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Abstract: End-stage hip joint osteoarthritis treatment, known as total hip arthroplasty (THA), im-
proves satisfaction, life quality, and activities of daily living (ADL) function. Postoperatively, evaluat-
ing how patients move (i.e., their kinematics/kinetics) during ADL often requires visits to clinics or
specialized biomechanics laboratories. Prior work in our lab and others have leveraged wearables
and machine learning approaches such as artificial neural networks (ANNs) to quantify hip an-
gles/moments during simple ADL such as walking. Although level-ground ambulation is necessary
for patient satisfaction and post-THA function, other tasks such as stair ascent may be more critical for
improvement. This study utilized wearable sensors/ANNs to quantify sagittal/frontal plane angles
and moments of the hip joint during stair ascent from 17 healthy subjects. Shin/thigh-mounted
inertial measurement units and force insole data were inputted to an ANN (2 hidden layers, 10 total
nodes). These results were compared to gold-standard optical motion capture and force-measuring
insoles. The wearable-ANN approach performed well, achieving rRMSE = 17.7% and R2 = 0.77
(sagittal angle/moment: rRMSE = 17.7 ± 1.2%/14.1 ± 0.80%, R2 = 0.80 ± 0.02/0.77 ± 0.02; frontal
angle/moment: rRMSE = 26.4 ± 1.4%/12.7 ± 1.1%, R2 = 0.59 ± 0.02/0.93 ± 0.01). While we only
evaluated healthy subjects herein, this approach is simple and human-centered and could provide
portable technology for quantifying patient hip biomechanics in future investigations.

Keywords: hip joint; wearable sensor; wearables; machine learning; neural networks; inertial mea-
surement units; instrumented insoles; OpenSim; biomechanics

1. Introduction

Quantifying hip kinematics and/or kinetics is critical for evaluating pathologies of
and treatments for the hip joint. One of the most common pathology/treatment pairs is
symptomatic hip osteoarthritis (OA) [1], and the end-state treatment for this disease, total
hip arthroplasty (THA) [2–4]. THA is incredibly common, with nearly 500,000 annual THA
procedures in the United States [5,6]. Characterizing hip kinematics/kinetics during com-
mon activities of daily living (ADL), e.g., standing from a chair, walking, stair ascent, [2–4,7]
allows for more realistic in vitro and in silico simulations of hip OA, which can improve
diagnostic and treatment methods (e.g., implant design and gait rehabilitation) [3,8–16].

Current gold-standard methods for quantifying healthy and pathological hip an-
gles/moments are mostly limited to expensive and non-portable laboratory/clinic-based
data captures. Typically, biomechanical modeling software (e.g., OpenSim) is used to
compute joint kinematics/kinetics using captured force plate and retroreflective or active
marker optical motion capture (MOCAP) data [17,18]. However, this approach is limited
by its high cost (e.g., force plates > USD 10K [19] and MOCAP fixed cost > USD 14K [20,21])
and non-portability.

Contrastingly, wearable sensors and force-instrumented insoles offer significantly
lower-cost portable modalities for monitoring biomechanics data in real-world settings

Bioengineering 2023, 10, 784. https://doi.org/10.3390/bioengineering10070784 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10070784
https://doi.org/10.3390/bioengineering10070784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0003-1309-0597
https://orcid.org/0000-0001-7072-7334
https://doi.org/10.3390/bioengineering10070784
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10070784?type=check_update&version=1


Bioengineering 2023, 10, 784 2 of 13

outside of the clinic/laboratory [22–24]. Inertial measurement units (IMUs) provide a
portable means for quantifying joint kinematics using small, electromechanical sensors
that are affixable to body segments. Force-measuring insoles are worn inside shoes to
quantify vertical GRFs during repeated gait cycles. Both sensing modalities facilitate
high-fidelity capture of kinematics/kinetics both inside and outside of laboratory/clinical
settings. In traditional biomechanical modeling, this requires precise fixation to patients,
is time consuming, and necessitates detailed coordinate transformations to transform
wearable data captured in local coordinate frames to an anatomic frame of reference for
kinematics/kinetics [25–27]. However, prior work in our own lab leveraged a machine
learning approach to calculate 2D (sagittal, frontal planes) joint angles/moments from
one shin-mounted IMU, one force-instrumented insole, and a simplified artificial neural
network (ANN) with two hidden layers and five nodes per layer [28].

While highly successful (relative root mean square error (rRMSE) = 15%; relative to
predicted average and ground truth moment ranges; R2 = 0.85), upright walking was the
only activity captured in that investigation. Although that task is common and easy to cap-
ture, it may not represent the most critical ADL to monitor before or after THA. In contrast,
stair ascent requires increased function (i.e., greater range of motion (ROM), improved
balance, etc.) before/after surgery and may represent a more specific and sensitive ADL
for evaluating function in these patients. Accordingly, the focus of this study utilizes a
similar approach to create and validate a ML algorithm (wearable-ANN approach) capable
of computing 2D (sagittal/frontal plane) hip joint kinematics/kinetics using IMUs affixed
to the shin and thigh and one force-instrumented insole under the ipsilateral foot during
stair ascent. As in other studies that develop computational algorithms, our investigation
used healthy individuals as a first attempt in creating this novel approach [29–32]. All three
sensors (2 × IMUs, 1 × force-instrumented insole) had input data streams for an ANN
(2 hidden layers, 10 total nodes) (Figure 1 Bottom). The performance of this algorithm
was compared with gold-standard optical MOCAP and force-measuring insole data inputs
for OpenSim (Figure 1 Top). Force-instrumented insoles were selected in favor of force
plates in order to collect repeated gait cycles while performing stair ascent. As in prior
investigations, the wearable-ANN approach would be considered successful if average
rRMSE was less than 13% [28,31]. Thus, we hypothesized that all variables (sagittal angle,
sagittal moment, frontal angle, frontal moment) would achieve rRMSE < 13%.
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Figure 1. Overview of study workflow. Three raw datasets were captured: (1) force-measuring
insoles (Vertical GRFs), (2) optical MOCAP (3D position of markers), and (3) wearable IMUs (3D
linear acceleration/angular velocity/magnetic field; 4D orientation). All three raw datasets were
pre-processed in MATLAB. Datasets #1 and #2 (Insoles and MOCAP) were inputted to the OpenSim
workflow (I-S; top, black). Datasets #1 and #3 (Insoles and IMUs) were inputted to the MATLAB
wearable-ANN workflow (W-A; bottom, grey). Sagittal and frontal hip joint kinematics (angles) and
kinetics (moments) were computed using both methods and then were plotted and compared.
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2. Materials and Methods
2.1. Data Capture

At the highest level, data collection involved quantifying subjects’ height/weight,
attaching and performing calibrations as recommended by the manufacturers for all sensing
modalities (Figure 2), and recording data during subject performance of stair ascent. In total,
17 healthy subjects (10 M; 26.8 ± 6.4 years; 1.74 ± 0.08 m; 81.6 ± 19.5 kg) were recruited,
consented, and enrolled from the local university population after institutional review
board approval (inclusion criteria: age ≥ 18 years, no musculoskeletal/neuromuscular
impairments impacting lower extremities, no terminal illness resulting in death within one
year, clinical full hip extension ≥ 10◦ and flexion ≥ 100◦, and complete participation in the
study) [33].
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Figure 2. Sensing modalities: (A) MOCAP markers (Helen Hayes lower body; 19 markers). (B) Left:
APDM Opal IMU, Right: IMU attachment to thigh and shank. (C) Loadsol iPad application and
force-instrumented insoles. (D) Example instrumented subject with all sensing modalities placed
appropriately.

More specifically, three sensing modalities were used (optical MOCAP, IMUs, and
force-instrumented insoles). Subjects then had retroreflective optical MOCAP markers ad-
hered to their skin over bony landmarks according to the modified lower body Helen Hayes
markers (Figure 2A) [34,35]. Six S250e cameras (OptiTrack Motive Body 1.10, NaturalPoint,
Inc., Corvallis, OR, USA) were calibrated according to the manufacturer’s instructions.
Three-dimensional optical MOCAP marker data were temporally synchronized during all
trials and stored on the local computer for processing after data capture. Subjects then had
two IMUs (Figure 2B; APDM v1 Emeralds, APDM Inc.; Portland, OR, USA; fs = 128 Hz)
attached to their dominant anteromedial shank and lateral thigh via silicone backed Velcro
straps (Waterloo Footedness Questionnaire, 13 right-footed) [36]. IMUs were calibrated
per manufacturer’s instructions and logged inertial data continuously throughout all stair
ascent trials. Lastly, subjects were fitted with previously validated force-instrumented
insoles, called “Loadsols”, to measure vertical GRFs (Figure 2C; Novel Electronics, St. Paul,
MN, USA; fs = 100Hz). Loadsols wirelessly streamed vertical GRF data over Bluetooth to
our laboratory iPad (Apple, Cupertino, CA, USA) for offline post-processing.

After subjects were fitted with all three sensor types (optical MOCAP, IMU, force
insoles), they completed 10 s stationary standing used for OpenSim model scaling and
3 × 10 s stair ascent trials at a set moderate pace (Speed 8, StairMaster StepMill 7000PT,
Vancouver, WA, USA; 20.32 cm rise × 23.5 cm run). Stair ascent was captured on a stair
exercise machine to facilitate capture of repeated, successive gait cycles in laboratory
(average gait cycles/subject/trial: 4.53 ± 0.62).



Bioengineering 2023, 10, 784 4 of 13

2.2. Data Pre-Processing
2.2.1. Overview

Data were pre-processed to prepare raw data for respective workflows (OpenSim
traditional biomechanical modeling workflow with optical MOCAP and insole data ver-
sus MATLAB ANN development/validation workflow with IMU and insole data (see
Figure 1)). For all subjects, the stair ascent trial with the least MOCAP marker trajectory
loss was utilized for final analysis. MATLAB scripts were written for filtration and temporal
synchronization using gait-cycle analysis (Figure 3) across all sensing modalities. Finally,
filtered and synchronized data were separated and passed to the respective workflows
(traditional modeling vs. ANN development/validation).
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Figure 3. Synchronization of 3 sensing modalities based on first HS time (THS: large Xs). Top:
anterior−posterior velocity of MOCAP heel marker with dotted line at velocity = 0 m/s. Middle:
vertical GRF with dotted line at force = 20 N. Bottom: IMU angular velocity about the mediolateral
axis of shank. THS from the IMU and insole were shifted to align with MOCAP THS (indicated by
arrows). Vertical red dashed line shows the updated common THS location after temporal shifting.

2.2.2. MATLAB Pre-Processing

Optical MOCAP marker trajectories were edited in Optitrack Motive software interpo-
lating/filling trajectory gaps and filtering data (low-pass Butterworth, fcutoff = 6 Hz) prior
to importing into MATLAB. An additional filter was created in MATLAB for Loadsol and
IMU data (low-pass Butterworth, fcutoff = 10 Hz). In MATLAB, Loadsol data were then
resampled (100→128 Hz) [23,30] to normalize the capture frequency across sensing modali-
ties. IMU data trials were separated using a manufacturer-supplied button connected to a
third IMU controlled by the research team during data collection to create trial “start” and
“end” timepoints. Utilizing a process deployed by Coley et al. and Yang et al., shank IMU
data used for gait analysis were filtered at 2.3 Hz rather than 10 Hz and were subsequently
rotated using a rotation matrix from the goniometrically captured rotation angle from real
IMU position to pure lateral position (121.3 ± 6.6◦) [37,38].

2.2.3. Temporal Synchronization (Figure 3)

Synchronization with respect to time was achieved across sensor types using previ-
ously published gait-based synchronization techniques. First, the initial heel strike (THS)
was located for all sensing modalities. All sensing modalities were then temporally shifted
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to align that time point with MOCAP THS. All files were then truncated for consistent data
length between sensors. For MOCAP, THS was identified by locating the point at which
anteroposterior velocity of the heel marker = 0 m/s immediately followed the swing phase
(Figure 3, top) [39]. To compute HS for Loadsols, we utilized a well-established threshold
of 20 N [39–41]. Accordingly, for Loadsols, THS occurred when data exceeded the 20 N
threshold with a positive slope (Figure 3, middle). Toe off was located similarly when the
Loadsol data descended to less than 20 N. Loadsol heel strikes and toe offs defined each
gait cycle’s percentages (stance % = 67.0 ± 3.4%). THS for IMUs was located via the first of
two local minima of the shank’s mediolateral axis angular velocity during the stance phase
(Figure 3, bottom) [37,38,42].

2.2.4. OpenSim Workflow

Calculating hip angles/moments for the gold-standard method was completed via
OpenSim with MOCAP and Loadsol data as inputs [17,18]. Scaling, IK, and ID settings
were selected via use of OpenSim Tutorial 3 [43]. First, standing trial data were processed
and scaled, fitting the generic gait2392 model to the specific anatomy of each subject [44].
The height of each subject-specific model was manually scaled given that no MOCAP
markers were utilized on the upper body [45]. The scaled model and MOCAP data from
stair ascent trials were combined together to compute the joint angles [46]. Vertical GRFs
from Loadsol were then applied to the talus defined by the midpoint between the MOCAP
ankle markers [47]. These data were then combined with IK joint angles in the ID tool to
compute the net joint moments. Finally, IK (joint angles) and ID (joint moments) results
were imported into MATLAB for gait-cycle normalization (stride time to gait percent). Data
were averaged across the cohort (ensemble averaged) and across gait cycles using the gait
percentage vector.

2.2.5. ANN Workflow

A shallow (2 hidden layers) feed forward ANN was created via a subject-general
approach for the wearable-ANN workflow. Leave-one-out cross-validation (LOO-CV)
trained the ANN by withholding one subject’s data for validation. Training rounds involved
17 repetitions, allowing all subjects to function as the validation dataset with inputs,
including activity duration, dominant foot vertical GRF, and IMU data. Each IMU contained
13 inputs (3D acceleration, angular velocity, and magnetic field; 4D orientation quaternion)
resulting in 3840 individual data points per IMU per trial (30 s trial, 128 Hz). The output
layer of the ANN developed in MATLAB computed sagittal/frontal plane hip angles and
moments. These were subsequently stored as a series of arrays of the respective metric
during each gait cycle.

Prior work was utilized as a model for ANN architectures herein [30–32]. Hidden
layers were created via hyperbolic tangent functions, whereas the output layer was created
by a linear function. Hyperbolic tangent functions are more sensitive to input data stream
variability and afford a greater working range than commonly used sigmoidals [30,32,48,49].
Although larger ANNs can model complex relationships more effectively, they are prone
to longer computations and overfitting training data. Previous studies (<20 subjects,
<150 nodes) [30,32] have facilitated optimizing the ANN to an architecture with two hidden
layers and five nodes per layer, using all previously described inputs.

LOO-CV was implemented during training by first normalizing all ANN inputs
(range = −1, 1) with the map-minmax function in MATLAB. Then, the ANN was initialized
via the Nguyen and Widrow function (initnw in MATLAB). Finally, the ANN was trained
using the Levenberg–Marquardt algorithm (trainlm in MATLAB). Repeated training al-
lowed each subject to perform as the validation set. Performance metrics were averaged
across separately trained/tested ANNs (17 subjects, 10 training rounds = 170 trained and
tested ANN iterates) [30–32]. Initnw filled the weights/biases with initial values (“initial-
ization”) and trainlm backpropagated/optimized until the gradient stopped decreasing for
>6 training passes.
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To evaluate ANN performance, coefficients of determination (R2) and rRMSE were cal-
culated by comparing the gold-standard workflow to the wearable-ANN workflow. ANN
performance was averaged across 170 training iterates. Subject-specific ANN performance
was evaluated via violin plots. The shape of the violin was determined via the kernel
density estimation of the probability distribution curve of the dataset with statistical outlier
removal. Paired t tests were then conducted on the average angles and moments between
the two workflows (gold standard vs. wearable-ANN) at critical percents of the gait cycle,
including heel strike (0%), mid-stance (30%), toe off (~60%), and mid-swing (80%).

3. Results
3.1. Stair Ascent on the Exercise Machine

Sagittally, stair ascent required greater hip ROM than typically required during walk-
ing (55.6◦) but lower peak hip flexion moments (1.0 Nm/kg). In the frontal plane, stair
ascent exhibited greater ROM (17.4◦) and peak abduction moments (1.6 Nm/kg) than
typically seen during walking. The first of two abduction peaks during stair ascent stance
was slightly larger than the second.

3.2. Gold-Standard Approach

Average hip angles (Figure 4A, top; Table 1) and moments (Figure 4A, bottom; Table 1)
of the group are displayed with ±1 SD (shaded) throughout the stair ascent gait cycle. The
gold-standard angles/moments had similar shape to previously published literature values
but with larger peak moments [50–52]. Like walking, peak extension/flexion moments
occurred at ~20%/~50% of the gait cycle, respectively [28]. In the frontal plane, the gold-
standard approach resulted in the expected double abduction peak during stance.
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Table 1. Descriptive statistics and performance metrics (R2 and rRMSE) for sagittal (S) and frontal (F)
angle (θ) and moment (µ) using both the benchmark method (B-Mk) and wearable-ANN method
(W-ANN). Statistically significant differences (p < 0.05) between the B-Mk and W-ANN methods are
displayed as bold, italicized text.

Gait (%) Method S θ (◦) S µ (Nm/kg) F θ (◦) F µ (Nm/kg)

0
B-Mk 58.0 ± 5.5 −0.1 ± 0.2 1.1 ± 4.1 −0.003 ± 0.04

W-ANN 50.5 ± 7.2 −0.2 ± 0.1 0.02 ± 2.2 −0.07 ± 0.09

30
B-Mk 25.2 ± 8.3 −0.7 ± 0.3 2.8 ± 4.0 −1.3 ± 0.2

W-ANN 27.9 ± 5.7 −0.5 ± 0.3 2.6 ± 1.9 −1.1 ± 0.2

60
B-Mk 4.5 ± 5.5 0.6 ± 0.4 −3.1 ± 4.3 −0.7 ± 0.4

W-ANN 8.4 ± 6.2 0.6 ± 0.4 −3.1 ± 2.1 −0.7 ± 0.4

80
B-Mk 32.6 ± 10.4 −0.2 ± 0.1 −4.4 ± 3.7 −0.01 ± 0.04

W-ANN 30.7 ± 9.1 −0.1 ± 0.1 −4.3 ± 1.7 −0.03 ± 0.05

R2 0.80 ± 0.02 0.59 ± 0.02 0.77 ± 0.02 0.93 ± 0.01

rRMSE 17.7 ± 1.2 26.4 ± 1.4 14.1 ± 0.8 12.7 ± 1.1

3.3. Wearable-ANN Approach

Thick curves in Figure 4A demonstrated that gold-standard and wearable-ANN
computed angles/moments both showed consistent curvature. Wearable-ANN peaks
were consistently reduced relative to the gold-standard approach. Excluding adduction
angle, rRMSE was <20% (Table 1). Adduction moment was most successfully predicted
(R2 = 0.93, rRMSE = 12.7%). Adduction angle was most challenging to predict (R2 = 0.59,
rRMSE = 26.4%). Statistically significant differences existed between the two computation
methods for flexion angle and adduction moment at 0% of the gait cycle as well as for
flexion moment at 80% of the gait cycle. While statistically significant, it is unclear if these
differences are clinically relevant.

Violin plots (Figure 5) show wearable-ANN performance variability across subjects.
Dots represent average subject performance as the validation set across rounds (white
dot = median, grey bars = IQR). The wearable-ANN approach predicted sagittal plane
angle well (i.e., wide, short violin near R2 = 0.9; R2 min~0.5); however, it had more
variability predicting sagittal moment (i.e., elongated violin with two peaks at R2~0.9 and
0.6). Adduction moments were predicted with high accuracy (0.8 < R2 < 0.99). Predicting
adduction angles varied more widely across subjects (0 < R2 < 0.92).
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4. Discussion
4.1. Overview

Our overarching objective herein was to develop and validate a machine-learning-
based method for quantifying 2D hip joint kinematics and kinetics in healthy individuals
during stair ascent. We hypothesized that all metrics (sagittal angle, sagittal moment,
frontal angle, frontal moment) would achieve rRMSE < 13%. However, our hypothesis
was rejected for three of the four metrics (sagittal angle = 17.7%, sagittal moment = 26.4%,
frontal angle = 14.1%). The remaining metric (frontal moment) hypothesis failed to be
rejected (rRMSE = 12.7%). Although our hypotheses were rejected in three measures,
much of the increase in rRMSE was driven by differences between the methods that are
likely not clinically significant (e.g., 0.1 Nm/kg for sagittal moment at 80% gait cycle).
One notable statistically significant difference that may be clinically significant was the
difference between the two computation methods for sagittal angle at 0% of the gait cycle
(58.0◦ vs. 50.5◦).

4.2. Stair Ascent on Exercise Machine

The stair exercise machine allowed for easy, continuous capture of repeated gait cycles.
However, the steps were taller and shallower than standard steps. Moreover, they moved
posteriorly as subjects ascended in contrast to standard stationary stairs. Previous work
has shown that higher staircase inclines lead to increased hip flexion [53]. It is also likely
that moving steps assist in hip extension and hamper hip flexion. Specifically, because
the step is moving posteriorly, subjects do not need to exert as much force during hip
extension but need to generate a large flexion moment to lift their leg up and to clear the
next step. Further, the CoP error (discussed below) confounds robust characterization of
the biomechanics of stair ascent on the exercise machine. Future work should model CoP
movement on the steps, which would need to consider subjects with long feet “tip-toeing”
due to shallow steps.

4.3. Gold-Standard Approach

The gold-standard approach for computing hip moments matched the curvature of
previously conducted studies [2,50,52–55]. However, peak flexion moments were >25%
larger than those calculated by Costigan et al. [50]. Most studies report no isolated peak
flexion moment during stair ascent, but the gold-standard approach computed a substantial
peak (1.0 ± 0.26 Nm/kg). These deviations may be explained by always placing the
center of pressure where the talus is located. This methodological decision increases the
vertical GRF lever arm during the initial/terminal stance by several centimeters (Figure 6).
Previous work has characterized moment sensitivity to small errors in CoP, finding that
1 cm anterior shifts increase maximum extension moments by 8%, 1 cm posterior shifts
increase maximum flexion moments by 16%, and 3 cm lateral shifts increase the double-
peak abduction moments by 20% [56,57]. As such, improving how the CoP is modeled
in this approach could improve the final moment results. Future work using our gold-
standard approach should model CoP movement and validate the approach against optical
MOCAP and force plates. One other potential improvement for this would be leveraging
a similar approach to Chiu et al. Their work recommended quantifying the CoP path
throughout the gait cycle as a percentage of that gait cycle as well as foot length percentage.
This could be leveraged to estimate CoP without the need for direct measurement [58].
Additional approaches recommend subtracting a constant offset or leveraging wearable
instrumented-insoles to compute CoP [59–63]. Perhaps pressure-sensing insoles are the
most promising approach because developed algorithms can compute nonvertical GRF and
CoP, which may be important for studying gait pathologies [64,65]. In general, the gold-
standard method utilized herein matched well with prior work and allowed for comparison
to the proposed wearable-ANN approach.
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4.4. Wearable-ANN Approach

The proposed approach using wearable sensors and ANNs (2 hidden layers, 10 total
nodes) achieved average R2 = 0.77 and rRMSE = 17.8% across all outputs and subjects. This
was slightly higher than our original aim of the error metrics described by Mundt et al.
of rRMSE < 13% [31]. The difference between the two methods is likely attributable to a
number of factors, including some anomalous individual subjects (e.g., one subject rRMSE
< 25%), portions of the gait cycle that have greater soft tissue noise (e.g., heel strike at 0%
gait cycle), and differences that are statistically significant but that may not be clinically
relevant (e.g., sagittal moment at 80% gait cycle). Although these differences are real, this
~5% difference in rRMSE values is likely not clinically relevant. Likely more critical and
clinically valuable, however, may be angles/moments described at different time points
during the stair ascent gait cycle (e.g., heel strike).

In an ideal setting, the ANN design for quantifying joint angles and/or moments
would be leveraged biomechanical modeling. However, connecting biomechanical model-
ing (i.e., physics-based with machine learning approaches (i.e., ANN-based) has historically
been difficult. This is especially true for subject-general approaches. Lim and her co-authors
created a model with linked segments to guide creation of their ANN but eventually utilized
trial and error to determine the appropriate number of hidden nodes [30]. In our opinion,
the initial development of wearable-ANN approaches should likely instead acquire train-
ing data that more appropriately capture the variability expected in future experimental
datasets. The results herein, and those presented by the previously noted Lim et al., indicate
that shallow ANNs may be trained with relatively small datasets (<600 gait cycles) and still
achieve success (average R2 = 0.77, rRMSE = 17.8% presented here).

Poor ANN performance indicates that the training data did not represent patterns in
the validation set. The poorest prediction metric (adduction angle) seems to have greater
variability across subjects than the other output metrics. The standard deviation of gold-
standard computed adduction angle was larger than most other metrics, especially as a
percent of the mean. The ANN approach yielded reduced standard deviation, suggesting
that the ANN likely struggled with highly variable frontal kinematics. In contrast, the
ANN method computed frontal plane moments most successfully (R2 > 0.90) and reported
a standard deviation similar to that of the gold-standard computation method. Improv-
ing ANN performance may be accomplished by leveraging data augmentation to add
variability into training data, as shown by Mundt et al. [31]. Another opportunity for
improving this ANN approach could be found in customizing ANNs for specific subject
categories (e.g., age range, gender, pathology) [66]. Finally, improving ANN performance
could be accomplished via sensor types/quantities/placement optimization for particular
applications.
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4.5. Limitations

We leveraged a previously published method to quantify a movement beyond level
ground walking. While this represents an exciting step forward in remote sensing capa-
bilities, there are limitations. Notably, the error was greater than hypothesized across all
subjects (rRMSE = 17.7% vs. 13%). Additionally, we only evaluated one movement in a
well-controlled setting. Another limitation includes the use of a StairMaster compared to
traditional stairs. Specifically, although we did not experience marker occlusion or other
issues while tracking optical MOCAP markers, care must be taken when arranging cameras
around a StairMaster. This may or may not be the same when capturing biomechanics data
on traditional stairs. Finally, while these preliminary results are encouraging, we elected to
conduct a statistical evaluation on discrete points in the gait cycle. The statistical surety
of our findings could have been different if we conducted a statistical evaluation on the
continuous data stream (e.g., SPM1D). These limits represent an additional opportunity for
future work.

5. Conclusions

Despite the noted limitations of the present work, we have shown that the previously
developed method for using wearable motion sensors and ANN to evaluate joint kinemat-
ics/kinetics is feasible in movements that are more complex than level-ground ambulation.
This implies that this approach can be utilized to quantify a variety of ADL outside of
well-controlled laboratory/clinical settings. When extrapolated beyond healthy subjects
into patient populations, this has the potential to impact a variety of patient populations,
including individuals receiving joint replacements. As telemedicine continues to advance,
this has promise to become a primary modality of diagnosis and treatment development.
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