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Abstract: Intermittent bolus feeding for E. coli cultivations in minibioreactor systems (MBRs) pro-
foundly affects the cell metabolism. Bolus feeding leads to temporal substrate surplus and transient
oxygen limitation, which triggers the formation of inhibitory byproducts. Due to the high oxygen
demand right after the injection of the substrate, the dissolved oxygen tension (DOT) signal exhibits a
negative pulse. This contribution describes and analyzes this DOT response in E. coli minibioreactor
cultivations. In addition to gaining information on culture conditions, a unique response behavior
in the DOT signal was observed in the analysis. This response appeared only at a dilution ratio per
biomass unit higher than a certain threshold. The analysis highlights a plausible relationship between
a metabolic adaptation behavior and the newly observed DOT signal segment not reported in the
literature. A hypothesis that links particular DOT segments to specific metabolic states is proposed.
The quantitative analysis and mechanistic model simulations support this hypothesis and show the
possibility of obtaining cell physiological and growth parameters from the DOT signal.

Keywords: dissolved oxygen tension; E. coli cultivation; mechanistic model; data-driven analysis;
signal analysis

1. Introduction

The development of a biopharmaceutical process typically involves three stages. In
the first stage, the organisms’ screening and characterization occur. Second, the reaction
conditions (e.g., medium and process variables) are optimized. In the last stage, the scale-
up to pilot and production scales takes place [1]. During these phases, a high number of
cultivation experiments are required [2].

Currently, high throughput technology (HTP) is widely used to accelerate process
development [3,4]. To achieve successful HTP cultivations, full automation, miniaturization,
and process monitoring and control capabilities are required [3]. Many HTP platforms
with miniaturized bioreactors have been commercialized in the last decade. Long et al. [3]
provided a nice review on that. The miniaturized bioreactors can be categorized into [5]: (I)
the sub-milliliter category, usually called microbioreactors [5,6]; and (II) the 1–10 milliliter
category, usually called minibioreactors [5,7]. Bioreactors with a volume of more than 10 mL
and usually in the range of 10–100 mL are called small-scale bioreactors [5]. Miniaturized
stirred bioreactor systems (MSBRs), sometimes simply called (MBRs) [8–10], are designed
to resemble the conventional stirred lab-scale bioreactor systems and have been developed
as an alternative to shake flasks and microtiter plates (MTPs) [2,11].

The bioprocess development for MBR cultivations has been introduced for different
organisms such as E. coli, S. cerevisiae, and Bacillus subtilis [1,5,8,11]. The bacterial species
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of E. coli are suitable candidates for miniaturized systems due to their low susceptibility
to shear damage, which allows for higher agitation rates [2]. Normally, E. coli cultivations
in MBRs rely on intermittent bolus feeding strategies with relatively high frequencies by
using automatic pipetting systems for nutrient addition, pH titration, and by taking a
limited number of at-line samples. Due to the small culture volume, the collection of offline
reference samples is very limited or not possible [2]. MBR reactors usually have different
stirring and gassing elements [8,12]. In addition to temperature, pH, and the dissolved
oxygen tension, the feeding strategy is known to strongly affect protein expression in
E. coli [1,13]. Most of the relations describing these effects are based on a completely
continuous nutrient addition, which is also the predominant method used in large scale
production. In the MBR scale, continuous feeding is hard to realize because of practical
reasons [1]. On the other hand, intermittent bolus feeding results in drastic changes in the
nutrient concentrations before, during, and after each feeding pulse. Ferenci [14] proposed
a concept of “hunger” and “starvation” states, and Vasilakou et al. [15] recently proposed
a “feast-famine” concept, both depending on substrate availability. Both contributions
reported on the changes in the physiological and metabolic responses. Vasilakou et al. [15]
showed that changes happen over short and long periods of time. By considering an
immediate glucose addition in a typical E. coli culture, the cell consumes all glucose via
glycolysis, with one share of the pyruvate being further metabolized via the oxidative
pathway, whereas the excess is reduced in the fermentative pathway, also known as the
overflow metabolism [15–17]. The accumulated acetate can then be consumed oxidatively
by the cell. Hence, intermittent feeding leads to frequent changes in metabolic states [1] and
transitional oxygen limitation, which can negatively affect cell physiology and growth [1,14].
That is why the oxygen supply is a critical process parameter in aerobic cultivations [18].
Insufficient oxygen transfer to the liquid phase to satisfy the oxygen needs of the cell is a
known issue for MBRs [5,19–21]. The availability of oxygen in the medium dramatically
affects the performance of the cells, leading to drastic changes in the cultivation kinetics [22].
It was noted that overflow can also be detected under continuous feeding conditions by
superimposing short pulses to the substrate feed rate (see the work of Akesson et al. [17]).

Dissolved oxygen tension (DOT) is a commonly obtained online signal in aerobic cul-
tivations, and measures the oxygen saturation in the liquid phase. In addition to providing
information on oxygen availability and saturation in the medium, the signal dynamics con-
tain important information on the cell metabolism. For example, Refs. [17,23,24] showed
the possibility of controlling the inhibitory by-product production in E. coli by avoiding
the anaerobic metabolism using information derived from DOT sensors. However, the
encoded metabolic activities in the DOT signal are ambiguous, and the signal has high
and low frequency details; hence, separating the valuable characteristics from the back-
ground noise can be difficult. Also, a combination of sensor time delay and high substrate
affinity of E. coli hinders a clear and direct interpretation of the DOT signal [10]. The DOT
signal is influenced by two opposing components [13]: cell oxygen demand defined by
the oxygen uptake rate (OUR), and the oxygen transfer to the medium by reactor aeration
and stirring systems defined by the oxygen transfer rate (OTR). If the stirring and aeration
parameters are set at a constant and no control over the dissolved oxygen level in the
medium is applied, the metabolic activities described by OUR can be revealed in the DOT
signal. Many contributions reported on the response behavior of the DOT signal and the
possible relationship between the metabolic activities of E. coli and specific responses of
the DOT signal [16,25–29]. Lin et al. [16] reported on the difference in the slopes of the
DOT signal with different substrate types. The analysis showed that cells have different
oxygen demands and uptake rates for glucose and acetate. The authors hereby did not find
any difference if the acetate was introduced from outside the reactor or if it was produced
by the cell’s overflow metabolism. After the complete assimilation of all nutrients, the
DOT signal returns to the saturation value that is mainly governed by the reactor specific
oxygen transfer coefficient (Kla), and the oxygen concentration gradient between the gas
and liquid phases.
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In this contribution, in addition to the already reported DOT signal behaviors, an
additional DOT response behavior could be observed. This newly observed response
appears as an additional signal segment for a short time under certain conditions. Figure 1
shows two examples of DOT pulses in an actual E. coli cultivation in a minibioreactor
system, in which the following DOT segments are distinguished. The first segment occurs
after substrate addition and is associated with a direct decline. The second segment occurs
after the end of the first segment and is characterized by a slight increase, a flattened curve,
or a slight but prolonged decrease. The third segment is aligned with a decline, but with
a different slope to the first segment. The fourth segment is aligned with a return to the
saturation value.
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different responses to substrate additions: a signal with four segments (left) and a signal with two
segments (right).

This contribution presents a systematic experimental study and an analysis of the DOT
signals recorded in E. coli MBR cultivations with intermittent bolus feeding. The feeding
plans were designed to have a systematic variation in the feeding frequency and amplitude.
The paper’s novelty lies in the detailed analysis of the DOT signal and the possibility of
retrieving important physical and biological information from the signal dynamics. The
hypotheses and quantitative results from the analysis were checked via (I) a comparison to
literature values; and (II) mechanistic model simulations. Overall, the analysis promotes a
hypothesis on a metabolic adaptation behavior linked to the newly-observed DOT segment.
The proposed analysis and modelling approaches provide a better understanding of the
intermittent bolus-feeding effect on E. coli cultivations in MBRs and help address oxygen
supply issues. The paper is arranged as follows. Section 2 contains information on the
experimental setup and design. Section 3 shows the experimental results and the DOT
segmentation and correlation results. The inferred hypotheses, quantitative analysis, and
simulation results are presented in Section 4. Discussions and future perspectives are
presented in Section 5.

2. Materials and Methods
2.1. Minibioreactor System and Media

For the E. coli cultivation experiments, a block of eight minibioreactors (bioREACTOR8;
2mag AG, Munich, Germany) equipped with pH and dissolved oxygen (DO) sensors (Mini-
Bioreactors HTBD LG1-PSt3-Hg; PreSens GmbH, Regensburg, Germany) and fluorescence
readers (MCR-LG1-v2; PreSens GmbH, Regensburg, Germany) was used. Temperature
control and headspace cooling of the bioreactor blocks were achieved by a VersaCool™
Refrigerated Circulating Bath (Thermo Fisher Scientific GmbH, Schwerte, Germany). The
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gassing and mixing of the culture vessels were provided by the gas-inducing and inductive
stirring elements.

An at-line microplate spectrophotometer (SPECTRAmax PLUS384; Molecular Devices
Corporation, San Jose, CA, USA) was used for the optical density measurements. A robotic
arm (Robotic Manipulator Arm (RoMa); Tecan Trading AG, Männedorf, Switzerland)
transferred the samples to a deep freezer storage unit for later HPLC analysis. Glucose
and acetate concentrations of the filtered supernatant were analyzed by HPLC (Thermo
Fisher, Waltham, MA, USA) with a Supelco gel C-610 H ion exchange column (Sigma-
Aldrich, St. Louis, MO, USA) and a refractive index detector (Thermo Fisher, Massachusetts,
USA). The mobile phase was 0.1% H3PO4, with a constant flow rate of 0.5 mL/min at 4 ◦C.
The average sample volume was 300 µL. The headspace of the bioreactors block was cooled
to 4 ◦C to minimize evaporation. The media composition is described in [8].

Experimental runs were conducted with the E. coli BL21 strain, carrying an IPTG
inducible plasmid encoding for a recombinant protein. The strain variant BL21 is known to
produce low amounts of acetate during growth on high glucose concentration media [30].

2.2. Experimental Design

To calibrate the lower limit of the DO sensors at 0%, all reactors were gassed with
250 mL/h nitrogen for 20 min, and the stirring speed was set to 2800 rpm. To calibrate
the upper limit of the DO sensors at 100%, all reactors were gassed with 250 mL/h air for
20 min.

After calibration, the stirring speed was set to 1900 rpm, and the gassing was set to
62.5 mL/h air for the batch phase, after which the stirrer speed was increased to 2800 rpm.
Each experimental run was initiated with 8 mL of medium and 5.7 mg/mL dry cell weight.
The batch phase lasted for almost 13 h. After that, the fed-batch started with a bolus feeding
of glucose. The concentration of the fed glucose was 600 mg/mL. For two hours at the
beginning of the fed-batch, a ramp in the pH from 6.8 to 7.2 was considered to facilitate
the induction of the culture. Two hours after the pulsed fed-batch started, the culture was
induced with IPTG 76 µL (100 mM). This procedure is part of the fermentation protocol
proposed by [8]. Sampling and analysis were started after induction, and five samples were
taken throughout the production phase.

The feeding plan for all reactors is shown in Table 1. In addition to the reference feeding
plan [8], which delivers 6.5 µL of glucose solution to the medium (reactor D and E) every
9 min, different feeding plans were also considered. All feeding plans were designed so that
the volumes and frequencies of the substrate pulses resulted in the complete consumption
of the substrate in between pulses, i.e., it was assumed that no substrate accumulation
takes place. In the experiment, the pulses’ amplitude and interval can deviate due to
conflicts with other internally scheduled tasks such as sampling or pH titration. More
information on the experimental setup and protocols can be found in [8]. A picture of the
full experimental system is given in Figure 2.

2.3. Computing Platform

All computations for data analysis and numerical modeling were carried out in MAT-
LAB R2022a. “ODE suite”, primarily ODE15s, was used to solve the mechanistic model.
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Table 1. Intermittent bolus feeding plan for the eight minibioreactors. For all runs, the feeding
concentration was 600 mg/mL.

Reactor Nr.

Total Feeding Volume
Compared to the
Reference Plan

[%]

Individual Feeding
Pulse Volume

[µL]

Feeding Pulse Time
Interval

[min]

Average Dilution Ratio
per Feeding Pulse

[µL/mL]

A 25% 5 30 0.625

B 50% 5.5 20 0.688

C 75% 6.5 12 0.813

D 100% 6.5 9 0.813

E 100% 6.5 9 0.813

F 125% 8.5 9 1.063

G 150% 6 4 0.750

H 175% 7.5 4 0.938
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3. Experimental Results and Signal Analysis
3.1. Experimental Run Results

Figure 3 shows the DOT signal and feeding pulses of the eight experimental runs. The
DOT pulses seem consistent for all runs. Despite some deviations, the glucose feeding
pulses generally seem to be equidistant with similar amplitudes for each run, as shown in
Table 1.
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Overall, the frequency and amplitude of the negative DOT pulses correspond with
the amount of glucose delivered and the pulse frequency. For runs with a higher glucose
addition (F, G, H), the upper and lower boundaries of the DOT signal drift downward
toward the end of the runs. This trend becomes more pronounced in the experimental
runs with the largest feeding volumes, reaching limiting oxygen conditions in G and H.
A closer look at the individual DOT pulses reveals that some pulses have a different profile
than others. These pulses not only show two segments: a straight sharp decline and then a
steady return to the saturation value (as commonly described in the literature), but instead
they show four segments: first, a sharp decline, which is followed by a transition involving
a slight increase, flattened curve, or a slight but prolonged decrease and then another sharp
and short decline. After that, a steady return to the saturation value occurs. Both types of
pulses are observed in all runs.
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The biomass, glucose, and acetate measurement results are shown in Appendix B—
Figure A1. The volume changes are shown in Appendix B—Figure A2. Biomass measure-
ments indicate higher biomass in experiments with more frequent nutrient additions and
higher nutrient amounts per pulse. The few measured acetate and glucose concentrations
are always below 0.5 mg/mL, which indicates no extensive nutrient accumulation, but the
existence of acetate indicates a slight overflow metabolism.

3.2. DOT Signal Analysis

As observed in the experimental results, each DOT pulse is assumed to have four
segments, but this is not necessarily the case. It is hypothesized that each segment represents
a unique response behavior similar to the responses shown in Figure 1. This assumption
is made based on observations derived from the literature and the additional response
observed in the experiments. For the sake of the analysis, a segmentation algorithm
(described in detail in Appendix A) is built to detect the segments.

The segmentation results are shown for one experimental run (reactor E) in Figure 4.
The top subfigure shows the DOT raw (interpolated) signal. The subplots below show
the segmentation results for each individual pulse. It was noticed that pulses with four
segments are generally aligned with feeding pulses with a high amplitude.

After signal segmentation, different segment metrics (descriptive features) were extracted.
The following metrics are defined for each single (the first, second, third, and fourth)

segment and are schematically displayed in Figure 5.

A. Segment time length, defined as

∆Ti = tend
i − tstart

i (1)

B. Segment slope, defined as

∆DOTi
∆Ti

=
DOTend

i − DOTstart
i

tend
i − tstart

i
(2)

C. Segment area, the area under the DOT curve

Ai =

tend∫
tstart

DOTi dt (3)

These metrics were calculated for every pulse in the eight experiments, and were
later correlated with process parameters such as the dilution ratio or biomass and acetate
measurements. The correlations are qualified by the R2 goodness of fit parameter and
the r Pearson correlation coefficient. Table 2 gives an overview of all metrics considered,
and corresponding results are given in Appendix D. In the following paragraphs, only
meaningful results with sufficiently large R2 and r were selected and discussed in detail.

Table 2. Signal analysis metrics of each DOT pulse; (X) refers to the analyzed combinations.

Metric Segments
1st 2nd 3rd 4th All

A Time length x x x x

B Slope x x x x

C Area x

Similarly, the area of the OTR is calculated once the KLa value is known. Based on this
area, the overall oxygen mass transferred to the medium is calculated.
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Figure 5. Segmentation of the DOT signal and relevant parameters for the quantification of extractable
metrics (∆T3 and ∆DOT3 are given as an example). Each DOT pulse is assumed to have four segments,
although this is not necessarily the case.

Metric A: Segment Time Length

A segment length gives some information on how long a certain metabolic state lasts.
Figure 6 shows the time length of the second segment for all experimental runs along
the time course of the cultivations. The time length seems to be high for all runs at the
beginning and lower toward the end of the cultivation. The second segment does not
appear for all glucose pulses, as shown in Figure 4, and here the time becomes shorter
toward the end of the cultivation. The mean of the reported values is 31 s, with a 6.5–55.5 s
range for two standard deviations.
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Figure 7 shows the third segment time length against the dilution ratio, biomass
concentration, and dilution per biomass unit. Based on the overall hypothesis, the third
segment is linked to the oxidation of the formed acetate. The relationships between
the segment time length and the feed amount and biomass concentration could provide
information on the formed acetate amounts. The points for the biomass were calculated
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for the pulses in the close vicinity of the samples where the biomass concentration change
is neglectable.
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Figure 7. Time length of the third segment against the dilution ratio, the biomass concentration, and
the dilution ratio per biomass concentration.

The figure shows almost no correlation between the third segment time length and
the dilution ratio, and a weak relationship with biomass. This is because the effects of the
biomass and the dilution ratio are alternately overlooked from many points in both figures.
For example, a high dilution ratio with a large biomass concentration results in the same
time duration as a low dilution ratio with a low biomass concentration. However, there
seems to be a correlation with the dilution ratio per biomass unit.

Results for the first, second, and fourth segments are given in Appendix D—Figure A3.

Metric B: The Slope of the Segments

The analysis of the slopes of the detected segments is shown in Figure 8. In general, the
slope contains information on the overall speed of the reactions, and therefore information
on how rapidly glucose and acetate are consumed, as well as the oxygen transfer rate of
the reactor system. All segments’ slopes appear to have a relatively similar and constant
trend in all runs. The slopes of the first and third segments show negative values with a
visible difference between them. The slope of the fourth segment is always positive. For
the second segment, positive values are detected at the beginning of the runs, and then the
values become lower and closer to zero, or slightly negative. Again, the second and third
segments do not appear for all glucose pulses. The slopes of the first, third, and fourth
segments drift slightly towards the end of the cultivations. The Bartlett statistical tests
for all runs show high values (x2 ≈ [1150, 2600] with p-value = 0), and the ANOVA test
also shows high values for all runs (F ≈ [1700, 97, 000] with p-value = 0), suggesting a
significant difference between the slopes of the different segments.

Metric C: The Area of the Pulse

The area metric can only be determined for the overall pulse, and it contains informa-
tion on the overall amount of oxidatively consumed nutrients. Figure 9 therefore suggests
a possible correlation between the area of the DOT pulse with the dilution ratio and the
biomass concentration. The results in the figure (right) are only plotted in the neighborhood
of the biomass samples, where the biomass concentration change is neglectable.
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4. Retrieval of Physiological Information from DOT Signal Segments
4.1. Physiological Analysis of the Segments
4.1.1. Hypothesis on the Physiological Meaning of the Segments

From the visual inspection of the figures in Section 3.2, the following hypotheses on
the segments can be made:

The first segment starts after adding the glucose to the medium with a short delay of
roughly 2–4 [s]. The slope of this segment is always negative and smaller than the third
segment slope. Cells in this segment consume the available glucose by glycolysis and
the resulting pyruvate is further oxidized to CO2, and some excess is reduced to acetate
in the overflow regime. As expected, the amount of accumulated acetate in the medium
depends on the volume of the glucose added, the overall biomass concentration, and the
oxygen availability.

In the second segment, the segment’s length and slope differ between the experiments
and along each experiment. This segment can be noticed because of the increase to a higher
DOT value; a flat, or a very slow decrease of the DOT signal, which indicates a transition
phase from the first segment to the third segment; and a potential adaption time from
glucose to full acetate oxidation capacity. The second segment appears at a dilution ratio
per biomass unit higher than a certain threshold.

In the third segment, the slope is always negative but is less steep than the first segment
slope. The cells are assumed to oxidize the accumulated acetate at their full capacity. It is
possible that the acetate is already partly oxidized during the second segment.

The fourth segment starts when the DOT pulse reaches the minimal value and ends
when the DOT reaches its starting point. This segment features a return to higher DOT
values, mostly (but not necessarily) to the saturation value. The metabolism in the whole
fourth segment is assumed to be inactive, and the increase is mainly driven by the oxygen
transfer rate of the reactor system.

4.1.2. Quantitative Analysis

Figure 10 shows a proposed workflow to extract physiological information using the
segments and metrics described in Section 3.2 and the hypotheses in Section 4.1.1. Based on
the four identified segments, the following cell physiological information can be retrieved:
the maximum biomass specific oxygen uptake rate (qmax

O2
), the oxygen to substrate yield

(YO2/S), the oxygen to acetate yield (YO2/A), and the reactor-specific oxygen transfer rate
(Kla). See Appendix C and Table A2 for the mechanistic model, the nomenclature, and the
description of the parameters.

For example, the KLa value can be calculated with the help of the fourth segment’s time
length using Equation (4), which is the analytical solution of dDOT/dt = (DOT∗ − DOT) ·
KLa:

KLa = −
log
(

DOT∗−DOTend

DOT∗−DOTmin

)
∆T4

(4)

where DOT* is the signal at saturation, and ∆T4 is the time length of the fourth segment.
To account for the sensor delay in the signal, the actual dissolved oxygen signal (DOT) was
obtained from the measured dissolved oxygen signal (DOTm), following:

DOT = τ·dDOTm

dt
+ DOTm (5)

The slope of the first segment can give information on the actual specific glucose
uptake rate qs (ox). In the first segment, the cell is assumed to consume glucose at full
capacity, therefore qs (ox) = qcritical

s(ox) = qO2 /YO2/s.
In the third segment, the cell is assumed to oxidate only to acetate, where qA (ox) =

qcritical
A(ox) = qO2 /YO2/A.
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In the first segment, the specific oxygen uptake rate qO2 for a DOT pulse is calculated as:

qO2 =

dDOT
dt

∣∣∣
[∆T1]

+
(

DOT∗ − DOTend
1

)
· KLa

H · Cx
(6)

where H is the Henry derived constant. Note that Equation (6) was only used for DOT
pulses in the neighborhood of a biomass sample, i.e., where concentrations Cx were avail-
able. qO2 can be similarly calculated from the third segment.

The cell physiological parameter qmax
O2

can thus be calculated under the assumption
that the instantaneous glucose addition causes a maximum oxygen uptake rate, at least
at the beginning, simply as qmax

O2
= MAX(qO2). The previous assumption holds true for

the third segment only if the accumulated acetate concentration is high enough to cause
maximal uptake in the cell. Therefore, it is better to calculate qmax

O2
using the first segment.
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The amount of oxygen needed to oxidize a certain amount of glucose is determined
by the stoichiometric yield coefficient YO2/S. This value can be either calculated from
the stoichiometric matrix or estimated empirically as a model parameter. However, in
a DOT pulse with only first and fourth segments and equal start and end values, the
amount of oxygen delivered to the cell is known: O2 mass [mg(O2)] = V ·

∫
OUR · dt =

V ·
∫

OTR · dt = V
∫
(DOT∗ − DOT) · KLa dt. The amount of glucose delivered to the cell

during this time window is known; therefore, the yield can be calculated using the area of
the segments as:

YO2/S =
V ·

∫ tend

tstart (DOT∗ − DOT) · KLa dt
Fs · Cs,in

(7)

where V is the reactor working volume, and KLa is the estimated value from Equation (4).
Similarly, the amount of oxygen needed to oxidize a certain amount of acetate is usually

determined by the stoichiometric yield coefficient YO2/A. The amount of accumulated
acetate can be determined from the glucose flux that exceeds the maximum oxidative
capacity. This can be written as: Acetate mass [mg(A)] =

(
Fs · Cs,in −

∫
qmax

s (ox) · dt · Cx

)
·

YA/S.
The amount of oxygen that goes to oxidize the acetate can be extracted by integrating

the oxygen uptake rate along the third segment and substituting for the DOT difference
between tstart

3 and tend
3 . This can be easily calculated by extrapolating DOT from tend

3 to
the time point text

3 , where the DOT value equals the DOT value at tstart
3 . Using the area of

the first and third segment, the yield is therefore obtained as:

YO2/A =
V ·

∫ text
3

tstart
3

(DOT∗ − DOT) · KLa · dt(
Fs · Cs,in −

∫ tend
1

tstart
1

qmax
s (ox) · dt · Cx

)
· YA/S

(8)

The numerical results obtained from the rigorous analysis of the DOT signal segments
are listed in Table 3, indicating the range within one standard deviation.

Table 3. Cell physiological and additional parameters determined for each reactor.

Cell Physiological Parameters Additional Parameters

Reactor
Nr.

KLa qmax
O2

YO2/S YO2/A OUR qo

[%] [g/(g·h)] [g/g] [g/g] [g(L·h)] [g/(g·h)]
−σ +σ −σ +σ −σ +σ −σ +σ −σ +σ −σ +σ

A 180 250 0.09 0.10 0.05 0.08 0.07 0.15 0.5 0.6 0.05 0.12

B 200 250 0.10 0.15 0.05 0.07 0.07 0.15 0.6 0.8 0.07 0.15

C 220 320 0.10 0.20 0.06 0.09 0.11 0.25 1.0 2.0 0.10 0.20

D 200 300 0.10 0.20 0.05 0.1 0.10 0.21 1.0 2.0 0.07 0.20

E 200 330 0.09 0.23 0.05 0.1 0.09 0.20 1.0 2.0 0.07 0.20

F 190 220 0.08 0.15 0.05 0.1 0.10 0.20 1.0 1.7 0.05 0.15

G 180 250 0.08 0.15 0.06 0.11 0.10 0.20 1.0 3.0 0.05 0.15

H 160 185 0.06 0.14 0.05 0.08 0.08 0.19 1.0 2.0 0.04 0.12

4.2. Simulation Example to Reconstruct the DOT Response Behavior

In order to further analyze the relevance of the obtained physiological parameters and
to investigate the hypothesis for the second segment, a well-accepted growth model describ-
ing the overflow metabolism in E. coli was considered [31]. It is a piece-wise continuous
model, with specific sub-models for each metabolic state. Model switches are numerically
implemented using the Event Driven Method (EDM), see, for example, [32] for details. This
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approach seeks an accurate location of the metabolic events and is distinctly different from
other approaches focusing on formulating a continuous metabolic transition, e.g., [33]. The
adopted piecewise modeling approach can help to acquire accurate results [32], especially
when the changes happen in a short timescale.

The actual dissolved oxygen signal (DOT) is measured with a first-order delay
τ = 36 [s] caused by the response time of the sensor, therefore an additional equation
for the measured dissolved oxygen signal (DOTm) is also considered. The actual dissolved
oxygen equation reads:

dDOT
dt

= OUR−OTR = (DOT∗ − DOT) · KLa −
(

YO2/S · qs (ox) + YO2/A · qA (ox)

)
· H · Cx (9)

After considering the probe response time, the measured dissolved oxygen reads:

dDOTm

dt
=

1
τ

.(DOT − DOTm) (10)

More on the model and the nomenclature is found in Appendix C.
Following the hypotheses made in Section 4.1.1, the following metabolic states

are considered:
Metabolic state I: Glucose oxidation with an overflow metabolism. The cells consume

glucose at the maximum oxidative uptake rate and the excess glucose is reduced after
glycolysis to acetate. This state is active during the first segment.

Metabolic state II: The transition from glucose to acetate oxidation. The cell metabolism
is limited by glucose depletion and the inability to immediately oxidize the formed acetate
at the full capacity. This state is always active after the end of the overflow metabolism
(metabolic state I) when the acetate accumulation exceeds a certain threshold (assumed to
be 0.1 [mg/mL], similar to the values found in the literature [16,34]).

Metabolic state III: acetate oxidation. The acetate is exclusively oxidized. This state is
active during the third segment.

Metabolic state IV: static state. No active metabolic activities are detected. This state
is active the whole time, except when there is a glucose pulse. It is also active during the
fourth segment.

Transition from Glucose to Acetate Oxidation as a Model Extension

In the transition between glucose and acetate oxidation, all model rates q including
qA (ox) and qs (ox) are set to reduced values qadap by a reduction factor R(t). A reduction
factor of R(t) = 100% means that the cell stops fully to uptake the substrates. For this
contribution, a complete reduction of metabolic activities is assumed, although in reality
the cell maintenance is still active. In this simplified version, model rates can then be
written as:

qadap = q·(1− R) (11)

The biomass change during this short time window can be negligible. The relevant
model parameters are taken from the analysis results made earlier in Table 3 (for reactor E).
The rest of the model parameters are listed in Appendix C—Table A2.

Constant Adaptation Time

The time length of the adaptation state ∆t is set to a constant value within the experi-
mentally observed range [6.5, 55.5] seconds, see Figure 6. Figure 11 shows the simulation
results for different adaptation times (∆t = 0, ∆t = 15, ∆t = 30 s) considering a substrate
pulse of 5 µL.
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Figure 11. Simulation results considering a single feed injection and three different values of the
adaptation time. The relevant concentrations and model parameters are calculated from the DOT
signal analysis in Section 4.1.2 and are shown in Table 3 (experimental run E). The plots in the
second row show the activity of the metabolic states: (I) overflow metabolism, (II) adaptation state:
metabolism is paused, (III) acetate oxidation, and (IV) static: no active substrate metabolism. The
consideration of the adaptation state (∆t > 0) yields the second segment in the predicted DOT signal.

Considering Other Factors Affecting the Adaptation Time

The accumulated acetate and biomass concentrations adversely influence the time
length of the adaptation state ∆t; therefore, it is proposed to be defined as:

∆t = tmax
adap

(
CA

Cmax
A
·C

max
x
Cx

)
(12)

Cmax
A = 0.5 mg/mL and Cmax

x = 25 mg/mL are the maximum acetate and biomass concen-
trations, respectively, and tmax

adap = 60 s is the maximum adaptation time that is observed
in the analysis. These values have been taken from the analysis results in Section 3 (see
Figures 6 and A1).

Figure 12 (top) shows the simulation result for three different glucose feed volumes (3,
6 and 9 µL) and a constant biomass concentration of 10 mg/mL. The results in Figure 12
(bottom) are computed for increasing biomass concentrations (8, 10, and 12 mg/mL) and
the same glucose addition of 9 µL.
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ferent slope, and, finally, a return to the saturation value. The second and third segments 
appear when the glucose feed volume exceeds 5 μL. The time length and height of the 

Figure 12. Simulation results for different feed volumes and a constant biomass concentration (top),
and for different biomass concentrations and a constant feeding pulse volume (bottom). The relevant
concentrations and model parameters are calculated from DOT signal analysis in Section 4.1.2 and are
shown in Table 3 (experimental run E). The plots in the second row show the activity of the metabolic
states: (I) overflow metabolism, (II) adaptation state: metabolism is paused, (III) acetate oxidation,
and (IV) static: no active substrate metabolism. If the glucose feed volume exceeds a certain threshold
(5 µL), the second segment in the DOT signal appears.

In both cases (constant and variable adaptation times with ∆t > 0), the DOT signals
exhibit a response behavior similar to the behavior reported in Figure 1. The computed DOT
signals show four segments: a decline, a small increase, another decline with a different
slope, and, finally, a return to the saturation value. The second and third segments appear
when the glucose feed volume exceeds 5 µL. The time length and height of the second
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segment are related to the added glucose volume and biomass concentration (see Figure 12).
A glucose feed below 5 µL results in a DOT pulse with two segments: a straight decline
followed by a return to the saturation value.

5. Discussion
5.1. Hypothesis Verification and Quantitative Analysis

The hypothesis with regard to the relationships between the metabolic activities and
the existence of the DOT signal segments is supported by the results of the quantitative
analysis and the mechanistic model simulations. Additionally, the following observations
are made:

First segment: the observed delay time (2–4 s), after which the cell starts to actively
metabolize glucose, seems within the range of τ4, as reported by [25]. The authors referred
to this delay as the “light-off phenomenon”. The assumption about cells metabolizing the
glucose in the overflow metabolism is in alignment with findings in the literature [15,16].
Since the pulse injection time is very short (around 1 s), a sudden increase in glucose
concentration in the medium is expected. This triggers the overflow metabolism if the
maximum specific glucose uptake rate qmax

s is assumed to be greater than the maximum
oxidative capacity qcritical

s(ox) = qO2 /YO2/s of the cell. The relatively low qmax
O2

value in Table 3
supports this assumption.

Second segment: the change of the slope of this segment seems to be positively
correlated with the amount of accumulated acetate and negatively correlated with the
biomass concentration. This segment appears only after a certain dilution ratio per unit of
biomass unit value. From our analysis, we would expect the dilution ratio per biomass unit
threshold to be approximately 0.5 to 0.8 µL(glucose)/mg(biomass). However, a thorough
verification of the factors affecting the time length of this segment was not possible due to
the due to the sparsity and lack of a sufficient amount of biomass and acetate samples.

Third segment: this segment appears only after the second segment. Figure 7 shows a
likely positive correlation between the segment length and the dilution ratio per biomass
unit. A plausible explanation is that with a high enough dilution ratio per biomass con-
centration, the acetate production under the overflow metabolism in the first segment
is triggered. In the third segment, the cells consume the accumulated acetate. The time
required for that is correlated with the amount of acetate produced, and by that, the time
length is correlated with the dilution ratio per biomass unit.

Figure A1 shows no acetate accumulation in the neighborhood of the DOT pulses.
This further supports the notion of a transient production of acetate in the first segment
and the transient and full consumption of acetate in the third segment. Additionally, for
the third segment, there is assumed to be a negligible to no glucose concentration in the
medium for this time window. Figure A1 shows no considerable glucose concentration
for all runs. However, due to the sparsity and the lack of sufficient glucose and acetate
samples, this cannot be thoroughly verified.

Fourth segment: the assumption with regard to the inactive metabolism in this segment
matches the findings in the literature.

The pulse area analysis in Figure 9 shows relatively linear trends, suggesting a possible
relationship with two factors: the amount of glucose added to the medium, and the biomass
concentration. The exact relationship between the areas and these factors is difficult to
estimate due to the low number of biomass samples. The area of the pulses is directly
linked to the amount of oxygen deposited in the medium along the time span of the DOT
pulse. Equation (7) shows one possible mathematical description of this observation. The
absolute amount of glucose added is known, and the absolute amount of oxygen consumed
per unit of biomass concentration can be calculated by integrating the oxygen uptake rate
(OUR) over the time window of the pulse; hence, the cell oxygen to glucose yield YO2/S
can be calculated. Once YO2/S is calculated, the oxygen to acetate yield YO2/A can also be
calculated with the help of glucose to acetate yield YA/S, as described in Equation (8).

Table 4 summarizes the literature values relevant to the analysis of this work.
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Table 4. Volumetric mass transfer coefficient KLa, oxygen uptake rate OUR, oxygen specific uptake
rate qo, and the working volume V for E. coli cultivations for the MBRs systems reported in the
literature.

KLa OUR qo V Notes Literature

[1/h] [g/(L·h)] [g/(g·h)] [mL]

1 20–75 - - 0.15 Impeller speed up to 200–800 rpm, biomass up to 6 OD
(600 nm) [35,36]

2 58–90 ~0.5 - 1 Dry cell weight up to 0.33 g/L [19]

3 90–400 - - 6 Impeller speed 1300–1850 rpm, dry cell weight up to 1.8 g/L [37]

4 400–1440 - - 10 Impeller speed up to 2800 or 4000 rpm, dry cell weight up to 16.5 g/L [7]

5 180–720 1–3.6 0.3–0.5 8–12 Impeller speed 1080–2400 rpm, dry cell weight up to 20.5 g/L [18]

6 Up to 1440 - - 8–14 Impeller speed 3000 rpm, dry cell weight up to 13 g/L [20]

7 216–396 - - 10–100 Impeller speed up to 100–7000 rpm, dry cell weight up to 10 g/L [38,39]

The value of OUR and KLa obtained from the DOT signal analysis (Table 3) are
comparable to the literature values of experiments with a similar volume and biomass
concentration. qo, the oxygen specific uptake rate value, seems slightly lower than the value
reported by [18].

The YO2/S and YO2/A values are lower than the values reported in the literature.
Lin et al. [16] reported values of almost 1 g/g for both yields. Anane et al. [33] reported
yields of 1.56 and 0.54 g/g, and they later reported yields of 1.08 and 1.2 g/g for YO2/S and
YO2/A consecutively [40]. The first two contributions show modelling results for a lab scale
reactor, and the last one shows the reported results for the minibioreactor scale. However,
these contributions did not indicate the corresponding KLa value.

A common challenge when estimating model parameters is to determine the KLa value
that set the delicate balance between the two components of the DOT signal: the oxygen
uptake rate and the oxygen transfer rate. These components are mainly influenced by the
values of the parameters KLa on one side and YO2/S and YO2/A on the other side (given
qmax

O2
is estimated and has a fixed value). The positive correlation between the parameters

means that high yield coefficient values imply high KLa values, and vice versa. Therefore,
a high KLa is expected for the previous contributions. The quantitative analysis results in
Table 3 show relatively comparable KLa values that match the literature findings in Table 4.

By estimating the parameters qmax
O2

and YO2/S, the overflow switching condition
qcritical

s(ox) = qO2 /YO2/s is identified. The oxygen affinity constant KO appears to be an insensi-
tive parameter in our analysis.

The slope of the fourth segment is directly linked to the volumetric mass transfer
coefficient KLa. The almost constant values of the fourth slope can be seen for all runs
in Figure 8, indicating an almost constant KLa value along the time course of each run.
However, a comparison of the slope of the fourth segment between the runs shows a
negative correlation with more feeding. The relevant process variables, such as stirring
speed and aeration rate, are the same and are kept constant for all experimental runs.
Therefore, the observed drift might be explained by changes in the medium’s characteristics.
With more feeding, the viscosity of the medium changes mainly because of the higher
biomass concentration.

It is worthy of note that the highest estimated KLa values in Table 3 are reported for
runs D and E. These runs are duplicates of the standard feeding plan reported in [8]. Higher
feeding plans (i.e., runs F, G and H) seem to result in higher viscosity, resulting in a lower
delivery of oxygen from the gas to the liquid. Lower feeding plans (i.e., runs A, B and
C) seem to result in lower working volumes, which might negatively affect the oxygen
transfer rate delivery.
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The slopes of the first and third segments in Figure 8 have consistent values within each
run, but show small differences between the runs. This can be explained by the changes in
the uptake rates in the new cell generations caused by the intermittent feeding [15]. The
slopes of these segments can be linked directly to the oxygen uptake rate qO2 . However,
given an almost instantaneous addition of the substrate, a maximum and constant value of
the oxygen uptake rate can be expected for most of the time in the first segment. For the
third segment, a similarly constant value of qO2 is probable if enough acetate accumulates.
If that is the case, then the difference in the slopes of the first and third segments can be
explained by the difference in the oxygen to glucose yield YO2/S and the oxygen to acetate
yield YO2/A. However, the lack of enough acetate samples hinders a reliable validation
of this hypothesis, but the quantitative analysis provided in Section 4.1.2, does suggest a
difference in the values of the YO2/S and YO2/A.

In all experimental runs, the second segment slope starts with positive values for the
first few hours, then becomes close to zero, and in some instances even becomes slightly
negative. This indicates a continuous slope change during cultivations, from a positive to a
negative slope. The range of slopes in which the second segment is detected is defined by
the segmentation algorithm, in which tuning parameters are dynamically estimated during
the training of the algorithm (see Appendix A for the details). The biomass concentration
(not visible in Figure A1) and the working volume of all reactors have similar values at
the beginning of the analyzed time window, and therefore the high slope values in the
first couple of hours can be explained exclusively by the large feeding pulses. A visual
inspection of Figure 4 reveals that the existence of the second segment is usually linked to
feeding pulses with high amplitudes. The correlation analysis for the second segment’s
time length and the biomass concentration reveals a negative correlation (the results shown
in Appendix D, Figure A4).

Newly Observed DOT Response Behavior

Figure 6 shows the detected time length of the second segment. The figure depicts
values in the range of 6.5 to 55.5 s, with a mean value of approximately 31 s.

Refs. [25,26] reported on the metabolic response of E. coli to glucose pulses by using
a bioluminescent reporter strain (DPD2085, yciG::luxCDABE) that allows for an online
monitoring of the changing metabolism. Their observations showed that E. coli can switch
from overflow to acetate oxidation “rapidly”, and this switch is usually aligned with an
overshoot in the bioluminescence, with a peak lasting for almost a minute.

This metabolic change could happen because of cell stress, or when part of the cell
population switches while the rest do not, or as a mix of both factors.

Refs. [27,28] applied nuclear magnetic resonance techniques to monitor the metabolic
switches in E. coli. Their observation showed a rapid induction of “acs”, the gene responsi-
ble for acetate synthase after the metabolic switch (from overflow to acetate oxidation). An
overlapping time window between acetate consumption and acetate production might have
an effect on cell metabolism in the time window around the switch in which a co-utilization
of acetate and glucose occurs. Furthermore, the authors reported a drop in the growth rate
directly after the switch.

Ref. [29] used Isotope Dilution Mass Spectrometry (IDMS) to analyze the metabolic
changes after a glucose pulse at a timescale measured in seconds. Interestingly, E. coli can
store relevant amounts of carbon to be used after the overflow in a period of tens of seconds.

Ref. [16] also showed a pulse-based method for the determination of the maximum
uptake capacities for glucose and oxygen in glucose limited cultivations. Their observations
showed that acetate is formed after a glucose pulse. However, the redirection of the acetate
flow from production to consumption takes some time. The authors did not report on a
specific time duration. In their contribution, the sampling time interval of the DOT signal
was 5 s, and a change in the DOT signal similar to the second segment presented in this
contribution was shown for a few sampling points. However, this is neither highlighted
nor discussed. The authors also report on the increase in the qo rate after the glucose pulses.
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This was attributed to the “uncoupling effect” (inhibition effect of the acetate), although
the added acetate concentration was low.

The previous observations suggest a metabolic switching time similar to the time range
reported in Figure 6, and provide possible explanations of the metabolic changes in this
time window. Hence, incorporating an “adaptation state” in the model, which represents
a reduction in the metabolic activities after switching from the overflow metabolism,
seems feasible.

The results of the mechanistic modeling analysis in Figure 12 show that considering
an adaptation state (Metabolic state II) in which the metabolism is paused for a short
time results in DOT signal changes similar to the second segments seen in the raw data.
The simulations also show that the second segment appears clearly and becomes more
pronounced with larger feeding volumes after a certain threshold. A larger feeding volume
means that cells need more time to fully consume the glucose added to the medium. As
the cell is already working at its maximum uptake rate, the excess sugar is metabolized
anaerobically, and acetate accumulates in the medium. The second segment becomes
more pronounced as a result of the prolonged adaptation state caused by higher acetate
accumulation.

5.2. Industrial Relevance

The minibioreactor systems are increasingly seen as useful tools in the pharmaceutical
and bioprocessing industries for purposes such as strain screening and experimental design.
They do not inherit some larger scale issues such as inhomogeneity, mixing, and aeration
difficulties, and they offer an economically viable method of cutting costs. However,
scaling experiments up/down from/to the milliliter scale remains a challenging issue.
Anane et al. [40] recently reported on this, and they showed deviations in parameter values
compared to their reference cultivation and reported on an increased amount of some
amino acids (particularly norvaline) when bolus feeding was used. Our observations
further indicate that frequent metabolic switches could have a negative impact on the key
parameters of the cell.

The hypothesized adaptation phenomenon that repeatedly happens in minibiore-
actor systems with intermittent bolus feeding seems to cause frequent cell stress. The
relatively low values of the estimated parameters (e.g., qmax

O2
,YO2/S and YO2/A) and the

general tendency towards lower values for an increased feeding frequency (reported in
Table 3) underlines the negative impact on cell metabolism.

Additionally, in larger reactor scales, the inhomogeneities in the medium can trigger
a similar behavior of metabolic switching in some local regions in the reactor [15]. The
proposed analysis, by quantifying the metabolic adaptation time, can be used as a strain
selector to choose strains that can better endure these effects.

5.3. Future Outlook

Further in vitro investigations of the physiology behind the adaptation state in minibiore-
actor systems is needed to reveal more about this phenomenon on a genetic, proteomic,
and metabolic level.

Future experimental plans to overcome the practical limitations of the used minibiore-
actor systems can help provide a more detailed analysis and provide more information on
the cell status. For example, additional information on the maximum cell substrates uptake
rates can be obtained by sampling immediately before and after the glucose pulse.

Further model-based analysis to calculate the sensitivities of all model parameters to
the DOT signal, and the degree of metabolic reduction in the time window of the adaptation
state could help to assess the amount of information on model parameters that could be
encoded in the DOT signal.

However, with the current level of understanding, it is possible to incorporate the
dynamics of the adaptation state in the models to better control cultures, to prevent oxygen
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depletion, to optimize glucose feeding, and to understand the influence of bolus feeding
on cell behavior. The authors plan to report on that in the future.

6. Conclusions

A segmentation algorithm, a correlation analysis, and a mechanistic modelling ap-
proach for the analysis of the dissolved oxygen tension signal in minibioreactor systems
with intermittent bolus feeding were proposed. The segmentation algorithm revealed the
existence of up to four distinguishable segments in recorded DOT pulses, which represent
the response to single substrate additions. Possible relationships between the descriptive
metrics of the segments and the metabolic activities and process dynamics were investi-
gated. The findings hypothesize a repeated metabolic switching behavior in E. coli after
each substrate addition, where the metabolic states are linked to the identified segments of
the DOT pulses. A newly observed DOT segment, not reported in the literature, is likely to
be linked to a metabolic adaptation behavior. In this segment, the cell is likely to pause or
attenuate the metabolism.

The quantitative analysis and the mechanistic model simulations support this hypoth-
esis. The derived model parameter values are within acceptable ranges as determined in
the literature. The mechanistic model simulations show a possibility to reproduce DOT
segments that are found in the raw data by using parameters estimated from the quantita-
tive analysis and by extending the model of [41] by adding a metabolic adaptation state.
The duration of the proposed state can be a function of the inhibitory acetate and biomass
concentration.

For our quantitative analysis, the estimation of model parameters of the overflow
switching condition was possible using only a DOT signal and biomass samples, given that
the feeding and reactor working volumes were known.

The analysis suggests that frequent metabolic switches have a negative impact on
some model parameters such as the maximum oxidative uptake rate and the oxygen yields
on glucose and acetate.

The results highlight the potential of considering the DOT signal to gain additional
(unexploited) information on the E. coli metabolism which can be used for the estimation
of cell physiological parameters. The proposed methods offer means to understand the
influence of intermittent bolus feeding on cell behavior, and by that, help to address the
MBR issues of oxygen supply and feeding plan optimization.
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Appendix A. Segmentation Algorithm

Pulse detection algorithm

The segmentation algorithm has the following steps:

(1) divide the whole signal into k ≥ 1 time windows.
(2) for each time window calculate the mean of the signal. The result is a vector containing

all the means.
(3) the intersection of this vector with the DOT signal gives the intersection points.
(4) a loop checks whether within two consecutive intersection points the DOT signal has

two maximums and one minimum. If so, a pulse is identified, and the time points of
the two maxima define the beginning and the end times tstart

i and tend
i . The time point

of the minimum is tmin
i .

k represents a tuning parameter, usually set to large values for larger changes in DOT
signals.

The result is a vector of individual DOT pulses P:

P(i) =
[
tstart
i ; tmin

i ; tend
i

]
; P =

n
∪
1

P(i) (A1)

where:

i is the index of the glucose addition (and of corresponding DOT pulse/response).
n is the total number of glucose pulses (and of corresponding DOT pulse).
tstart
i is the start time of each DOT pulse.

tmin
i is the time where the DOT pulse has a minimum.

tend
i is the end time of each DOT pulse.

Segmentation Algorithm

For an experimental run j, and a vector P(i):

(1) split the pulse P(i) into two pieces at tmin
i . These result in the “up-down” part

(contains the first, second, and third segments) and the “down-up” part (only contains
the fourth segment)

(2) for the “up-down” part, the algorithm advances along time steps and monitors the
change of the slope.

(3) once a recognizable slope change α
j
1 is observed, the algorithm determines the end of

a segment and the beginning of another segment.
(4) the previous step is repeated until the three segments are found and the corresponding

slopes (αj
1, α

j
2) are defined.

(5) if not all three segments are definable, assume that there is only a first “up-down” segment.

The algorithm is trained for each experimental run based on heuristics and a visual in-
spection using a subset of available DOT signals (the training dataset). The training process
estimates the coefficients α1, α2. The remaining signals are used for testing and evaluation.
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Figure A1. Biomass, glucose, and acetate concentrations of each run (reactors A–H) in the time win-
dow of the analysis. Due to working volume limitation, only a limited number of off-line/at-line 
samples are possible. 
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window of the analysis. Due to working volume limitation, only a limited number of off-line/at-line
samples are possible.



Bioengineering 2023, 10, 681 25 of 33Bioengineering 2023, 10, x FOR PEER REVIEW 26 of 34 
 

 
Figure A2. Reactor working volumes of all runs (reactors A–H). 

  

Figure A2. Reactor working volumes of all runs (reactors A–H).

Appendix C. E. coli Model and Nomenclature

qs = qmax
s

Cs

Cs + Ks

qA = qmax
A

CA
CA + KA

qO2 = qmax
O2

DOT
DOT + KO

qcritical
s(ox) =

qO2

YO2/s

qs(ox) =

{
qs i f qs ≤ qcritical

s(ox)
qcritical

s(ox) i f qs > qcritical
s(ox)

qcritical
A(ox) =

qO2 −YO2/s · qs (ox)

YO2/A
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qA(ox) =

{
qA i f qA ≤ qcritical

A(ox)
qcritical

A(ox) i f qA > qcritical
A(ox)

qs (red) = qs − qcritical
s(ox)

µtotal = Yx/s(ox).qs (ox) + Yx/s(red) . qs (red) + Yx/A(ox) . qA (ox)

d
dt


Cx
Cs
CA

DOT

 =


Yx/s(ox) Yx/s(ox) Yx/s(red) Yx/A(ox) Yx/A(ox)
−1 −1 −1 0 0
0 0 Ye/s −1 −1
−YO2

s
−YO2

s
0 −YO2

A
−YO2

A

 · A ·


qs
qcritical

s(ox)
qs (red)
qA
qcritical

A(ox)

Cx

− Fs
V


Cx
Cs

Ce
0

+ KLa


0
0
0

DOT∗

− KLa


0
0
0

DOT



Table A1. Activation matrix values for metabolic states defined in Section 4.2.

Metabolic State/Active Submodel Activation Matrix A
(I) Overflow metabolism A = diag [0 1 1 0 0]

(II) Adaptation state A = diag [0 0 0 0 0]

(III) Acetate oxidation A = diag [0 1 0 0 1]

(IV) Static state A = diag [0 0 0 0 0]

Sampling and feeding volumes are considered as sets of algebraic equations solved
outside the ODE system. The timepoints of these pulses are considered as explicit time
events, and for a greater explanation see [31,41]. The value of the qm, the specific mainte-
nance coefficient term, is assumed to be zero purposes of simplification. This value is not
relevant to the scope of this contribution.
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Table A2. Model parameters, description, and values.

PAR. Unit Simulation
Values Description

µmax h−1 - Maximum growth rate

qmax
S g(s).g(x)−1.h−1 2.7 Maximum specific glucose uptake rate of the Monod function

qmax
O2

g(O).g(x)−1.h−1 0.15 Maximum specific oxygen uptake rate of the Monod function

qmax
A g(A).g(x)−1.h−1 0.8 Maximum specific acetate uptake rate of the Monod function

qcritical
s(ox) g(O).g(x)−1.h−1 - Maximum specific glucose uptake rate defined by the

maximum oxidative capacity

qcritical
A(ox) g(A).g(x)−1.h−1 - Maximum specific acetate uptake rate by the maximum

oxidative capacity

qs(ox) g(s).g(x)−1.h−1 - Actual specific glucose uptake rate

qA(ox) g(A).g(x)−1.h−1 - Actual specific acetate uptake rate

YX/S(red) g(x).g(s)−1 0.4 Biomass yield for reductive growth on glucose

YX/S(ox) g(x).g(s)−1 0.5 Biomass yield for oxidative growth on glucose

YX/A(ox) g(x).g(A)−1 0.5 Biomass yield for oxidative growth on acetate

YA/S g(A).g(s)−1 0.4 Acetate yield from glucose fermentation

YO2/A g(O2).g(A)−1 0.5 Oxygen (stoichiometric) yield on acetate

YO2/S g(O2).g(s)
−1 0.1 Oxygen (stoichiometric) yield on glucose

Kla h−1 225 Oxygen mass transfer coefficient from the gas phase to the
liquid phase

KA g(A).L−1 0.001 Time affinity constant of the acetate

KS g(S).L−1 0.001 Time affinity constant of the glucose

KO g(O2).L−1 0.001 Time affinity constant of the oxygen

H %/g(O2).L−1 14000 Henry Law derived constant

CX g(X).L−1 - Biomass concentration

CS g(S).L−1 - Glucose concentration

CA g(A).L−1 - Acetate concentration

DOT % - Dissolved oxygen tension

DOTm % - Measured Dissolved oxygen tension

DOT* % - Dissolved oxygen tension at saturation

τ h 0.01 Dissolved oxygen probe response time

V L - Working volume

OUR g(O2).L−1.h−1 - Oxygen uptake rate

OTR g(O2).L−1.h−1 - Oxygen transfer rate
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Appendix D. Data-Driven Analysis
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Figure A5. Analysis of the time length of the first, second, third, and fourth segments of all experi-
mental runs (reactors A–H).

The Bartlett statistical tests for all runs show high values (x2 ≈ [650, 1800] with
p-value = 0), and the ANOVA test also shows high values for all runs (F ≈ [337, 3100]
with p-value = 0), which indicate a difference between in the time segments of each run.
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