomics, we hypothesize
that radiomics features can aid in the quality control of the segmentation of CMR im-
ages [17]. The objective of this study is to establish a compatible pipeline that could incorpo-
rate DL-based segmentation and radiomics-based QC for CMR short-axis cine images. Our
proposed pipeline has the following functions: (a) localizing, cropping, and segmenting the
whole heart using DL; (b) detecting low-quality segmentations based on radiomics features
(qualitative QC); (c) predicting DSC scores for automatic segmentation (quantitative QC);
and (d) visualizing and analyzing the results.

2. Methods

Figure 1 shows the flowchart of this study.
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Figure 1. This is the flowchart of this study. It mainly contains three part, a DL-based whole heart
localization and images cropping part; a DL-based anatomical structures segmentation part and a
radiomics-based quality control part.

2.1. Study Population

In this study, data were obtained from a private dataset and two publicly available
external datasets. The private dataset was obtained from August 2017 to December 2021
from Shanghai Renji Hospital (Renji-2021) and included hypertrophic cardiomyopathy
(HCM), dilated cardiomyopathy (DCM), hypertensive heart disease (HHD), and healthy
controls (HC). The first external dataset containing HCM, DCM, and HC was obtained
from the 2017 Automated Cardiac Diagnosis Challenge (ACDC-2017) training dataset [18].
The second external dataset containing HCM, HHD, DCM, and HC was obtained from the
2020 M&M challenge (M&M-2020). The detailed inclusion and exclusion criteria for the
Renji-2021 dataset were as follows.

The HCM inclusion criteria were (a) the genetic determination of an HCM muta-
tion; (b) left ventricle hypertrophy (LVH) > 15 mm in the absence of known causes of
hypertrophy [19]; and (c) hypertrophy in a recognizable pattern, i.e., apical-variant HCM.

The HHD inclusion criteria were (a) electrocardiograph (ECG) demonstration of
a hypertrophic LV (maximal LV wall thickness > 11 mm or LV mass to body surface
area > 115 g/m2 for men or >95 g/m2 for women) in the absence of other cardiac or
systemic diseases [20] or (b) a diagnosis of arterial hypertension [21].

DCM is defined by the presence of left ventricular (LV) dilation and systolic dysfunc-
tion in the absence of abnormal loading conditions or coronary artery disease sufficient to
cause LV systolic impairment [22].

The HC group consisted of healthy volunteers who demonstrated normal cardiac
dimensions and volumes, normal cardiac function, and the absence of late gadolinium en-
hancement. None of the control subjects had a history of known cardiac disease, including
cardiac surgery and interventions.
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Exclusion criteria for all subjects were an established diagnosis of Fabry disease,
cardiac amyloidosis, severe valvular disease, aortic stenosis, iron deposition, evidence of
inflammatory processes in the myocardium or pericardium, history of ST-segment elevation
myocardial infarction, and subjects experiencing activity of sufficient duration, intensity,
and frequency to explain the abnormal LV wall thickness.

2.2. Image Acquisition

Renji-2021 dataset: The CMR examinations were performed with a 3T MRI scanner
(Ingenia, Philips). A balanced steady-state free precision (SSFP) sequence with breath
hold was used for cine imaging acquisition. The typical parameters were as follows:
slice thickness = 6–8 mm, gap between slices = 6–10 mm, in-plane resolution = 0.8–1.2 mm
× 0.8–1.2 mm, and number of cardiac phases = 30.

ACDC-2017 dataset: The acquisitions were obtained using a 1.5T scanner (Area,
Siemens) and a 3T scanner (Trio Tim, Siemens). A conventional SSFP sequence with breath
hold was used for cine imaging acquisition. The typical parameters were as follows: slice
thickness = 5–8 mm, gap between slices = 5–10 mm, in-plane resolution = 1.37–1.68 mm ×
1.37–1.68 mm, and number of cardiac phases = 28–40.

M&M-2020 dataset: In this dataset, CMR images were acquired with scanners from
different vendors (Siemens, Philips, GE and Canon) with both 1.5T and 3.0T magnetic
fields. The parameters were as follows: tTypical slice thickness = 9.2–10 mm, typical gap
between slices = 10 mm, in-plane resolution = 0.85–1.45 mm × 0.85–1.45 mm, number of
slices = 10–12, and number of frames = 25–30.

For all datasets, short-axis cine images covered LV and RV from the base to the apex.

2.3. Data Preparation

For all datasets, only end-diastole (ED) short-axis cine images were included in
this study.

For the Renji dataset, images were exported in digital imaging and communications in
medicine (DICOM) format.Foremost, patients’ information was de-identified. An experi-
enced cardiologist (4 years of CMR experience) manually removed images of insufficient
quality. Selected ED images were then converted to .nii format (same as for the ACDC-2017
and M&M-2020 datasets).

2.3.1. Manual Segmentation

Manual segmentation results from the ACDC-2017 and M&M datasets were avail-
able from the ACDC challenge website https://www.creatis.insa-lyon.fr/Challenge/acdc/
databases.html (accessed on 1 January 2023) and M&M challenge website https://www.ub.
edu/mnms/ (accessed on 1 June 2023). An open-source software itk-snap (version 3.8.0)
was used to delineate manual segmentation of the Renji-2021 dataset [23]. The LV endo-
cardium and epicardium was delineated as previously described [11,18]. To obtain the right
ventricular cavity, the RV wall was not included. All images were segmented by C1 and ver-
ified by another experienced cardiologist 2 (C2, 5 years of CMR experience). After manual
segmentation, the Renji-2021 dataset was combined with the ACDC-2017 dataset.

2.3.2. Pre-Processing

Original images and masks were processed with following steps. First, the in-plane
resolutions of the images and masks were resampled to 1.0 mm × 1.0 mm using SimpleITK [24];
second, contrast-limited adaptive histogram equalization was applied to all images with the
scikit-image library [25]; third, the pixels’ gray-level value underwent min–max normalization.

2.3.3. Data Partition

The Private Renji-2021 dataset and ACDC-2017 dataset were combined and then
randomly divided into three parts: a training dataset (60% of data, N = 350), a validation
dataset (20% of data, N = 115), and an internal testing dataset (20% of data, N = 115).

https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
https://www.ub.edu/mnms/
https://www.ub.edu/mnms/
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Within each part, patients with different types of disease were evenly distributed. The
M&M-2020 dataset was independently used as an external testing dataset.

2.4. Machine Learning Scheme
2.4.1. DL Scheme

The proposed deep learning pipeline included a localization-cropping module and
a segmentation module: (a) whole heart segmentation was obtained from an UNet-like
model (Localization UNet, L-Unet); (b) the center of mass (CoM) was calculated at the
slice-level for each image, and the weighted CoM was defined at the subject-level according
to Equations (1)–(3); (c) images were cropped around the weighted CoM and an optimal
size was chosen; and (d) anatomical structure segmentation was obtained from UNet-like
models (Segmentation UNets, S-Unets) with cropped images. Models were trained with the
training dataset. The validation dataset was utilized to monitor the model’s performance.
The internal and external testing datasets were used for the model assessment.

Xcenter =
∑

j
1 Wj × Xj

∑
j
1 Wj

(1)

Ycenter =
∑

j
1 Wj ×Yj

∑
j
1 Wj

(2)

Weighted Center o f Mass = (Xcenter, Ycenter) (3)

where Wj represents the pixel number in slice j, Xj and Yj represent the location of the CoM
for slice j on the x-axis and y-axis.

Model Structure and Experiment Settings

An 18-layer UNet backbone was used in both L-UNet and S-UNets but with different
input shapes. A detailed model structure is shown in Figure 2. For L-UNet, after prepro-
cessing, images maintained their height to width ratios and were resized to 256 × 256 pixels
as inputs. For S-UNets, the inputs were 160 × 160 pixel precropped images, and four S-Unet
model structures were included: (i) UNet; (ii) Attention UNet (A-UNet); (iii) Residual UNet
(R-UNet); and (iv) Residual Attention UNet (RA-UNet).

Both L-UNet and S-UNets were trained for 200 epochs with an Adam optimizer with
a 1 ×10−3 initial learning rate. The optimizer scheduler monitored the validation loss
and reduced the learning rate by a factor of 0.2 and a patience of 7 epochs. The minimal
learning rate was set to 6.4× 10−8; the loss functions used were DICE, cross entropy (CE),
and the DICE + CE loss function (Equations (4) and (5)). Data augmentation was only used
in S-UNets and included random rotation, translation, flipping, and elastic transformation
using the Albumentations library [26].

LDICE = 1− 2 ∑N
i yi pi + ε1

∑N
i y2

i + ∑N
i p2

i + ε2
(4)

LCE = −
N

∑
i

yilog(pi) (5)

yi represents the true label of pixel i, while pi represents the predicted value of pixel i.



Bioengineering 2023, 10, 791 6 of 22

DL Model Evaluation

The performance of the DL models was evaluated based on the dice similarity co-
efficient (DSC), intersection over union (IoU), precision, and recall in the testing dataset
(Equations (6) and (7)).

DSC =
2|X ∩Y|
|X|+ |Y| (6)

IoU =
|X ∩Y|
|X ∪Y| (7)

2.4.2. Segmentation Quality Definition

For 2D segmentation, a DSC < 0.7 was defined as bad quality while a DSC ≥ 0.7
was defined as good quality, as in previous research [7]. For 3D segmentation, the cutoff
value was set to 0.85. Therefore, for each anatomical structure, each 2D segmentation or
reconstructed 3D segmentation was classified into good- or bad-quality groups according
to its actual DSC value.

2.4.3. Radiomics Scheme

To generate a robust radiomics dataset for further analysis, segmentations with various
DSC predictions were needed. Therefore, eight weights (including the best model weight
and seven suboptimal model weights) used during the model training process were selected
from each S-UNet and used to generate a new segmentation dataset based on training and
validation images. Therefore, we theoretically generated 32 2D/3D segmentations of varied
quality at both the slice and subject levels. This dataset was used for radiomics feature
extraction, feature selection, and model development. The testing data were used for the
model performance evaluation, as described previously.

Definition of Suboptimal Models

During the segmentation model development stage, after each epoch, the valida-
tion loss was documented once validation loss decreased compared to previous epochs.
The model weights were saved to the local server. After model training processes, there
were many model weights saved with different validation losses. The model weight with
the lowest validation loss was named the best model, while we named the other model
weights suboptimal models. By using suboptimal models, we were able to generate low-
quality segmentations and use these to increase our radiomics dataset and improve the
model’s generalization ability.

Feature Extraction and Feature Selection

Radiomics features were extracted at the 2D and 3D levels from the original images.
Before feature extraction, the images underwent normalization (normalization scale equals
0 to 256) and discretization (with a bin-width of 16). For 3D images, the z-axis spatial
resolution was resampled to 1.0 mm in addition to achieve voxel spatial isotropy. Addi-
tionally, the radiomics features of different anatomical structures (RVC, MYO, and LVC)
were extracted separately with Pyradiomics library [27]. Thereafter, we had six radiomics
groups, namely RVC-2D, RVC-3D, MYO-2D, MYO-3D, LVC-2D, and LVC-3D.

After feature extraction, within each feature group, the Pearson correlation (ρ) coeffi-
cient was calculated for each feature. Features with ρ > 0.8 were defined as being highly
correlated and were removed [28].

For the regression task, feature selection was performed based on the highest mutual
information dependency with DSC values [29]; for the classification task, feature selection
was performed based on the analysis of variance (ANOVA) F-value between the score
quality (good [1] or bad [0]) and feature values. To improve the explainability of our
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proposed models. For model development, we considered the subject number in this study
and decided to select, at most, 12 features, which was also similar to previous studies [30].

Regression Model Development and Evaluation

Although various DSC values were present in our radiomics dataset, to generate a
balanced model, weights were calculated for good- and bad-quality groups when appro-
priate. Five types of regression model were tested: (1) random forest regressor (RFR),
(2) gradient boost regressor (GBR), (3) K nearest neighbor regressor (KNNR), (4) linear
regression regressor (LRR), and (5) multilayer perceptron regressor (MLPR). Support vector
machine methods were abandoned due to their long computation times. All regressors
were trained with the five-fold cross validation and grid search method to determine the
best combination of parameters. The final regression model was developed with all training
and validation datasets. The model performance was evaluated in the testing dataset using
the mean absolute error (MAE). The prediction coefficient of determination (R2) is also
reported. The models with the best performance were selected.

Classification Model Development

We further developed a series of classification models based on the radiomics features
to evaluate the value of the radiomics features for segmentation quality classification.
The regressors’ performance was re-evaluated in the images predicted as being of good
quality. Two classifiers were selected: (1) the random forest classifier (RFC) and (2) the
gradient boost classifier (GBC). Since we aimed to develop a QC system, the classification
performance was mainly evaluated with the negative detection rate (NDR), as shown in
Equation (8).

Negative Detection Rate (NDR) =
TN

FN + TN
(8)

TN = true negative; FN = false negative. Negative results represent bad-quality seg-
mentation predictions.

Distribution Pattern among Disease Types, Segmentation Quality, and MAE

To explore changes in the tendency of disease type/segmentation quality and MAE,
density plots were plotted. Bland–Altman analyses were used to show agreement for actual
DSC scores and predicted DSC scores.

2.5. Post Hoc Analysis

To verify the usefulness of the classification models on the QC system performance, we
compared the MAE vlues of all segmentations and predicted good-quality segmentations.

With the advent of the segment anything model (SAM) [31], we chose some of our
images as inputs and tested their segmentation ability with the “every” mode https://
segment-anything.com/demo (accessed on 10 April 2023).

2.6. Statistical Analysis

SPSS (version 26) and Python (version 3.7.10) were used for the statistical analysis.
The model performance was assessed using the MAE (between the predicted DSC and
actual DSC) as previously described.

To compare means, student’s T tests were conducted as appropriate. Class weights
were calculated when appropriate using the scikit-learn library [32].

3. Results
3.1. Study Population

As shown in Table 1, 520 subjects (NDCM = 35, NHCM = 227, NHHD = 98, NHC = 160)
were obtained from Renji Hospital, 60 subjects (NDCM = 20, NHCM = 20, NHC = 20) were ob-
tained from the ACDC-2017 dataset, and 273 subjects (NDCM = 97, NHCM = 82, NHHD = 15,

https://segment-anything.com/demo
https://segment-anything.com/demo
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NHC = 79) were obtained from the M&M-2020 dataset. The data partition is shown in
Table 2.

Table 1. Shows the numbers of subjects across different diseases and datasets.

Disease Types
Training, Validation, and Internal Testing External Testing

Renji-2021 (N = 520) ACDC-2017 (N = 60) M&M-2020 (N = 273)

HCM 227 20 82
HHD 98 0 15
DCM 35 20 97
HC 160 20 79

Table 2. Shows the compositions of the training, validation, and testing datasets.

Disease Types Training
(N = 350)

Validation
(N = 115)

Internal Testing
(N = 115)

External Testing
(N = 273)

HCM 10 + 139 1 4 + 45 1 6 + 43 1 82
HHD 0 + 60 0 + 19 0 + 19 15
DCM 13 + 20 2 + 9 5 + 6 97
HC 12 + 96 2 + 34 6 + 30 79

1 In these columns, the first number indicates the number of subjects from the ACDC dataset, while the second
number indicates the number of subjects from the Renji dataset.

Results from the external testing dataset are available in the Supplementary Materials.

3.2. Whole Heart Localization and Cropping

Since accurate localization is important for further analysis, L-UNets with different
loss functions were compared in the whole heart segmentations. As shown in Table 3,
CE + DICE loss achieved the highest DSC and IoU values for whole heart area segmentation
(DSC: 0.954 vs. 0.952 (CE) and 0.944 (DICE), both p < 0.001). Therefore, the following crop-
ping step was based on the localization results of the L-UNet model with CE + DICE loss.

Images were cropped around the weighted CoM with different sizes (128, 160, and
192 pixels, 1.0 mm × 1.0 mm resolution per pixel). With 128 pixels, heart areas in some
slices were cropped out, while with 192 pixels, the background still took up a large portion
of the image area. Therefore, a final size of 160 pixels was used to crop the images.

Table 3. Shows the localization model’s performance in the internal testing dataset with different
loss functions.

Loss Function DSC IoU

CE 0.944 ± 0.084 0.901 ± 0.104
DICE 0.952 ± 0.060 0.912 ± 0.086

CE + DICE 0.954 ± 0.056 0.916 ± 0.081
CE: cross entropy, DSC: dice similarity coefficient, IoU: intersection over union.

3.3. Segmentation of RVC, MYO, and LVC

Figure 2 shows the segmentation pipeline and different U-net structures used in this
study. The pipeline of the segmentation and reconstruction part is shown in Figure 2. The
3D segmentations were reconstructed from 2D segmentations, and the 3D DSC/IoU was
calculated accordingly.
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Figure 2. Shows the S-Unet performance with differences among the four types of disease. The four
different structures of S-Unets are also provided. B/D/LR represents the batch normalization/
dropout/leaky relu layer, respectively. For the 3D reconstructed images, yellow part represents the
LV myocardium, the red part represents the LV cavity and the green part represents the RV cavity.

The model performance of four S-UNets is shown in Table 4. From both slice-level
and subject-level evaluations, the A-UNet showed the highest 2D and 3D scores within all
anatomical structures (2D DSC: 0.863 for RVC, 0.872 for MYO and 0.940 for LVC; 3D DSC:
0.928 for RVC, 0.886 for MYO, and 0.962 for LVC). However, the detection of low-quality
segmentations is more important in a QC system. Therefore, we visually inspected the
testing segmentations and noticed that low-quality segmentations was mainly distributed
at the apical or basal levels. Figure 3 shows six examples of low-quality segmentations.

Figure 3. Shows six examples of low-quality segmentations, including four apical slices and two basal
slices. From left to right, the original images, manually derived masks and automatic segmentations
for the four S-Unets are listed, respectively. The I to IV shows that images were derived from
different subjects.
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Table 4. DSC and IoU for 2D and 3D anatomical structure segmentations with four S-UNets in the
internal testing dataset.

Anatomical
Parameter

2D 3D

Structure DSC IoU DSC IoU

RVC

Unet 0.854 ± 0.236 0.794 ± 0.238 0.927 ± 0.042 0.866 ± 0.067
R-Unet 0.853 ± 0.233 0.790 ± 0.235 0.921 ± 0.041 0.856 ± 0.067
A-Unet 0.863 ± 0.229 0.804 ± 0.230 0.928 ± 0.040 0.869 ± 0.066

RA-Unet 0.858 ± 0.229 0.796 ± 0.230 0.923 ± 0.039 0.860 ± 0.065

MYO

Unet 0.871 ± 0.085 0.779 ± 0.104 0.885 ± 0.026 0.794 ± 0.042
R-Unet 0.860 ± 0.098 0.763 ± 0.113 0.877 ± 0.028 0.782 ± 0.044
A-Unet 0.872 ± 0.091 0.781 ± 0.106 0.886 ± 0.028 0.796 ± 0.045

RA-Unet 0.862 ± 0.101 0.768 ± 0.115 0.879 ± 0.030 0.785 ± 0.047

LVC

Unet 0.939 ± 0.088 0.895 ± 0.107 0.960 ± 0.011 0.923 ± 0.020
R-Unet 0.936 ± 0.097 0.890 ± 0.114 0.959 ± 0.010 0.922 ± 0.018
A-Unet 0.940 ± 0.099 0.897 ± 0.113 0.962 ± 0.011 0.926 ± 0.020

RA-Unet 0.938 ± 0.091 0.893 ± 0.111 0.958 ± 0.017 0.920 ± 0.029
Values are means ± standard deviations (SDs). A-Unet: Attention Unet, R-Unet: Residual Unet, RA-Unet: Residual
Attention Unet.

3.4. Feature Extraction, Model Selection, and FEATURE Selection

For each S-UNet, eight models with different weights were selected and applied to
the training and validation datasets, resulting in a maximum of 137,760/14,880 automatic
2D/reconstructed 3D segmentations for RVC, MYO, and LVC, respectively (the detailed
segmentation numbers are shown in Supplementary Tables S1 and S2). For each 2D
segmentation, 102 features were extracted, while for each 3D segmentation, 107 features
were selected. The full feature lists are shown in Supplementary Tables S3 and S4.

The regression model’s performance is shown in Supplementary Table S5. After a
comparison, we found that GBR showed the best performance and was selected for fur-
ther analysis.

The classification model’s performance is shown in Supplementary Table S6. After a
comparison, we found that RFC showed the best performance and was selected for the
final classification model.

Table 5 summarizes the feature numbers used in different groups that achieved the
best performance levels on the regression and classification tasks. The details of the feature
name information and statistical results are provided in Supplementary Tables S7 and S8.

Table 5. Summarizes the feature numbers selected for the best performance regression and classifica-
tion models.

Regression Classification

RVC-2D 12 9
MYO-2D 6 9
LVC-2D 6 6

RVC-3D 7 5
MYO-3D 11 10
LVC-3D 12 12

The maximal feature number was set to 12. For different tasks and cardiac structures, the feature number varied.

Table 6 shows the average actual DSC, predicted DSC, and MAE with the best-
performing regression models among six groups.
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Table 6. Shows the actual DSC, predicted DSC, and MAE for different anatomical structure segmen-
tations among different types of disease.

Parameters ALL DCM HC HCM HHD p-DCM 1 p-HC 2 p-HCM 3 p-HHD 4

RVC-2D

Actual DSC 0.874 0.880 0.907 0.845 0.883
Pred DSC 0.852 0.850 0.876 0.829 0.865

MAE 0.060 0.068 0.054 0.068 0.048 0.483 0.464 0.345 0.259

LVC-2D

Actual DSC 0.943 0.958 0.949 0.934 0.946
Pred DSC 0.957 0.968 0.963 0.950 0.961

MAE 0.021 0.013 0.018 0.025 0.018 0.002 0.560 0.220 0.558

MYO-2D

Actual DSC 0.870 0.863 0.841 0.886 0.881
Pred DSC 0.890 0.888 0.868 0.903 0.898

MAE 0.032 0.033 0.040 0.028 0.028 0.815 0.232 0.363 0.441

RVC-3D

Actual DSC 0.925 0.935 0.944 0.911 0.918
Pred DSC 0.946 0.931 0.955 0.941 0.947

MAE 0.027 0.018 0.015 0.035 0.033 0.096 <0.001 0.010 0.133

LVC-3D

Actual DSC 0.960 0.965 0.964 0.955 0.959
Pred DSC 0.953 0.951 0.955 0.951 0.957

MAE 0.011 0.019 0.012 0.009 0.009 0.017 0.698 0.314 0.344

MYO-3D

Actual DSC 0.882 0.872 0.860 0.895 0.894
Pred DSC 0.893 0.881 0.873 0.908 0.901

MAE 0.017 0.022 0.024 0.015 0.010 0.100 <0.001 0.046 <0.001
1–4 p-values were calculated between the DCM [1], HC [2], HCM [3], and HHD [4] subgroups and the ALL group,
respectively.

3.5. Detailed Performance of the LVC-2D Group

The results for the LVC-2D group are shown in Figures 4–9 in subplot (a). The best
regression performance was achieved with six radiomic features, and the best classification
performance was also achieved with six features (the included features are available in
Supplementary Tables S7 and S8. The MAE for the testing dataset was 0.021 ± 0.035
(Figure 4), the AUC was 0.983 (Figure 5), and the NDR was 93.0% (Figure 6). As Figure 7
shows, when the MAE increased, the proportion of predicted bad segmentations also
increased. According to Figure 8 and Table 6, most DCM segmentations showed a MAE <of
0.15, and the p-value for the MAE difference between the DCM subgroup and all subjects
was 0.002 (0.021 vs. 0.013). While the distribution of MAE was quite balanced among
the HC, HCM, and HHD subgroups, the corresponding p-values were 0.560, 0.220, and
0.558, respectively. The Bland–Altman analysis (Figure 9) showed that segmentations with
lower DSC values were removed with the classification model. As Table 7 shows, after the
removal of predicted low-quality segmentations, the MAE improved by 0.004 compared
with all other segmentation models with a p-value of 0.402.
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Figure 4. Results of regression models on the internal testing dataset for all six groups. The MAE ± SD
and R2 are shown on the figure legend. (a–c) show the results for the LVC-2D, RVC-2D, and MYO-2D
groups, respectively, and (d–f) show the results for the LVC-3D, RVC-3D, and MYO-3D groups,
respectively.

Figure 5. ROC curves for the internal testing data for all six subgroups. The AUC and 95% confidence
interval (CI) are shown on the figure legend. Subplots (a–f) are the same as in Figure 4.
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Figure 6. Confusion matrices of the best performance classification model for the internal dataset for
all six subgroups. Subplots (a–f) are the same as in Figure 4.

Figure 7. Density plots for all segmentations for the internal testing dataset for the six subgroups.
Blue represents bad-quality predictions and orange represents good-quality predictions. The density
plots in the first row represent changes between the number of segmentations and MAE, while the
density plots in the second row (filling mode) show the relative proportions of predicted good or bad
segmentations with MAE. Subplots (a–f) are the same as in Figure 4.
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Figure 8. Density plots for all segmentations for the six groups. Blue, orange, green, and red represent
DCM, HC, HCM, and HHD, respectively. The density plots in the first row represent changes between
the number of segmentations and MAE, while the density plots in the second row (filling mode) show
the relative proportions of different disease types with MAE. Subplots (a–f) are same as in Figure 4.

Figure 9. Bland Altman plots of all segmentations (the first row with blue dots) and the good-quality
segmentations predicted using classification models (the second row with green dots). Comparing
two Bland Altman plots, the diminished dots represented segmentations that were predicted as being
of bad quality by classification models. Subplots (a–f) are the same as in Figure 4.

3.6. Detailed Performance of the RVC-2D Group

The results for the RVC-2D group are shown in Figures 4–9 in subplot (b). The best
regression performance was achieved with 12 radiomic features, and the best classification
performance was achieved with nine features (included features are available in Supple-
mentary Tables S7 and S8. The MAE for the testing dataset was 0.060 ± 0.094 (Figure 4),
the AUC was 0.983 (Figure 5), and the NDR was 90.0% (Figure 6). Figure 7 shows that a
segmentation with a higher MAE was more likely to be detected by classification models
after the exclusion of predicted low-quality segmentations. The MAE achieved an 0.019
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improvement with a p-value of 0.106 (Table 7). As Figure 8 shows, density plots of the
RVC-2D group had a balanced distribution pattern for the MAE between different patholo-
gies. The Bland–Altman analysis (Figure 9) showed that most failed segmentations were
removed by the classification model.

3.7. Detailed Performance of the MYO-2D Group

Results for MYO-2D group was showed in Figures 4–9 in subplot (c), the best regres-
sion performance was achieved with 6 features and the best classification performance was
achieved with 9 features (included features are available in Supplementary Tables S7 and S8.
The MAE for testing dataset was 0.032 ± 0.047 (Figure 4) and the NDR was 85.5% (Figure 6).
The MAE distribution patterns showed in density plots (Figures 7 and 8) had similar
pattern in previous 2D groups. The Bland Altman analyses (Figure 9) showed that after
classification selection, low-quality segmentations were filtered. Additionally, the MAE
increased by 0.006 in 2D-MYO group with p-value of 0.386.

3.8. Detailed Performance of the LVC-3D Group

The results for the LVC-3D group are shown in Figures 4–9 in subplot (d). The best
regression performance was achieved with 12 features, and the best classification perfor-
mance was achieved with 12 features (included features are available in Supplementary
Tables S7 and S8. The MAE for the testing dataset was 0.011 ± 0.020 (Figure 4), and the
NDR was 100.0% (Figure 6). We also noticed that only one reconstructed LVC-3D segmen-
tation was defined as being of bad quality, indicating that most reconstructed LVC-3D
segmentation models showed good performance levels. The density plot presented in
Figure 7 shows that almost all segmentations with MAE > 0.07 were successfully detected.
The density plot presented in Figure 8 shows that the HHD subgroup had lower MAE (all
<0.04), while the DCM subgroup has higher MAE, it also exhibited in Table 6. Since only
one segmentation was removed, according to the segmentation model, the Bland–Altman
showed minor changes, as presented in Figure 9.

3.9. Detailed Performance of the RVC-3D Group

The results for the RVC-3D group are shown in Figures 4–9 in subplot (e), the best
regression performance was achieved with seven features, and the best classification perfor-
mance was achieved with five features (included features are available in Supplementary
Tables S7 and S8. The MAE for the testing dataset was 0.027 ± 0.035; however, the R2 was
−0.178, and the NDR was 16.7%. This indicates that our classification model failed to
detect low-quality segmentations in our internal testing dataset, regardless of the 3D-RVC
subgroup. Therefore, only a small portion of the predicted bad quality segmentations was
successfully detected, as shown in Figure 7. Meanwhile, some low-quality segmentations
were wrongly predicted to be high-quality masks. As the Bland–Altman plots show, some
blue dots with mean DSC < 0.5 were removed, but most outliers still remained (Figure 9).
Additionally, the removed dots show a (true DSC-predict DSC) <> 0, which indicates
that our classification model performed better with underestimated segmentations than
overestimated segmentations.

3.10. Detailed Performance of the MYO-3D Group

The results for the MYO-3D group are shown in Figures 4–9 in subplot (f). The best
regression performance was achieved with 11 features, and the best classification perfor-
mance was achieved with 10 features (included features are available in Supplementary
Tables S7 and S8. The MAE for the testing dataset was 0.017 ± 0.016 (Figure 4), and the NDR
was 75.0% (Figure 6). Most segmentations showed an MAE of <0.10, and most predicted
true segmentations had an MAE of <0.08 (Figure 7); however, in Figure 8, we noticed
that segmentations of MAE > 0.08 belong to the HC subgroup. This is also reflected in
Table 6 by the p-value of the HC subgroup < 0.001. The Bland–Altman analysis showed
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great results for the predicted good-quality segmentations. Almost all segmentations were
located in the mean ± 1.96 SD area (Figure 9).

Table 7. MAE improvement among different anatomical structures for all segmentations and pre-
dicted good-quality segmentations.

Parameter
Anatomical Structure

RVC MYO LVC

2D

MAE
improvement 0.019 0.006 0.004

p value 0.106 0.386 0.402

3D

MAE
improvement 0.001 0.002 0.001

p value 0.815 0.042 0.296

3.11. Differences between 2D and 3D Groups

As shown in Figures 4–9, first of all, the 2D groups had more samples than the 3D
groups for the training, validation, and testing datasets. As the scatter plots in Figure 4
show, the 2D groups showed higher R2 values than the 3D groups (2D groups: 0.622,
0.680, and 0.450 vs. 3D groups: −2.350, −0.178, and 0.295), which indicates that the 2D
groups showed more robust radiomics-based DSC prediction models than the 3D groups.
For the confusion matrices and ROC curve analysis, except for the LVC-3D group, the
2D groups also showed better AUC values and higher NDR values. As for the density
plots (Figure 8) between MAE and the disease types, the distribution of 2D MAE was more
balanced compared with 3D groups. This phenomenon was also confirmed by the results
presented in Table 6.

3.12. Post Hoc Analysis

A total of eight images were tested with the SAM “every” mode. The segmentation
results are shown together with the manual segmentations in Figure 10. The results of the
SAM showed an acceptable performance on the basal slices; however, for the apical slices,
none of the four apical slices showed acceptable results.

Figure 10. Eight images with manual segmentations and SAM segmentations. For each disease type,
we selected an apical slice and a basal slice.

3.13. Results for the External Dataset

The models’ performance levels on the external testing dataset are available in Supple-
mentary Figures S1–S6 and Supplementary Tables S9–S13.

4. Discussion

In this study, we developed an analysis platform that incorporates a DL-based auto-
matic segmentation cine and a radiomics-based QC for short-axis CMR cine. To achieve
this, we first developed a localization and segmentation pipeline using U-net models.
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Thereafter, we developed a two-stage radiomics-based quality control (QC) system for
automatic segmentations. Our hypothesis, that radiomics features could facilitate the QC of
automatic segmentations, was validated through experiments. By using RF classifiers and
GB regressors, our methods exhibited a high mal-segmentation detection rate and accurate
DSC estimation in most situations.

4.1. Discussion Regarding Model Performance
4.1.1. DL Model Performance

As shown in Table 4, our DSC scores for 2D segmentations were 0.863, 0.940, and 0.872
for RVC, LVC, and MYO, respectively. These results demonstrate that our model structure
is suitable for the segmentation task. However, as depicted in Figure 3, our four S-Unets
exhibited a decreased segmentation performance on certain apical and basal slices. This
phenomenon was also observed in the recent SAM segmentations (Figure 10). During our
analysis, we observed that S-Unets with various modifications (residual, attention parts)
exhibited slightly varying performances on ambiguous regions of interest (ROIs). For in-
stance, S-Unets equipped with attention structures tended to segment the right ventricular
cavity more accurately in basal slices, while those with residual parts displayed better
performance levels on smaller ROIs (Figure 3). Moreover, the variability of low-quality
segmentations offered unique samples for our radiomics dataset. This variability partially
explains why we incorporated modified model structures in our analysis pipeline.

4.1.2. QC Performance on Our Dataset

The regression models performed well on all subgroups in the training dataset with bet-
ter performances seen in the 2D subgroups, as characterized by the R2 values (Figure 4).
However, this difference could be partially attributed to the larger sample size used in
the 2D segmentations. We further utilized RF classifiers and found that, in the 2D sub-
groups, all NDRs were above 85% (Figure 6), indicating that the radiomic-feature-based
classification models could effectively identify low-quality segmentations.

One notable exception was the 3D-RVC group, which exhibited an NDR of only 16.7%.
Upon examining the density plots for the MAE (Figure 7), we observed that as the MAE
increased, the proportion of predicted bad-quality segmentations also increased for all
segmentation results (with the exception of the 3D-RVC group). The distribution pattern
of 2D MAE was relatively balanced across the various disease groups (Figure 8). With the
failure of our model in the RVC-3D subgroup, we checked the radiomics features included
in Supplementary Table S5, and we found that most include features belonging to the
shape feature family. Due to the underlying pathology, the shape variance of the RVC
is much higher than those of LVC or MYO (the RVC shape is more sensitive to external
changes, such as myocardium hypertrophy or hemodynamic changes). Additionally, the
segmentation models failed to segment many RVC apical slices. After reconstruction, this
could lead to the instability of 3D-RVC features.

By comparing two Bland–Altman plots for each subgroup, we demonstrated the
prediction results for all segmentations and predicted good-quality segmentations. We
also noticed that most excluded segmentation instances were located outside of the >1.96
SD interval, as shown in Figure 9. We also noticed a group of awkward points in the
Bland–Altman plots, especially in the RVC-2D subgroup. For an image with an actual DSC
equal to 0 and a predicted dice equal to Di (means the segmentation model segmented
some irrelevant area as a ROI), the x axis location for that point is 0.5Di and the y axis
location is −Di. This could explain why all of those awkward points are located on the line
‘y = −2x’. We also examined our segmentation performance retrospectively and found that
apical slices were hard to segment in some subjects. By using Bland–Altman plots, those
low-quality segmentations were obvious in our 2D-RVC group. Luckily, our classification
model successfully detected most of these segmentations.
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4.2. QC Performance Compared with Previous Methods

We compared our methods with a previous RCA method [7] and a DL-based method [8].
In Robinson’s work, they performed experiments on several datasets with 2D segmentations
for the RVC, LVC, and MYO subgroups. The MAE values were 0.030–0.146, 0.020–0.082,
and 0.044–0.268, respectively, compared to our results where the MAE values for RVC, LVC,
and MYO were 0.060, 0.021, and 0.032. One obvious drawback of the RCA method is the
need for a reference dataset. A larger reference dataset could lead to overestimation of
the segmentations’ quality. For the 3D segmentation QC performance, we compared our
results with previous DL-based QC results. The DSC for MYO was 0.017 ± 0.016 (ours)
vs. 0.016 ± 0.028 (DL); for LVC, it was 0.011 ± 0.020 (ours) vs. 0.012 ± 0.017 (DL). These
comparison results show that our models perform well for automatic QC regarding the LVC
and MYO structures. However, experiments were not performed on the RVC subgroup.

4.3. QC with the Mature Segmentation Model

In contrast to diagnostic applications, a QC system should prioritize the detection of
bad-quality segmentations, rather than improving the classification accuracy. As a result,
we chose the NDR as our primary criterion for the classification evaluation. Additionally,
we observed that deep learning segmentation models for cardiac segmentation are cur-
rently well-developed. The reported average DSC is 0.85–0.97 for the ACDC-2017 dataset
and M&M challenge dataset with various DL model structures [3,33–35]. As previously
mentioned, mal-segmentations at the slice level are primarily distributed in the apical or
basal regions of the heart. However, these low-quality segmentations have little effect on
the 3D DSC prediction. This partially explains why the 3D DSC is higher than the 2D DSC
(refer to Table 4). However, it is important to note that the absence of apical or basal slice
segmentations can significantly impact the 3D radiomics features, such as the maximal long
axis length, particularly in the shape feature group. This phenomenon was also observed
in our experiment (Supplementary Tables S7 and S8). Meanwhile, although coarse borders
may not significantly impact the 2D or 3D DSC, certain radiomics features are sensitive
to edges, as demonstrated in previous studies [36–38]. The characteristics exhibited by
radiomics-based quality control systems provide a new evaluation perspective compared
to previous methods. This makes radiomics an ideal method for automatic segmentation
evaluation and quality control. As shown in Figure 10, the segmentation of apical slices
remains challenging, which is why a quality control system is necessary, even with the use
of large models, such as SAM.

4.4. Technical Innovations and Clinical Insights

To the best of our knowledge, this is the first study to utilize radiomics as a quality
control tool for automatic cardiac magnetic resonance (CMR) segmentations. Our findings
demonstrate that radiomics techniques yield great DSC prediction results. In addition, our
method is capable of efficiently detecting mal-segmentations with NDR values greater than
0.85 in all 2D groups, achieving values of 90.0% [RVC], 93.0% [LVC], and 85.5% [MYO].
As a previous comparison showed, our models showed great QC performances for both
2D and 3D segmentations.

Our method is also computationally friendly. In our case, with a NVIDIA RTX
3090 GPU and an AMD 3900X CPU, the training time for the localization model and
segmentation model was less than 5 h. We also tested our training model with a NVIDIA
RTX 3060 (12 GB memory), which is also capable of carrying out the training process. More
importantly, the Unets used in this study were examined in various tasks with numerous
variants, and every center was able to develop dedicated models.

In this study, we aimed to provide a new perspective for QC, and we tested the feasi-
bility of our proposed method. Once the quality control pipeline is built, the operator only
needs to decide the ED frame, and the computation time is <10 s for each instance, which
is 60 times faster than that of the RCA method, as previously reported [7]. With a short
computation time, our method has the application potential for real-time DSC predictions
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in a clinical scenario. Timely detection of low-quality segmentations could save time for
researchers and reduce the human workload.

This method has another obvious advantage compared with the RCA method: we
do not need to select a reference dataset as in the RCA method [7]. Additionally, we do
not need to test the reproducibility of selected features. The manually derived ROIs were
only used for calculating the DSCs of automatic segmentations. The radiomics features of
manual segmentations were not extracted or analyzed.

4.5. Limitations

This study had several limitations. Firstly, while we did include the ACDC-2017
and M&M-2020 datasets, the majority of data for our training and validation datasets
(nearly 90%) were derived from a single center (Renji Hospital). Secondly, from a practical
perspective, most dedicated segmentation models have shown great results. To address this,
we included suboptimal models for the radiomics training dataset generation. However,
during the testing phase, we only used segmentations from the optimal S-UNets to evaluate
the model performance for both regression and classification. Thirdly, radiomic features
can only be extracted from images that have specified ROIs. Therefore, our method is not
applicable to images that lack segmentations. However, the missing information may be
reflected in the 3D radiomics characteristics. Fourth, the contours of different structures are
more clear in the ED phase than in the ES phase; therefore, only the ED phase was selected
in this study.

5. Conclusions

In our proposed deep radiomics-based segmentation and quality control system,
subjects with different disease types are analyzed, and the segmentation quality is evaluated
at both the 2D and 3D levels. Our results prove that this deep radiomics approach can
successfully identify “poor quality” segmentations with a high NDR and achieve a low
MAE among all anatomical groups.
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