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Abstract: Bioactive glass (BG) and its polymer composites have demonstrated great potential as
scaffolds for bone defect healing. Nonetheless, processing these materials into complex geometry
to achieve either anatomy-fitting designs or the desired degradation behavior remains challenging.
Additive manufacturing (AM) enables the fabrication of BG and BG/polymer objects with well-
defined shapes and intricate porous structures. This work reviewed the recent advancements made
in the AM of BG and BG/polymer composite scaffolds intended for bone tissue engineering. A
literature search was performed using the Scopus database to include publications relevant to this
topic. The properties of BG based on different inorganic glass formers, as well as BG/polymer
composites, are first introduced. Melt extrusion, direct ink writing, powder bed fusion, and vat
photopolymerization are AM technologies that are compatible with BG or BG/polymer processing
and were reviewed in terms of their recent advances. The value of AM in the fabrication of BG or
BG/polymer composites lies in its ability to produce scaffolds with patient-specific designs and the
on-demand spatial distribution of biomaterials, both contributing to effective bone defect healing,
as demonstrated by in vivo studies. Based on the relationships among structure, physiochemical
properties, and biological function, AM-fabricated BG or BG/polymer composite scaffolds are
valuable for achieving safer and more efficient bone defect healing in the future.

Keywords: additive manufacturing; bioactive glass; bone tissue engineering; scaffold

1. Introduction

The fracture, infection, and surgical removal of bones may all lead to the development
of bone defects. With the number of new incidences of bone fracture having increased by
33.4% in the past three decades, the clinical and economic burden associated with bone
defects has reasonably grown with time [1]. The incidence of bone defects results not
only in chronic pain but, more importantly, in the loss of bone function (for example, the
production of blood cells, the maintenance of mineral homeostasis, weight-bearing capacity,
the assistance of limb movement, and the protection of organs/soft tissues by the cranium,
ribs, and vertebrae) [2]. Nevertheless, the incidence of bone defects significantly impairs
patients’ quality of life [3].

Once damaged, the bones can initiate self-mediated regeneration. Nonetheless, when
the size of the bone defect is beyond a critical size, for example, 1–2 cm or 50% of the
circumvent of the bones, spontaneous bone regeneration cannot occur [3]. Autologous
bone transplantation remains the gold-standard therapy for critically sized bone defects,
which involves transplanting the patient’s own bone to the defect site. Nonetheless, this
technique involves numerous drawbacks, including limited donor bone availability, re-
quiring additional surgeries to harvest the bone, and donor site morbidity [4]. Bone grafts
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sourced from other patients (allograft) or species other than humans (xenograft) are also
used, but they are linked to the issues of infection, immunogenicity, foreign body reactions,
chronic inflammation, and slower incorporation into local bones [5]. This situation calls
for the research and development of synthetic materials that physically fill and support
the bone defects, exhibiting excellent biocompatibility and, more importantly, an ability
to support the adhesion, proliferation, and osteogenic functions of specific cell types (e.g.,
mesenchymal stem cells, (pre)osteoblasts). The ultimate goal when using these materials,
also known as tissue engineering scaffolds, is to induce the formation of new bone that
finally restores the defective bone’s structure and function.

With the demand clarified, numerous materials have been developed and tested
for their potential in bone defect repair. Metals and polymers that are biologically inert,
minimally resorbable and provoke low toxic responses/foreign body reactions have been
investigated since the 1960s [6]. Nonetheless, these materials failed to bond intimately to
the surrounding tissues. Calcium phosphate ceramics (i.e., hydroxyapatite, β-tricalcium
phosphate, and their binary mixtures) are among the second generation of biomaterials
investigated for bone defect repair [7]. These materials can bond with the surrounding
bone tissues but are less capable of stimulating the regeneration of vascular networks.
From 1969 to 1971, studies led by Prof. Larry Hench at the University of Florida reported
that the partly or fully amorphous “45S5.0” glass–ceramic, which comprised 45% SiO2,
24.5% Na2O, 24.5% CaO, and 6% P2O5 (all in weight percentage), bonded intimately to
a rat femur 6 weeks after the implantation [8,9]. When compared to calcium phosphate
ceramics, 45S5.0 (later known as 45S5 Bioglass) binds to bones more efficiently, offering
additional benefits of binding to the soft tissues, as well as inducing angiogenesis, which
plays a vital role in the full regeneration of highly vascularized bone tissues [10,11]. The
emergence of bioactive glass (BG) has ignited research interest globally, as evidenced by the
continuous growth in the number of publications since 1971. Much effort has been made
to unveil the mechanism of bioactivity [9,12,13], the relationships among compositional,
structural, and physiochemical properties [14–16], novel glass synthesis methods [17–19],
and the functionalization of BG [20–22], with the aim of achieving safer and more effective
bone tissue regeneration induced by BG scaffolds.

Nonetheless, very little attention has been paid to processing BG into the desired
geometry, which plays an important role in determining the performance of a scaffold.
A contour matching the anatomy of defect sites allows for the press-fit implantation of
biomaterials, thereby facilitating the implantation process [23]. More importantly, a well-
defined interconnecting porosity is essential for the ingrowth of vascularized bone tissues,
which, meanwhile, determines the mechanical and degradational properties of the BG.
However, the traditional machining of BG is rather challenging owing to the low fracture
toughness along with the high Young’s modulus of BG [24]. Hence, the relevant strategy
is to prepare BG/polymer composites, where BG particles offer the composites biological
functions and the polymer phase contributes to better malleability and processibility.
However, the conventional techniques of producing porous polymer composites, that is,
phase separation, porogen templating, and gas foaming, may not guarantee on-demand
configuration of the size, shape, volumetric ratio, spatial distribution, and interconnectivity
of pores.

Additive manufacturing (AM), more commonly known as “3D printing”, has been
proposed as a solution to the aforementioned issue. Rather than being removed, materials
are added onto the building object on-demand in a layer-by-layer manner, and the entire
manufacturing process is automated and program-controlled [25]. The benefits of AM in
the fabrication of BG or BG/polymer tissue engineering scaffolds can be seen in multiple
aspects, which include, but are not limited to, yielding a high-precision, patient-specific
geometry, and accurate control of the intricate porous structure [26]. Taken together, the
application of AM potentially allows BG or BG/polymer tissue engineering scaffolds to
satisfy the need for patient-specific anatomic fitting and well-defined biological function
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that is dependent on the structure–property relationship, thereby achieving safer and more
efficient bone defect healing.

Meanwhile, the past two decades have witnessed the increasing application of AM
in the fabrication of bone tissue engineering scaffolds. Early in 2001, Hutmacher re-
viewed multiple additive manufacturing technologies for their application in scaffold
fabrication, emphasizing their potential of becoming the “most important tools for tissue
engineering in the future”, so that biomaterials chosen for scaffold fabrication shall be
compatible with these technologies [27]. The advances in the architecture design and
application of specific AM technologies in the context of tissue engineering scaffolds
are summarized elsewhere [28–32]. Regarding biomaterials, however, while the research
progress of AM-fabricated metal [33], ceramic [34], and natural polymers [35], as well as
of metal/polymer [36] and mineral/polymer composites [37], as bone tissue engineering
scaffolds has been summarized elsewhere, literature reviews of additive-manufactured BG
and BG/polymer composites are less available.

This work reviewed the advances made in the field of additive manufacturing with
BG. A literature search was performed in Scopus database using the query: (TITLE-ABS-
KEY(additive manufactur*) OR TITLE-ABS-KEY(3D print*) OR TITLE-ABS-KEY(rapid
prototyp*)) AND (TITLE-ABS-KEY(Bioglass) OR TITLE-ABS-KEY(bioactive glass) OR
TITLE-ABS-KEY(phosphate glass) OR TITLE-ABS-KEY(borate glass)). Journal publications
and book chapters in English that were published before 6 April 2023 were included.
Careful screening was performed by the author (L.H.) to exclude publications that were not
relevant, including those that: (1) reported the formation of BG or BG/polymer structures
upon an AM-fabricated mold/template that was not composed of BG or BG/polymer;
(2) reported the crystallization of BG during AM or after post-AM processing, unless they
were cited on purpose for a discussion related to the crystallization of BG in AM.

This work begins with an introduction to the material properties of the major types
of BG and BG/polymer composites. Next, the work focuses on introducing various tech-
nologies that have been applied for the AM of these materials so far. The mechanism, the
requirements of feedstock preparation, and the drawbacks of each technology have been
summarized. Cases where the additive-manufactured BG and BG/polymer composites
were applied in in vivo bone defect treatment are then discussed to demonstrate the value
and potential of using AM to fabricate BG-containing scaffolds. Finally, we offer our
perspectives on what future research should focus on.

2. BG and BG/Polymer Composites Typically Applied in Bone Tissue Engineering

Before reviewing how additive-manufactured BG and BG/polymer composites are
utilized to treat bone defects, a brief introduction of typical BG and BG/polymer composites
and their compositional and functional characteristics is necessary. Depending on the
forming units of the glass network, BG used in bone tissue engineering is conventionally
classified as silicate-, phosphate-, and borate-based BG. While bulk BG can be applied in
bulk form for bone defect healing, a more pragmatic practice would be using BG/polymer
composites as they offer superior ductility and plasticity.

2.1. Bioactive Glasses (BG)
2.1.1. Silicate-Based BG

Silicate-based BG is the first type of BG ever developed, dating back to the late 1960s [8].
The primary structural unit of the glass network is a SiO4 tetrahedron, which links to each
other via Si-O-Si covalent bonds to form the glass network. Meanwhile, monovalent or
divalent cations of alkali/alkaline earth elements “modify” the glass network by ionically
bonding to the oxygen atoms. This event leads to reduced bridging oxygens (Ø, referring
to oxygens within Si-O-Si covalent bonds) in the glass network. As a result, the network
connectivity, as determined by the average number of bridging oxygens in each SiO4
tetrahedron, reduces. This change leads to lowered chemical stability, increased solubility,
as well as a reduced temperature of softening and melting [38].
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Conventionally, silicate-based BG is synthesized through a melt-quenching route. The
selected oxides in BG are homogenized, followed by heating at >1000 ◦C to process the
oxides into a homogenous liquid glass melt, which is then cast into a mold or water to
yield solid glass that is generally non-porous [39]. Since 1991, the sol-gel process has
also been developed for the synthesis of silicate-based BGs [17]. The organic precursors
(e.g., tetraethyl orthosilicate) are hydrolyzed in an acidic solution. The mixture is then
homogenized with calcium-containing compounds (e.g., CaNO3·4H2O), and undergoes
polycondensation to yield a silica network in gel form, with the water contained later
evaporated. This dried gel is finally heat-treated at 500–700 ◦C to obtain a solid glass. A
unique feature of the sol-gel process is that the resultant glass possesses a mesoporous
microstructure that can be exploited for the delivery of drugs and bioactive molecules
(e.g., cytokine [40], growth factor [41], and siRNA [42]). This mesoporous glass structure
also yields a greater surface area, thereby improving the solubility and apatite formation
ability of the BG relative to those of its melt-quenched counterparts [39,43]. With the
addition of non-ionic surfactants (e.g., Pluronic P123, F127, or cetrimonium bromide)
during the sol-gel process, a supramolecular arrangement of the silicate–organic complex
is formed, which forms a highly ordered mesoporous BG structure. Such a mesoporous
structure allows for more homogeneous loading and the release of molecules [18,44,45].

The mechanism of bone-bonding bioactivity involves a series of activities, as elabo-
rated by Prof Larry Hench [9,46]:

1. Alkali metal cations within glass exchange with H+/H3O+ in the surrounding medium
(Si-O-M + H+ → Si-OH + M+).

2. Hydrolytic attacks take place at the Si-O-Si bonds within the soluble SiO2, giving rise
to hydrated silica (Si-OH) at the BG–liquid interface [38].

3. The hydrated silica undergoes polycondensation and repolymerization, which results
in the formation of a silica-rich gel layer, as well as the depletion of metal cations from
the BG.

4. Ca2+, PO4
3−, and CO3

2− presented in the aqueous environment migrate to and
become absorbed by the silica-rich layer, forming an amorphous layer of calcium
phosphate [7,47].

5. The calcium phosphate layer crystallizes by incorporating OH− and CO3
2− from the

surrounding medium to form a hydroxycarbonate apatite (HCA) layer.

The HCA layer subsequently enables the adsorption of biological moieties, which
modulate the attachment, proliferation, and osteogenic differentiation of stem cells. Even-
tually, the cells committed to osteogenesis produce a bone matrix and lead to new bone
formation [47].

The five steps of HCA crystallization are regarded as the basis of the bioactivity of
BG, and are dependent on the BG chemical formulation to a great extent. Typically, BG
contains high CaO content and <60 mol.% of SiO2, as shown in Figure 1D [10]. Based
on this diagram, more BG formulas (Table 1) are developed with variations in the type
and ratio of metal oxides in the glass composition, with some formulas approved and
commercialized for clinical application.

An evident drawback of silicate-based BG is the incomplete conversion of glass into
bioactive apatite. As mentioned previously, a silica gel layer is formed at the surface
of the BG in body fluid. Such a gel layer only allows metal cations from the glass to
be leached into the surrounding medium, but protects the inner region of the BG from
dissolution [48]. Consequently, the glass beneath the silica gel layer converts into a silica-
rich phase that cannot be replaced by newly formed bone tissues. It has been reported that
the residual silica with a submicron size induces cytotoxicity and chronic inflammation, and
the accumulation of silica in the spleen and liver may induce further complications [49,50].
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Table 1. Representative silicate-based BG.

Code Composition (Oxides of Each Element) Remark Refs.

45S5 45Si–6P–24.5Na–24.5 Ca (wt.%) Commercialized as NovaMin® (GSK
plc, London, UK)

[9]

13–93 53Si-4P-6Na-5Mg-12K-20Ca (wt.%) - [51]

S53P4 53Si–4P–23Na–20Ca (wt.%) Commercialized as Bonalive® (Bonalive
Biomaterials Ltd., Turku, Finland)

[52]

SP-17Sr-17Ca 44.5Si–4.5P–4Na–7.5Mg–4K–17.8Ca–17.8Sr (mol.%) - [53,54]

58S 60Si–4–36Ca (mol.%) - [39]

Si70-Ca30 70Si–30Ca Commercialized as TheraGlass®

(TheraGlass Ltd., London, UK)
[55]

2.1.2. Phosphate-Based BG

Owing to a composition similar to the mineral phase of bone, phosphate-based BG
with a high calcium content has received much attention as a biomaterial targeted toward
bone-related applications. The glass network of a phosphate-based glass is primarily
formed by interconnecting PO4 tetrahedrons, which contain a central phosphorous atom, a
double-bonded oxygen atom, and three single-bonded oxygen atoms. The single-bonded
oxygen atoms either serve as bridging oxygen (Ø) in the covalent P-O-P bonds, or non-
bridging oxygens when ionically linked to the alkali/alkaline earth metal cation [38]. In
contrast to silicate-based glass, where a high silica content contributes to the chemical
stability of the glass, P2O5 is highly reactive and hygroscopic, thereby contributing to the
good solubility of phosphate glass [38]. While the conversion of bridging oxygens into
non-bridging oxygens occurs as metal oxides are added to the glass network, a reduced
number of P-O-P bonds typically contributes to the increased chemical stability of the glass,
which is more pronounced for cations with a greater valency and a higher charge-to-size
ratio [56].

Unlike silicate-based BG, phosphate-based BG is fully degradable in an aqueous
environment. After an ionic exchange of metal cations and H+/H3O+, the P-O bonds are
gradually hydrolyzed, with no protective gel layer formed, resulting in the breakdown of
the entire glass network [57]. Calcium and other doped elements, along with phosphorus,
are then gradually released into the surrounding media, contributing to the formation of a
calcium phosphate layer over the surface of the BG.

For phosphate-based BGs with P2O5 content > 45 mol.%, the formation of abundant
phosphoric acid after hydrolytic degradation often leads to increased acidity in aqueous
media [58]. This acidity, in turn, accelerates the degradation of phosphate-based BG [59].
As such, the phosphate-based BG undergoes autocatalytic degradation. Moreover, these
glasses are less likely to induce precipitation of the bioactive HCA layer after degradation,
as increased acidity of an aqueous environment favors the precipitation of dicalcium
dihydrate, while HCA is prone to dissolve in an acidic environment [60]. In contrast,
several invert phosphate glasses (P2O5 content < 40%) have been reported as bioactive,
considering that the degradation media remained neutral or slightly basic to favor the
nucleation of hydroxyapatite [61–63]. It has also been reported that titanium in an invert
phosphate glass plays a vital role in the induction of bioactivity. Tetravalent titanium is
found to ionically cross-link the phosphate units, thereby interrupting the glass network
and causing a reduction in hydrolyzable P-O-P bonds, leading to reduced solubility of the
phosphate glass. Acidification of the surrounding media is therefore impeded, giving rise
to the precipitation of bioactive hydroxycarbonate apatite. Moreover, Kasuga et al. reported
the formation of a Ti-enriched interfacial layer between 30P-60Ca-10Ti invert phosphate
glass and bioactive apatite. The authors stated that the intermediate layer was likely to be a
Ti-OH gel layer, and functioned similarly to the Si-OH gel layer on silica-based bioactive
glass to facilitate apatite nucleation [64].
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2.1.3. Borate-Based BG

It was at the beginning of the 2000s that borate-based BG caught the attention of
researchers in the field of bone tissue engineering [65]. The glass network of a borate-based
glass contains trigonal, planar BO3, and tetrahedral BO4 at the same time. As shown in
Figure 1C, vitreous B2O3 only contains BØ3 units, where all three oxygens are bridging
oxygens in between two boron atoms, i.e., B-Ø-B. With the addition of metal oxides, trigonal
planar BØ3 converts into a tetrahedral BØ4

− unit composed of four bridging oxygens and
one boron bearing negative charge [66]. With all oxygen atoms being bridging oxygens, the
network connectivity of the glass network increases. The further addition of metal oxides,
however, results in the reversible conversion of BØ4

− into BØ2O−, where non-bridging
oxygen emerges. The transition of borate units continues with an increasing number
of metal oxides added into the network, leading to the formation of BØO2−, BØ2O2−,
and eventually, BO3− units. With a lower ratio of bridging oxygens, the glass network
becomes depolymerized and the network connectivity is gradually reduced [38]. Along
with the changes in the glass network connectivity, a specific physiochemical property of
glass (e.g., solubility or strength) usually exhibits a non-monotonous change and maxi-
mizes/minimizes as the BØ4

− content maximizes, corresponding to the maximum network
connectivity. This feature is termed “borate anomaly” in the literature [67,68].

As boric acid has rather limited acidity, the degradation of borate-based glass con-
taining oxides of alkali/alkaline earth metal typically creates a neutral or basic pH in the
degradation media, which facilitates the formation of hydroxycarbonate apatite over the
glass surface [69]. Unlike silicate-based BG, no protective gel layer is formed to protect
the inner parts of borate-based glass from further dissolution. Therefore, a borate-based,
silicate-free glass converts completely into a bioactive compound enriched with calcium
phosphate after immersion in the body fluid [48].

As borate-based BG is fully dissolvable, care must be taken to control the degradation
rate of the glass by tuning the chemical formulation. It has been reported that the viability
of both murine bone marrow-derived stromal cells and murine pre-osteoblasts-like cells
decreased with increasing boron concentration in culture media [70,71]. These findings
indicate possible hazards due to the excessively rapid dissolution of borate-based BG. While
the dissolution rate was determined by the chemical formulation of glass [65], it was also
reported that the macroscale architecture of the glass scaffold, which could be accurately
defined via AM, may be exploited to modulate the dissolution rate of borate-based BG [72].
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bioactivity for various BG species. (A) Tetrahedral SiO4. (B) Tetrahedral PO4. (C) The transition
of borate units in a borate-based glass along with an increased metal oxide ratio. (D) Relationship
between the composition of Si-P-Ca-Na glass–ceramic (P = 6 wt.%) and index of bioactivity (Ib),
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hydrolytic degradation as well as bone-binding bioactivity of (E,F) silicate-based BG, (G,H) phosphate-
based BG, and (I,J) borate-based BG. Reprinted and adapted from references [74,75].

2.2. BG-Based Polymer Composites

While bioactivity allows the BG to directly bond to bone tissues, the processing of
BG into the desired geometry is difficult owing to the low fracture toughness and a high
modulus of BG [76]. For this purpose, one strategy is to develop BG/polymer composites,
where BG serves as a functional agent that induces bioactivity by releasing elements, and
also mechanical reinforcement to improve the stiffness of the resultant material. The rest of
the composite is primarily the polymer matrix, which binds the BG together and provides
toughness to the construct. The polymer matrix also endows the composite with ductility
against brittle fracture, which is an evident drawback of pure BG. In regard to bone tissue
engineering, free space must be provided for subsequent bone growth, and thus, requires
the polymers to be degraded upon implantation without inducing adverse effects on the
biological systems [77].

Depending on the origin, biodegradable polymers are typically classified as natural
polymers and synthetic polymers. Natural polymers, which include proteins (e.g., collagen,
gelatin, and silk fibroin), polysaccharides (e.g., cellulose, alginate, hyaluronic acid, and
chitosan), and polynucleotides, are naturally occurring materials harvested from animals,
plants, or microorganisms [78]. Natural polymers show great similarity to the components
of the extracellular matrix in human tissues [79]. For instance, type I collagen constitutes
90% of the weight of the organic phase of bones, whereas type II collagen is abundantly
found in cartilage [80,81]. Chitosan, though not native to the human body, is structurally
similar to glycosaminoglycans, which constitute the extracellular matrix [82]. This com-
positional similarity makes natural polymers more recognizable by the biological system,
thereby lowering the risk of chronic inflammation and cytotoxicity after degradation [83,84].

Nonetheless, the qualities and properties of natural polymers may exhibit batch varia-
tions between different sources [79]. Moreover, pathogens and immunogenic/antigenic
substances can be transferred from donors to recipients, causing infection or significant
foreign body reactions [85,86]. Last, but not least, natural polymers, especially for proteins,
are prone to denaturation due to heat, radiation, and chemicals applied during material
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processing, which causes impaired mechanical and biological performance. Therefore, care
must be taken to control the parameters and chemicals used to avoid denaturation of the
natural polymer matrix and altered properties of the composites thereof.

Synthetic polymers, in contrast, are artificially produced materials. The most inves-
tigated synthetic polymers are aliphatic polyesters, with representative materials includ-
ing polyglycolic acid (PGA), polylactic acid (PLA), poly-ε-caprolactone (PCL), and their
copolymers. These materials degrade mainly via the hydrolytic route. Following water
absorption, the ester groups in the polymer backbone are cleaved via hydrolysis to yield
oligomers/monomers. These smaller molecules are further metabolized into CO2 and
water and are eventually eliminated from the body [77]. Compared to naturally derived
polymers, synthetic polymers are superior in the consistency of their properties among
different batches. To satisfy the clinical requirement for the degradation rate and initial
mechanical properties, the ratio among different monomers and the molecular weight
of the resultant polymers can be finely configured on-demand [87,88]. Owing to good
biocompatibility, excellent processibility, and mechanical properties, synthetic polymers
have received approval from the FDA for clinical application [89–91].

However, as synthetic polymers do not exist in the biological system, implanted
synthetic polymers and their wear debris may invoke a significant foreign body reaction.
Most synthetic polymers are hydrophobic, making it difficult for water and protein to
be absorbed on the polymer surface, consequently hindering the adhesion of cells [92].
Another safety issue is that CO2 is generated after the metabolization of monomers. This is
believed to cause increased acidity at the implantation sites, which impairs the survival of
both osteoblasts and mesenchymal stem cells, meanwhile stimulating osteoclastic (bone-
resorbing) activities [93–96]. Interestingly, the addition of BG was reported to enhance
the surface hydrophilicity, neutralize the post-degradation acidity, and retard the general
degradation rate of composites with a synthetic polymer matrix, thereby ameliorating some
of the concerns stated earlier [78].

A summary of the structural and mechanical properties of bone, cartilage, BG, and
typical BG composites is listed in Table 2. While BG is too brittle to be machined into
desired geometries, the presence of a polymer matrix endows the resultant composites
with processibility. A wide range of techniques are available to yield composites of desired
shapes and, more importantly, an intricate porous structure that determines the mechanical
and degradational properties of scaffolds, as well as tissue ingrowth [97]. Gas foaming,
freeze-drying, and thermally induced phase separation (TIPS) are frequently applied to
induce porosity in the polymer phases. However, control of the shape, interconnectivity,
size, and uniformity of pores has been proven difficult using these techniques [98]. For
instance, during uncontrolled freeze-drying, the difference in heat transfer rate throughout
the solution in a container leads to uneven pore size in the resultant scaffold [99]. Moreover,
the use of organic solvents acts as an additional safety concern in TIPS [100]. The use
of porogens of well-defined size, shape, and volume allows for better control over the
porous structure, yet the on-demand spatial distribution of pores and complete leaching of
porogens cannot be guaranteed [100,101]. There is a pressing need for a novel fabrication
technique of BG and BG/polymer composites that can precisely configure the geometry
and porous structure so as to achieve accurate fitting of the defect site and a well-defined
porous structure that satisfies the need for effective tissue ingrowth.
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Table 2. Summary of mechanical properties, structural properties of bone, cartilage, and typical BG and BG/polymer composites fabricated via different methods.

Materials Category
BG

Weight
Fraction

Structural Properties
(D = Dense, P = Porous)

Fabrication
Methods

Maximum Stress
(MPa) Elastic Modulus (MPa)

Strain at
Maximum
Stress (%)

Significance as Biomaterials for
Bone Tissue Engineering Refs.

Cortical Bones Native Tissue - - - 120–240 (C, human
femurs and tibias)

10,000–22,000 (C, human
femurs and tibias) - - [102]

Trabecular Bones Native Tissue - - -

13.57 ± 3.1 (C,
human femoral
head)
1.6–4.5 (C, human
mandibular condyle)

876.8 ± 331.6 (C, human
femoral head)

127–431 (C, human
mandibular condyle)

- - [103,104]

Cartilage (human
patellofemoral
groove)

Native Tissue - - - -

0.581 ± 0.168 (normal to
the articular surface)

0.854 ± 0.348 (parallel to
the articular surface)

- - [105]

45S5 Glass 100 D Melt casting 500 (C)
42 (T) 60,000 (C) - - [106,107]

Phosphate-based
Glass Fiber Glass 100 D Melt drawing 1021–1253 (T) 59,000–62,000 (T) ~2

• Potential as reinforcement in
biodegradable orthopedic
devices

[108]

Bioglass®/PCL Glass/Polymer
Composites 5

• P-random
• Pore Size = 200–400 µm
• (macropores)
• Pore Size = ~10 µm
• (micropores)
• Porosity = 86.5% ± 0.3%

Porogen leaching 0.12 ± 0.02 (C, yield
strength) 1.15 ± 0.32 (C) -

• Porous scaffolds with
dual-scale porosity were
obtained via porogen
leaching–solvent extraction

• Bioglass® outperformed
hydroxyapatite in maintaining
superior cell viability of
murine osteoblast-like cells

[109]

BPSG (Si80-P5-
Ca15)/PLLA

Glass/Polymer
Composites 30

• P-random
• Pore Size: ~400 µm
• Porosity = 71% ± 2%

Porogen leaching 4.2 ± 2 (C) 81 ± 4 (C) -

• Increased content of MBG
compensated for the increased
acidity due to PLLA
degradation while inducing
more pronounced new bone
formation in animal studies
(bone defect at rabbit femoral
head)

[110]

Bioglass®/PDLLA Glass/Polymer
Composites 30

• P-random
• Porosity = 93–94% TIPS 0.06 ± 0.03 (C) 2 ± 1 (C) -

• In vitro degradation behavior
of BG/PDLLA scaffolds within
600 days was elucidated

[111]
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Table 2. Cont.

Materials Category
BG

Weight
Fraction

Structural Properties
(D = Dense, P = Porous)

Fabrication
Methods Maximum Stress (MPa) Elastic Modulus

(MPa)

Strain at
Maximum
Stress (%)

Significance as Biomaterials for
Bone Tissue Engineering Refs.

Phosphate-based BG
(P50-Ca40-
Ti10)/PLLA

Glass/Polymer
Composites 30

• P-random
• Pore Size: 190 ± 120 µm
• Porosity = 78.8% ± 0.35%

Solid-state gas
foaming ~1.2 (C) 6.19 ± 0.45 (F) -

• Increased content of
phosphate-based BG
contributed to a higher weight
fraction of rigid BG particles
and reduced pore size within
composites, both contributing
to enhanced mechanical
properties of composite
scaffolds

[112]

MBG
(Si70-Ca30)/PLLA

Glass/Polymer
Composites 10

• P-0/90 grid-like
• Width of solid

raster = ~500 µm
• Length of pore

side =450–500 µm

AM-SLS 1.5 (C) 25 (C) ~18 (C)

• Enhanced proliferation of
mBMSC

• Supported calcium deposition
of mBMSC in a
dexamethasone-deficient
osteogenesis induction
medium

• Promoted both osteogenesis
and angiogenesis in a rat
calvarial bone defect

[113]

6P53B (Si-based BG) Glass 100

• P-0/90 grid-like
• Width of solid

raster = ~100 µm
• Length of pore

side = 450–500 µm
• Porosity = 60%

AM-DIW

136 (C, parallel to pore
channels)
55 (C, vertical to pore
channels)

~2000 (C) -

• Heterogeneous pore sizes in
different regions of the scaffold

• Compressive strength
remained superior to that of
cancellous bone after 3 weeks
of in vitro degradation

[114]

13–93 (Si-based BG) Glass 100

• P-0/90 grid-like
• Width of solid

raster = 330 ± 10 µm
Length of pore
side = 300 ± 10 µm

• Pore height = 150 ± 10 µm
• Porosity = 47% ± 1%

AM-DIW 86 ± 9 (C) 13,000 ± 2000 (C) ~0.8 (C)

• Rigid, brittle glass scaffolds
became highly deformable
after subcutaneous
implantation

• More substantial conversion of
BG into HA-SiO2 layer after
in vivo degradation

[115]
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Table 2. Cont.

Materials Category
BG

Weight
Fraction

Structural Properties
(D = Dense, P = Porous)

Fabrication
Methods Maximum Stress (MPa) Elastic Modulus

(MPa)

Strain at
Maximum
Stress (%)

Significance as Biomaterials for
Bone Tissue Engineering Refs.

MBG
(Si80-P5-Ca15)/PVA

Glass/Polymer
Composites 86

• P-0/90 grid-like
• Width of solid

raster = ~1000 µm
• Length of pore

side = 1001 ± 48 µm
• Porosity = 60.4%

AM-DIW 16.1 ± 1.53 (C) 155.13 ± 14.89 (C) ~11 (C)

• Substantial HA precipitation
on scaffold surface as soon as 1
day after SBF immersion

• Dexamethasone was loaded
into MBG scaffolds, with
approximately 70% released in
the first 24 h (in vitro
degradation)

[116]

BG/PACG-GelMA
(BG:
Si27-B27-P2-Na6-
Mg8-K8-Ca16-Sr6)

Glass/Polymer
Composites 1

• P-0/90 grid-like
• Width of solid

raster = ~500 µm
• Length of pore

side = ~500 µm

AM-DIW 2.51 (C) 0.249 (C) ~90 (C)

• Developed a bicomponent
hydrogel system with tunable
mechanical properties using
PACG and GelMA

• Hydrogel was functionalized
with Mn2+ and BG
nanoparticles for chondrogenic
and osteogenic functions

• Dual-layered scaffolds (a
softer, Mn2+-doped upper
layer, and a stiffer, BG-doped
lower layer) were fabricated
via DIW, resulting in the
efficient repair of rat knee
osteochondral defects

[117]

45S5/PCL Glass/Polymer
Composites 20

• P-0/90 grid-like
• Width of

solid raster = 330 ± 10 µm
• Length of pore

side = 400 ± 10 µm
• Pore height = 321 µm
• Porosity = 50.87% ± 2.45%

AM-FDM 2.99 ± 0.63 (yield stress) 46 ± 4 (C) -

• High-fidelity fabrication of
scaffolds, with porosity and
pore size close to the designed
value

• Demonstrated the effect of
forced convection/cooling to
improve the fabrication fidelity
for overhung structures

[118]
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Table 2. Cont.

Materials Category
BG

Weight
Fraction

Structural Properties
(D = Dense, P = Porous)

Fabrication
Methods Maximum Stress (MPa) Elastic Modulus

(MPa)

Strain at
Maximum
Stress (%)

Significance as Biomaterials for
Bone Tissue Engineering Refs.

MBG (Si85-P5-Ca15) Glass 100

• P-0/60/120 triangular
mesh

• Width of solid
raster = ~200 µm

• Length of pore
side = ~180 µm

• Pore height = ~200 µm
• Porosity = ~75%
• P–random
• Porosity = ~45%

AM-DIW
or
polymer foam
templating

~2.5 (C, AM)
~1.5 (C, foam) -

~0.75
(C, AM)

~0.65
(C, foam)

• Photopolymerizable MBG
precursor solution seamlessly
used for DIW fabrication of
porous scaffolds

• Greater dissolution rate, higher
compressive strength, and
greater porosity were achieved
in DIW scaffolds compared to
those in the scaffolds prepared
via polymer foam templating

• Concave surfaces, a higher Ca
concentration, a basic
microenvironment, and higher
interconnectivity of pores
contributed to more
pronounced osteogenesis at
both in vitro and in vivo levels

[119]

45S5/PLA Glass/Polymer
Composites 1

• P-0/90 grid-like Width of
solid raster = ~400 µm
Length of pore side = ~650
µm Pore height = 200 µm

AM-FDM 12 ± 4 (C) 700 ± 100 (C) ~11 (C)

• Compressive mechanical
properties of scaffolds
matched those of human
trabecular bones

• The incorporation of BG
promoted osteogenic
differentiation of hADSC

[120]
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Table 2. Cont.

Materials Category
BG

Weight
Fraction

Structural Properties
(D = Dense, P = Porous)

Fabrication
Methods Maximum Stress (MPa) Elastic Modulus

(MPa)

Strain at
Maximum
Stress (%)

Significance as Biomaterials for
Bone Tissue Engineering Refs.

MBG + Ga
(NO3)3/PCL

Glass/Polymer
Composites 30

• P-0/90 grid-like
• Width of solid

raster = ~300 µm
• Length of pore

side = 488 ± 53 µm
• Pore height = ~300 µm

AM-DIW 6.96 ± 1.58 (C) 79.82 ± 16.03 (C) -

• Continuous release of Ga3+

inhibited the colonization of
methicillin-resistant
Staphylococcus aureus
(MRSA) and E. coli, which
suppressed the proliferation
and adhesion of MC3T3
murine pre-osteoblasts in a
bacterial infection

• MBG contributed to enhanced
osteogenesis of BMSC, while
Ga3+ inhibited osteoclastic
differentiation of bone marrow
monocytes

• MBG + Ga (NO3)3/PCL
scaffolds induced effective
bone regeneration in an
infected long-bone segmental
bone defect (radii of rabbits)

[121]

45S5 (Partially
crystallized) Glass–Ceramic 100

• P-0/90 grid-like
• Length of pore

side = ~850 µm
• Porosity = ~50%

AM-DLP 6.8–22.5 (C) - 2.5–4.5 (C)

• The thermal treatment process
and BG solid content were
optimized, leading to lower
linear shrinkage and improved
compressive mechanical
properties of glass scaffolds

[122]

13–93 Glass 100

• P-0/90 grid-like
• Length of pore

side = ~500 µm
• Pore height = ~300 µm
• Porosity = 51% ± 2%

AM-DIW 86 ± 4 (C) 16,000 ± 4000 (F) ~3 (C)

• Infiltration of biodegradable
polymers into BG of
interconnecting porosity led to
enhanced toughness, stiffness,
and strength (compared to
pure BG)

[76]
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Table 2. Cont.

Materials Category
BG

Weight
Fraction

Structural Properties
(D = Dense, P = Porous)

Fabrication
Methods Maximum Stress (MPa) Elastic Modulus

(MPa)

Strain at
Maximum
Stress (%)

Significance as Biomaterials for
Bone Tissue Engineering Refs.

45S5
(microparticles)/silk
fibroin

Glass/Polymer
Composites

20 w/v%
in feed-
stock

• P-0/90 grid-like
• Length of pore

side =500–600 µm
(macropores)

• 20–30 µm (micropores)
• Porosity = ~90%

Cast onto additive-
manufactured
polymer template

1.21 ± 0.08 (C) 10.35 ± 0.62 (C) -

• BG microparticles
outperformed the BG
nanoparticles to enhance the
compressive modulus of
BG/silk fibroin composites

• BG incorporation favored the
proliferation and osteogenic
differentiation of hBMSCs

[123]

Silver-doped BG
(Si58.6-P7.2-Na1.5-
Al4.2-K1.5-Ca24.9-
Ag2.1, partially
crystallized)

Glass–Ceramic 100

• P-0/90 grid-like
• Length of pore

side = 622 ± 139 µm
• Pore height = ~200 µm
• Porosity = 70.0% ± 4.9%

AM-FDM
followed by
thermal debinding

2.84 ± 0.75 (C) 110 ± 60 (C) ~3 (C)

• Mineral precipitation occurred
over the BG scaffolds,
demonstrating in vitro
bioactivity of scaffolds

• The release of silver
suppressed the colonization of
MRSA

[124]

Silver-doped
MBG/PLLA

Glass/Polymer
Composites 29

• P-0/90 grid-like
• Length of pore

side = ~400 µm
AM-SLS 15.91 (C) 1204.9 (C) ~11 (C)

• Ag+ inhibited the growth and
adhesion of E. coli without
affecting the survival and
proliferation of MG-63 human
osteoblast-like cells

[125]

45S5/PCL Glass–Ceramic 100

• P-0/90 grid-like
• Width of solid

raster = ~150 µm
• Length of pore

side = 300 ± 5 µm
• Pore height = ~120 µm

AM-FDM 9.16
(C, yield stress) 67.4 ± 0.54 (C) -

• The incorporation of BG
upregulated the odontogenic
gene expression of hDPSCs

[126]

Phosphate-based BG
fibers + MgO/PLA
(BG: P48-B12-Na1-
Mg17-Ca14-Fe8)

Glass/Polymer
Composites 18

• P–gyroid
• Pore size = ~500 µm
• Porosity = 50%

AM-FDM 17.59 ± 3.75 (C) 648.14 ± 81.12 (C) ~7 (C)

• Avoided burst pH reduction
due to autocatalytic PG
degradation

• Sustained release of calcium
and phosphate

[127]
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Table 2. Cont.

Materials Category
BG

Weight
Fraction

Structural Properties
(D = Dense, P = Porous)

Fabrication
Methods Maximum Stress (MPa) Elastic Modulus

(MPa)

Strain at
Maximum
Stress (%)

Significance as Biomaterials for
Bone Tissue Engineering Refs.

13–93/sodium
alginate

Glass/Polymer
Composites 33

• P-0/90 grid-like
• Width of solid

raster = ~500 µm
• Length of pore

side = 500 ± 24 µm
• Pore height = ~300± 18 µm
• Porosity = 77.8% ± 2.6%

AM-DIW 16.74 ± 1.78 (C) 79.49 ± 7.38 (C) ~70 (C)

• The incorporation of BG
with optimized content at
33 wt.% upregulated the
proliferation and
osteogenic differentiation
of rBMSC

[128]

58S/PLDLA Glass/Polymer
Composites 10

• P–random
• Pore Size = ~200 µm
• Porosity = 26% ± 2%

AM-SLS 2.4 ± 0.6 (F) 79 ± 24 (F) 6.9 ± 3.9 (F)

• 58S/PLDLA composites
displayed cancellous
bone-mimetic mechanical
properties and good
cytocompatibility

[129]

Copper- and
magnesium-doped
BG (Si54-Ca22-P2-
K8-Na6-Mg7-Cu1)

Glass 100

• P-0/90 grid-like
• Width of solid

raster = ~200 µm
• Length of pore

side = ~300 µm
• Porosity = 50.99% ± 1.2%

AM-DIW 109.27 ± 8.18 (C) - -

• Promoted osteogenic
differentiation of mBMSC,
and angiogenic functions
of HUVECs

• Suppressed the
colonization of E. coli and
S. aureus

• Promoted bone
regeneration in long-bone
segmental defects (radii of
rabbits)

[130]

Note: C/F/T in maximum stress or elastic modulus denote modes of mechanical testing. C = compression, F = flexure, T = tension.



Bioengineering 2023, 10, 672 16 of 39

3. Additive Manufacturing of BG and BG/Polymer Composites and Their Application
to Bone Tissue Engineering

Additive manufacturing, according to ISO/ASTM 52900:21, refers to a process of
“joining materials to make parts from 3D model data, usually layer upon layer, as opposed to
subtractive manufacturing and formative manufacturing methodologies” [131]. Depending
on how the materials are added to form an integral object, numerous AM technologies have
been developed, with melt extrusion, direct ink writing (DIW), vat photopolymerization
(including stereolithography and digital light processing), and powder bed fusion being
frequently applied to produce BG or BG/polymer composites (Figure 2); these techniques
are elaborated upon in the following section.
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writing (DIW); (C) stereolithography (SLA); (D) digital light processing (DLP); (E) selective laser
sintering (SLS, a typical powder bed fusion process).

Following the introduction of AM technologies, this section summarized how additive-
manufactured BG or BG/polymer scaffolds have been applied in bone defect healing owing
to their ability to fabricate objects with highly complex geometry and intricate porous
structures. Published works based on animal studies were reviewed in detail, highlighting
the ability of AM to configure the structural properties of resultant objects and to satisfy
the need for clinical application, for example, a patient-specific design and the on-demand
distribution of multiple functional biomaterials.

3.1. AM Technologies Applied to Fabricate BG or BG/Polymer Composite Scaffolds
3.1.1. Melt Extrusion

Melt extrusion refers to a process where molten feedstock is extruded from a noz-
zle to fabricate an object via on-demand material addition. The feedstock is typically a
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composite composed of a thermoplastic polymer. It is continuously delivered into a hot
end, where heating is applied to melt and liquefy the feedstock. Under the control of a
program, the molten feedstock is forced out of the heated nozzle, which travels across the
deposition platform to deposit molten feedstock at the specified location. As the tempera-
ture drops, the molten extruded materials consolidate, yielding a “sliced” solid layer of
the model [132]. Following this, melt extrusion is performed again over the previously
deposited layer. With repetitive material deposition in a layer-by-layer manner, a solid
object is eventually fabricated.

Most melt extrusion AM devices use feedstock in the form of a continuous filament
(Figure 2A). This technology, typically termed “fused deposition modeling (FDM)”, requires
that the thermoplastic polymer and BG be homogenized and extruded into filaments
beforehand. The incorporation of rigid BG, however, increases the brittleness of filaments,
which are prone to breakage when being fed into the hot end [120]. To avoid this, other
devices use pellets/powders of a BG/polymer mixture or BG/polymer composites as
feedstock, which are melted, and then, propelled either via pneumatic pressure [37] or
using a screw [133,134].

Owing to its advantages, including ease of use and the low cost of the device, melt
extrusion is one of the most widely applied AM technologies [135], with several bone tissue
engineering implants and drug delivery systems fabricated via melt extrusion already
cleared for clinical application [136,137]. With the incorporation of BG, the BG/PCL
composite scaffolds fabricated via melt extrusion have been reported to have enhanced
surface hydrophilicity that improves cell adhesion, as well as the function to enhance
in vivo bone regeneration via the elements relseased [138,139].

However, the spatial resolution of melt extrusion-based deposition methods is com-
paratively low. While nozzles with a small outlet (diameter down to 100 µm) are able to
produce fine structures, the force required to extrude molten polymer from a fine nozzle in-
creases dramatically and potentially leads to the buckling/breakage of feedstock filaments.
An elevated temperature may reduce the viscosity of polymer melts to ease the extrusion;
however, this would be at the expense of more pronounced thermal degradation of the
polymer and compromised mechanical properties of the fabricated objects [140].

3.1.2. Direct Ink Writing (DIW)/Robocasting

DIW, also known as robocasting, is another AM technology based on material extru-
sion. As shown in Figure 2B, the feedstock used in the DIW process is typically a viscous ink,
which is extruded through a nozzle and deposited on the deposition platform/previously
extruded ink for layer-by-layer material addition. Post-fabrication processing to convert the
as-fabricated, semi-solid model into a consolidated object is usually required, with typical
post-processing methods including solvent evaporation [121,141], solvent extraction [142],
thermal crosslinking [143], photopolymerization [144], and chemical crosslinking [145–147].

The key to successful DIW is to obtain inks with ideal processibility. On one hand,
the ink shall flow smoothly and uniformly from the nozzle, without pulsating extrusion or
clogging of the nozzle. This requires that the BG particles be evenly distributed within the
ink without forming large clusters. On the other hand, the extruded material needs to span
across the gaps and retain its as-deposited shape without slumping before being converted
into a solid. For this purpose, the rheological and viscoelastic properties of ink play a
decisive role, as have been reviewed in detail elsewhere [148]. An essential requirement is
that inks be shear-thinning such that the viscosity of flowing inks in the nozzle capillary,
under a high shear rate, is low to facilitate extrusion. After deposition and the reduction in
the shear rate, the viscosity of the ink should be adequately high to maintain its shape. To
avoid slumping, M’Barki et al. concluded that the dynamic yield stress of deposited ink
should overcome the synergistic effect of gravity and surface tension [149], while Chan
et al. considered the product of storage modulus and yield stress as a simple, universal,
and effective criteria to predict whether the deposited ink slumps [150]. However, the
rheological properties of inks containing BG may not be universally predicted. In most
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cases, the viscosity of ink typically increases with the addition of BG. For alginate-based
inks, the release of Ca2+ from BG further induces the ionic crosslinking of alginate, and
consequently, increases the viscosity of the ink [151–154]. Nonetheless, the viscosity of the
composite ink may also decline with an increased ratio of BG in the ink, possibly due to the
disentangled polymer network of inks and insufficient bonding strength between the BG
and the polymer [155,156]. Therefore, the rheological behavior of BG-containing inks needs
to be studied to determine the proper BG content within the ink, as well as the parameters
of the DIW process.

When compared to melt extrusion, a major advantage of DIW is that a high tem-
perature is not required for liquefying the feedstock. As such, the organic compounds
are prevented from undergoing thermal decomposition or denaturation, making DIW a
suitable technology to fabricate BG/polymer composite scaffolds composed of natural
polymers, drugs, and protein. Zoledronic acid (ZA), an anti-osteoporosis drug with over
20 years of clinical application, was loaded into MBG/PCL inks for the DIW construction
of scaffolds [157]. Owing to the low surface area of scaffolds (1.33 m2/g), only 28% of the
ZA loaded was slowly released into the degradation media after 4 weeks, and it effectively
suppressed the osteoclastic differentiation of murine macrophages at the early stage.

Besides polymer composites, DIW has been frequently applied to fabricate pure BG
scaffolds based on an indirect process. Using an ink composed of micro- or nanoparticles of
BG and a polymer matrix with proper rheological behavior, the DIW process was performed
to fabricate green bodies of scaffolds, which are essentially BG/polymer composites. The
green bodies were then subjected to heat treatment for thermal decomposition of the organic
phase and sintering densification of the residual glass. Specifically, 6P53B [114], 13-93B [158],
or 36B-18Si-2P-6Na-8Mg-8K-22Ca [159] were selected as the BGs in studies, owing to their
lower crystallization tendency under high temperatures. The obtained BG objects were fur-
ther spin-coated or dip-coated with MBG or drug-eluting polymers. The coatings endowed
the resultant scaffold with increased surface areas for cell adhesion, lower degradation
rates [160], as well as the function to locally deliver protein (BMP-2 [161]), a gene (ss-
DNA [161]), and drugs (dexamethasone [161], HYSA [158]) to stimulate bone regeneration.
Wang et al. spin-coated a borosilicate BG with a MoS2/PLGA solution. [159]. The coated
scaffolds exhibited a photothermal response toward the near-infrared laser, demonstrating
great potential for healing bone defects resulting from osteosarcoma-removal surgery.

A more recent study reported a novel process that seamlessly combined the sol-gel syn-
thesis of MBG and DIW to prepare pure MBG scaffolds (Figure 3) [119]. The key component
in this process was acrylated F127, which served to direct the formation of a highly ordered
mesoporous structure in sol-gel glass and enabled photopolymerization of the ink upon
material deposition. The seamlessly additive-manufactured MBG scaffolds exhibited a
highly interconnected macroporous structure with well-defined pore size and pore location
while maintaining the mesoporous nature of the MBG. When compared to the control
group obtained via the decomposition-sintering densification of MBG over PU foams, the
seamlessly fabricated MBG scaffold induced a more pronounced osteogenesis rate of BMSC
and more efficient new bone formation in a rat calvaria bone defect. The authors attributed
the difference in the morphology of the scaffold to that fact that the concave region at
the intersection of extrudates may contribute to the topical enrichment of calcium ions,
which positively stimulated osteogenic activity, while the higher interconnectivity in the
additive-manufactured scaffold favored tissue ingrowth.
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Figure 3. (A) Scheme of seamless sol-gel synthesis and additive manufacturing of microporous MBG
scaffolds. (B) SEM images of seamlessly additive-manufactured scaffold (SAP-MBG) and control
group scaffold (PU-MBG). (C) Micro-CT images show a cross-sectional view of SAP-MBG (left panel)
and PU-MBG (right panel). Reprinted and adapted from reference [119].

Owing to the mild conditions during fabrication, DIW with ink that encapsulates
living cells is technically feasible. Known as extrusion-based bioprinting, this process
aims to fabricate living constructs with a well-defined 3D structure to provide a tissue-
mimicking structure for cell culture and cell delivery. DIW with bio-inks containing BG has
been reported in several works. Owing to its high rigidity and its ability to release doped
elements, BG within the bio-ink was reported to modulate the stiffness of bioprint ink, as
well as the responses of cells, endowing the bioprinted construct with proper printability.
Meanwhile, the BG may induce a specified biological function, depending on its chemical
composition. For instance, Zhu et al. used copper-doped MBG to simultaneously enhance
the angiogenetic and osteogenesis activities of stromal stem cells within a bioprinted
construct [162]. In contrast, Li et al. reported that the silica-based BG nanoparticles
within a gelatin–alginate bio-ink inhibited the angiogenic and osteogenic differentiation of
BMSC. Instead, the stem cells maintained active proliferation activity as well as stemness,
indicating the potential of the bioprinted constructs for stem cell therapy.

While the functions and benefits of BG incorporation in bio-ink were discussed earlier,
it is noted that the addition of rigid BG particles may increase the viscosity of the bio-ink,
and thereby hinder the spreading of cells (Figure 4A) [163]. In addition, the collision,
friction, and steric hindrance of rigid glass particles become more pronounced with in-
creased size and content of the BG, leading to compromised viability and proliferation
of cells within the bio-ink [164]. For instance, the addition of 1 wt.% BG microparticles
(size = 13–50 µm) into a gelatin–alginate hydrogel ink led to six times greater viscosity at
the bioprinting temperature. Consequently, the shear stress during extrusion increased,
and the cell viability was markedly lower [154]. However, the addition of BG nanoparticles
with an average diameter of 12 nm with doubled concentration (2 wt.%) did not induce
evident cell death when compared to the blank gelatin–alginate ink. Nonetheless, with
the BG nanoparticle content increased to 5 wt.%, significantly lower cell viability was
detected [163].
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Figure 4. Influence of BG addition on the quality of additive manufacturing. (A) BG addition
led to increased viscosity and shear force during material extrusion, which impaired cell viability.
Reprinted and from references [154]. (B) Schematic view of light diffraction due to the presence of
BG particles, as well as the consequent variation in cured depth and width of the fabricated products.
Reprinted and adapted from references [165]. (C–F) Scheme and corresponding SEM images of the
SLS-fabricated composites using a simple mixture (C,D) or composite microsphere (E,F) as feedstock.
Orange polygonal particles represent BG, and blue spheres represent polymer. Scale bar = 500 µm.
Reprinted and adapted from references [113,129].

3.1.3. Vat Photopolymerization

Vat photopolymerization was first developed in the 1980s by Hull as an AM technol-
ogy [166]. The feedstock used in the vat photopolymerization process is a liquid mixture of
photopolymerizable oligomer/monomers, photopolymerization initiator, and other func-
tional additives (e.g., dispersant, dye, and fillers) [166]. Vat photopolymerization begins
with the coating of the deposition plane with a thin layer of liquid feedstock. Next, UV
or visible light is introduced onto the deposition plate to initiate photopolymerization,
converting the fluid feedstock into a layer of polymerized solid pattern. The deposition
plate then travels the distance of one layer, allowing the consolidated layer to be coated by
the feedstock for the next layer to be photopolymerized. These steps are repeated until the
desired model is fully fabricated through layer-by-layer polymerization.

Two types of vat photopolymerization technology have been widely used to fabricate
BG or BG/polymer composites. The first one is stereolithography (SLA), during which
a light beam(s) moves across the deposition plane and instantly initiates the photopoly-
merization of feedstock within the light spot (Figure 2C). In the digital light processing
(DLP) process, the light is introduced onto the digital micromirror device (DMD), which
is an array of micromirrors that can be individually controlled by a program to alternate
between the “on” and “off” states. This allows a patterned light reflected from the DMD to
irradiate the liquid feedstock, thereby initiating the photopolymerization of a whole layer
at once (Figure 2D).
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The addition of BG particles is known to affect the rheological and optical proper-
ties of feedstock, which may affect the microstructure and properties of the produced
parts. For instance, an increased content of BG particles led to higher viscosity of the
feedstock [167,168]. As such, a longer time was required for the liquid feedstock to cover
and level on the deposition plate, otherwise contributing to the uneven thickness of the
polymerized layer. Meanwhile, the presence of BG also affects the photopolymerization
behavior of feedstock. A higher concentration of BG may intensify the scattering of light
within the feedstock, and thus, alter the depth and width of the polymerized structure,
leading to a compromised precision of the manufacturing process [165,169] (Figure 4B).
Last, but not least, the influence of BG on photopolymerization kinetics shall not be ignored.
Par et al. reported a decreased degree of polymerization with increased BG content in
photopolymerizable resin, and attributed this effect to the electron transfer to the oxides in
BG [170,171]. A lower degree of polymerization and more residual oligomers could lead to
lowered mechanical properties of the produced objects and cytotoxic monomer residuals,
thereby jeopardizing the safety of the obtained composites for biomedical application.

Two cases reported the use of DLP to prepare BG scaffolds in an indirect manner
(green body fabrication–sintering). Su et al. fabricated gyroid scaffolds composed of 45S5
Bioglass® and biphasic calcium phosphate (BCP) [167]. During sintering, the BG reacted
with BCP and hindered the densification of scaffolds, resulting in greater microporosity of
the scaffolds. Meanwhile, the reaction products, which include CaSiO3 and various sodium
calcium phosphates, were more reactive than pure BCP in inducing in vitro hydroxyapatite
precipitation. Xu et al. used photopolymerizable slurry-like feedstock containing AP40mod
glass-ceramic as a feedstock to fabricate BG-ceramic scaffolds via DLP [172]. With en-
dothelial progenitor cells (EPC) and BMSC seeded onto the scaffolds at an optimized ratio
(EPC:BMSC = 2:1), more efficient formation of blood vessels and bone was observed at
the implant site, suggesting the potential of the DLP-fabricated AP40mod scaffold as a
platform for cell-aided bone defect repair.

3.1.4. Powder Bed Fusion

As the name suggests, powder bed fusion is an AM process where feedstock in the
form of loose powders is thermally fused into an integral part. As shown in Figure 2E,
the process begins with the spreading and rolling of the feedstock powders over a hori-
zontal building platform to obtain a thin powder layer of uniform thickness. A beam of
laser or electron is then introduced onto the powder layer. As the beam scans over the
powder layer, the irradiated and heated powders fuse to form a sliced cross-section of the
model. The building platform then descends by the thickness of the powder layer, and the
abovementioned powder spreading–laser scanning is repeated until the desired object is
completely fabricated. The entire process is typically performed in a closed chamber with
an inert atmosphere to avoid oxygen-aided thermal decomposition of the materials [173].

Among the powder bed fusion technologies developed, selective laser sintering (SLS)
has been widely recruited to produce BG and its composites. This technology utilizes a CO2
laser beam as a heat source to partly melt the feedstock powders for fusion. Regarding the
fabrication of BG/polymer composites, a low-power (<5 w) laser of high scanning speed
(100–1000 mm/s) is typically used, and the SLS process occurs in an inert atmosphere.
This configuration is considered to prevent thermal degradation and oxidation of the
polymer phase. The feedstock powders are most commonly prepared by blending the fine
particles of the BG and the matrix polymer [174]. This process typically yields a highly
rough and porous surface over the fabricated composites (Figure 4C,D). In comparison,
when composite microspheres or polymer-coated BG particles serve as feedstock, the BG
and polymer are more closely integrated at the interface, and the surface of the obtained
composites is much smoother (Figure 4E,F), contributing to reduced stress concentration
and enhanced mechanical properties of the SLS-fabricated objects [175].

As the sintering of the polymer phase has a low demand for energy input, the tran-
sient heating generated by the low-powered, fast-scanning laser may offer energy that is
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sufficient for polymer sintering without thermally decomposing other organic compounds.
Using composite microspheres containing 10 wt.% MBG nanoparticles, dexamethasone,
and PLLA, Sun et al. prepared dexamethasone-eluting MBG/PLLA scaffold via SLS for
bone regeneration [113]. Dexamethasone was continuously released in 4 weeks, leading to
evident osteogenesis of BMSC cultured in a dexamethasone-deficient culture medium, and
more pronounced formation of blood vessels and bones in animal models. Shuai and col-
leagues used polydopamine (PDA)-coated MBG as reinforcement in a PLLA-based polymer
composite. The coating applied led to strengthened bonding at the MBG/polymer inter-
face, more homogeneous distribution within the polymer matrix, and improved surface
hydrophily of the scaffolds, thereby enhancing the compressive mechanical properties of
the scaffolds as well as the adhesion profile of MG63 osteosarcoma-like cells [176]. The PDA
coating was further exploited as a reductive agent, allowing graphene oxide and Ag+ to be
(partially) reduced and immobilized over the surface of PDA-MBG [125,174,177]. These
works demonstrate the versatility of SLS-fabricated scaffolds containing PDA-MBG for bone
regeneration, with enhanced mechanical properties and additional antibacterial functions.

Alternatively, BG particles without polymer could be directly produced into BG-
ceramic constructs via SLS. Under laser beam radiation, the heated glass particles develop
into a viscous flow to fuse with the surrounding glass particles or the substrate below. As
no polymer binder is used, the obtained part does not require a heat treatment (typically
pyrolysis) to remove the binder, thereby being free from potential contamination of the
residual binder and shrinkage of size. For instance, Cao et al. successfully produced fully
amorphous 13–93 BG scaffolds via SLS [178]. To sinter the BG particles (~100 nm), which
require a significantly high temperature to be softened, the laser applied had elevated power
(5–9 W) and a lower scanning speed (100 mm·min−1) compared to the parameters applied
in the SLS of polymer composites (e.g., 5 W/40 mm·s−1 [129], 0.09–0.2 W/1 mm·−1 [113],
and 2.3 W/100 mm·s−1 [174]). Using the same device, researchers also succeeded in the
direct SLS fabrication of 45S5 [179] and 58S BG [180].

Inevitably, the high-powered, slow scanning laser applied during SLS increases the
tendency of thermal crystallization of BG, which leads to impaired bioactivity compared to
amorphous BG [181,182]. Whether the BG crystallizes after direct SLS depends on the tem-
perature profile, as a high temperature is required to make the BGs sufficiently soft to fuse
with each other, and the transient temperature is likely to be higher than the onset tempera-
ture of crystallization (Tc). For instance, it is reported that 45S5 glass scaffolds produced via
direct SLS were partially crystallized. This is believed to be related to a narrow sintering
window (Tw, which is approximately 87 ◦C for 45S5), namely, the difference in temperature
between the glass transition temperature and Tc [179,183]. In contrast, 13–93 glass has a
wide sintering window (~100 ◦C) and a high Tc (~825 ◦C), and the glass is believed to
be softened enough before reaching Tc so that glass fusion without crystallization can
occur [184,185]. Regardless of the wide Tw, crystallization/devitrification of an amorphous
glass may still occur considering that the transient temperature during laser processing
is above the Tc. Rodrigo-Vázquez et al. reported that crystalline peaks corresponding to
pseudowollastonite were detected in the additive-manufactured 62W glass (Tw ≈ 150 ◦C)
scaffold [186]. As the 62W glass underwent devitrification after at 1 h of heat treatment
under 900 ◦C, it is believed that the transient temperature during laser processing was
much higher than 900 ◦C to induce the partial crystallization of 62 W glass in a short period
of laser irradiation [187]. Therefore, a systematic analysis of the temperature–viscosity
profile of BG and meticulous configuration of the SLS processing parameters are required
for the direct SLS of a fully amorphous BG.

In summary, numerous AM technologies have been successfully applied to fabricate
BG or BG/polymer composite scaffolds for bone tissue engineering. A comparison of these
technologies is presented in Table 3.
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Table 3. Comparison of various AM technologies applied in the fabrication of BG or BG/polymer
composite scaffolds.

AM Technology Feedstock Advantages Limitations Refs.

Melt extrusion (FDM)

A solid powdery mixture
or composite filaments of
BG particles and
thermoplastic polymer

• Desktop devices available at
low cost

• Multi-material AM devices
are commercially available

• A limited resolution of structural
feature (>100 µm)

• High-temperature heating is
applied during AM process and
filament fabrication

• Additional cost for filament
fabrication equipment

• Requires supports for the
overhung structure

[37,120,138,139]

Direct ink writing
(including bioprinting)

Liquid ink homogenized
with BG particles

• Good compatibility with a
wide range of polymers,
including natural polymers

• No high temperature is
required during the
AM process

• Available for
extrusion-based bioprinting

• Supports multi-material AM

• Meticulous configuration of
rheological properties required

• Post-processing is often needed
• For bioprinting, the addition of

BG impairs cell viability
• Requires supports for the

overhung structure

[117,119,123,162]

Vat photopolymerization
(e.g., SLA and DLP)

Liquid photopolymerizable
resin homogenized with
BG particles

• Good resolution (~50 µm)
• DLP process has a high

manufacturing speed

• High BG content impairs
dimensional accuracy

• Multi-material AM
• Requires supports for the

overhung structure
• Potential cytotoxicity of

photo-initiator leftover
• Limited range of available

materials

[165,172]

Powder Bed Fusion
(e.g., SLS)

Solid powders of mixtures
or a composite of BG
particles and
thermoplastic polymer

• Allows direct AM using BG
powders as feedstock

• No supports are required
for the overhung structure

• High cost of AM device
• High transient temperature

potentially leads to the
crystallization of BG and
degradation of the polymer

[125,178,188]

3.2. Application of Additive-Manufactured BG and BG/Polymer Composites in Bone
Tissue Engineering
3.2.1. Scaffold with Patient-Specific Design

The significant variance in both the geometry of bones and the demographic charac-
teristics of patients emphasizes the need for patient-specific bone defect treatments that, to
a great extent, rely on a customized geometrical design of the material filling the defect. On
one hand, anatomical fitting along with a maximized contact area between the defect and
the implanted material provides optimal post-implantation stability, which prevents the
undesired dislodgement and loosening of the implant. On the other hand, the geometry of
implanted material determines the aesthetic aspects of bone defect healing. This point is
especially valuable in the repair of craniomaxillofacial bone defects, as the highly unique
yet complex geometry of bones conventionally calls for meticulous intraoperative shaping
of the implanted material, making the operation more time-consuming and technically
challenging. Owing to its outstanding capability to fabricate complex geometries, AM
has become a powerful tool for the fabrication of patient-specific implants. Based on
medical images, computer-aided design, and finite element analysis, scaffolds may not
only end up with a structural geometry that recapitulates the original bone, but also a
customized topological design that restores the biomechanical loading behavior of the
original bones [23].

Evidence that BG-containing tissue engineering scaffolds with customized geometry
led to efficient bone defect healing in animal models was recently reported by Han et al.,
who prepared a borate-based BG/PCL composite scaffold with a case-specific design via
SLS (Figure 5) [188]. To recapitulate the geometry of actual bones, the radii of rabbits
were subjected to CT scanning, and the resultant images were converted into 3D models.
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A Boolean crossover operation between the 3D radii models and porous body-centered
cubic units was then performed, producing 3D models with customized geometries and a
microporous structure capable of inducing bone ingrowth. Using a mixture of borate-based
BG microparticles and PCL powders as feedstock, customized tissue engineering scaffolds
were fabricated via SLS and finally implanted into bone defects in rabbit radii. When
compared to the control group, where the osteotomy sites were left blank, the presence of
customized scaffolds, regardless of the material composition, induced bone regeneration
into the interconnecting pores while following the geometry of the customized scaffolds.
Moreover, scaffolds containing 20 wt.% BG were most effective at inducing osteogenesis
and angiogenesis at the defect site, while the growth of fibrotic tissues (a sign of a foreign
body reaction) was minimal around the scaffold, possibly owing to the optimal dosage of
ions released by the scaffolds. The authors also emphasized the role of BG content within
the composites, reporting that a BG content of 40 wt.% resulted in reduced viability and
ALP activities in human BMSC, which may be attributed to the excessively high pH of the
extracellular environment after the degradation of scaffolds.

3.2.2. Scaffold with the On-Demand Spatial Distribution of Biomaterials

The flexibility of AM can also be utilized to control the spatial distribution of materials
within a single object, yielding bone tissue engineering scaffolds with heterogeneous
porosity, and thus, tailored mechanical properties and degradational behavior in different
regions. More recently, the development of multi-material and multi-disciplinary/hybrid
AM has brought further possibilities to combine different biomaterials into a single object,
unchaining the potential of a tissue engineering scaffold that is conventionally limited to
a single material composition. Here, we introduced two cases where multi-material AM
of BG-containing materials was performed to fabricate scaffolds with the heterogeneous
spatial distribution of different biomaterials.

Degenerative disease of the joints results in damage to the articular cartilage and, if
not treated promptly, defects in the subchondral bone. The distinctive characteristics of the
two neighboring tissues call for a dual- or multi-component tissue engineering construct
that facilitates the regeneration of cartilage, subchondral bone, and, ideally, the interfacial
tissue (calcified cartilage) in between [189]. For this purpose, Gao et al. reported the
use of DIW to fabricate dual-module scaffolds (Figure 6) [117]. The polymer phase was
composed of poly(N-acryloyl 2-glycine) (PACG) and methacrylated gelatin (GelMA). By
tuning the concentration of the two polymers, inks with tailored mechanical properties and
degradation rates were obtained to satisfy the need for cartilage regeneration (soft matrix,
rapid degradation) and bone regeneration (stiff matrix, slow degradation). Furthermore,
MnCl2 and MBG nanoparticles were selectively loaded into the optimized inks for carti-
lage repair and bone regeneration, respectively. Single-material scaffolds prepared using
Mn2+-releasing inks effectively upregulated the chondrogenesis-related genes of hBMSC,
whereas those prepared with BG-containing inks induced more pronounced osteogenesis.
Next, the two functional inks were used to fabricate the dual-module scaffolds via DIW,
with the chondrogenic module deposited on top of an osteogenic module. Following
implantation into rat knees, histological sections showed that both the cartilage and sub-
chondral bone regenerated robustly. This work not only demonstrates the potential of
the dual-layered scaffold in the repair of cartilage/bone defects at the articular joints, but
more importantly, emphasizes the utility of AM to fabricate multi-material, multi-structural
constructs intended for multi-tissue regeneration.
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Figure 5. (A) Schemes of obtaining a digital model with case-specific outer shape and body-centered 
cubic units that determines the porous structure, scaffold fabrication, and mechanism of the scaffold 
to induce bone regeneration. (B) Changes in pH of the degradation media after in vitro degradation. 
(C) Cell viability of human bone mesenchymal stem cells co-cultured with different scaffolds. * in-
dicates the statistical significance compared with control group (0BBG/PCL), * p < 0.05, ** p < 0.01, 
and *** p < 0.001 (D) Micro-CT images of rabbit radius after 12 weeks of scaffold implantation. Red 
boxes indicate the radii of the experiment animals. Abbreviation: BCC, body-centered cubic; BBG, 
borate-based bioactive glass; PCL, polycaprolactone. Reprinted and adapted from references [188]. 
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Figure 5. (A) Schemes of obtaining a digital model with case-specific outer shape and body-centered
cubic units that determines the porous structure, scaffold fabrication, and mechanism of the scaffold
to induce bone regeneration. (B) Changes in pH of the degradation media after in vitro degrada-
tion. (C) Cell viability of human bone mesenchymal stem cells co-cultured with different scaffolds.
* indicates the statistical significance compared with control group (0BBG/PCL), * p < 0.05, ** p < 0.01,
and *** p < 0.001. (D) Micro-CT images of rabbit radius after 12 weeks of scaffold implantation. Red
boxes indicate the radii of the experiment animals. Abbreviation: BCC, body-centered cubic; BBG,
borate-based bioactive glass; PCL, polycaprolactone. Reprinted and adapted from references [188].
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Figure 6. (A) Scheme of fabrication of a dual-module hydrogel scaffold intended for osteochondral 
regeneration. (B) Histological staining by hematoxylin and eosin (H&E), toluidine blue (T-B), as well 
as immunohistochemical staining of chondrogenesis-related antigens (COL II, type II collagen; 
GAG, glycosaminoglycan) and osteogenesis-related antigens (COL I, type I collagen; OCN, oste-
ocalcin) in sections of rat knee, 12 weeks after implantation. The black arrows point to the margins 
of the normal and undamaged cartilage (N) and cartilage repaired after scaffold implantation (R). 
Reprinted and adapted from reference [117]. 
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the feedstock for the FDM fabrication of a porous 3D framework. Once a layer of the 
framework was fabricated, bioprinting with a BG-free bio-ink was seamlessly performed. 
Thus, the MBG modulated the cellular responses “remotely” through its degradation 
products, while the cells were protected from the adverse effect due to the presence of 
rigid BG particles within the bio-ink. As a proof-of-concept, the authors designed 3D scaf-
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Figure 6. (A) Scheme of fabrication of a dual-module hydrogel scaffold intended for osteochondral
regeneration. (B) Histological staining by hematoxylin and eosin (H&E), toluidine blue (T-B), as well
as immunohistochemical staining of chondrogenesis-related antigens (COL II, type II collagen; GAG,
glycosaminoglycan) and osteogenesis-related antigens (COL I, type I collagen; OCN, osteocalcin) in
sections of rat knee, 12 weeks after implantation. The black arrows point to the margins of the normal
and undamaged cartilage (N) and cartilage repaired after scaffold implantation (R). Reprinted and
adapted from reference [117].

The incorporation of BG into bioprinting ink enables the responses of living cells
(e.g., the maintenance of stemness [163], the upregulation of proliferation, and osteogenic
differentiation [162]) within a 3D construct to be modulated. Nonetheless, the increased
stiffness of the matrix, collision/friction between cells and rigid BG particles, and the
increased shear stress within the flowing ink, which are caused by the presence of a rigid
BG within the bio-ink, have been shown to impair cell viability [154]. This conflict was
smartly resolved in a recent study [190]. As shown in Figure 7, the authors employed
MBG/PCL as the feedstock for the FDM fabrication of a porous 3D framework. Once a
layer of the framework was fabricated, bioprinting with a BG-free bio-ink was seamlessly
performed. Thus, the MBG modulated the cellular responses “remotely” through its
degradation products, while the cells were protected from the adverse effect due to the
presence of rigid BG particles within the bio-ink. As a proof-of-concept, the authors
designed 3D scaffolds where the degradation of MBG triggered functional expression of
the encapsulated cells. The stem cells within the bio-ink were transfected with a lentiviral
vector harboring Tet-on-BMP2, thereby enabling controlled transcription of the downstream
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BMP2 gene in the presence of doxycycline, which was loaded into MBG embedded in the
MBG/PCL framework. The results showed that doxycycline, a wide-spectrum antibacterial
agent, was continuously released from the MBG/PCL framework and inhibited the growth
of pathogens typically related to orthopedic surgeries, thereby rescuing murine stem cells
from suppressed survival and proliferation in the presence of MRSA. Meanwhile, BMP-2
transcription was dramatically enhanced in stem cells cultured with doxycycline-eluting
MBG/PCL, thereby enhancing the osteogenic activities of stem cells. The hybrid constructs
were found to induce ectopic bone formation after subcutaneous implantation, with a
greater amount of bone and fewer bacteria present in the surrounding tissues relative to
the control group (MBG without doxycycline uptake). With the ability to simultaneously
stimulate bone regeneration and prevent bacterial infection, the hybrid construct offers
a promising solution to the clinical treatment of large-sized bone defects where bacterial
infection typically impairs the efficacy of therapy.
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Figure 7. (A) Scheme of the preparation of inks and fabrication of hybrid construct. (B) Scheme of 
doxycycline release to suppress bacterial infection and control BMP release. (C,D) Photograph and 
SEM image of the hybrid construct. (E,F) Confocal immunofluorescence images displaying the dis-
tribution of murine mesenchymal stem cells (red) and methicillin-resistant Staphylococcus aureus 
(green) in scaffolds with no doxycycline loading (E) and scaffolds containing doxycycline (F). (G) 
Reconstructed micro-CT images displaying ectopic bone formation (highlighted in green) in nude 
mice 6 weeks after scaffold implantation. (H,I) Histological staining of the implantation site to indi-
cate new bone formation, based on Von Kossa staining (H) and Safranin O/Fast Green staining (I). 
Red boxes indicate tissues adjacent to remaining scaffolds that are examined under higher magnifi-
cation. Reprinted and adapted from reference [190]. 
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Figure 7. (A) Scheme of the preparation of inks and fabrication of hybrid construct. (B) Scheme
of doxycycline release to suppress bacterial infection and control BMP release. (C,D) Photograph
and SEM image of the hybrid construct. (E,F) Confocal immunofluorescence images displaying
the distribution of murine mesenchymal stem cells (red) and methicillin-resistant Staphylococcus
aureus (green) in scaffolds with no doxycycline loading (E) and scaffolds containing doxycycline (F).
(G) Reconstructed micro-CT images displaying ectopic bone formation (highlighted in green) in nude
mice 6 weeks after scaffold implantation. (H,I) Histological staining of the implantation site to indicate
new bone formation, based on Von Kossa staining (H) and Safranin O/Fast Green staining (I). Red
boxes indicate tissues adjacent to remaining scaffolds that are examined under higher magnification.
Reprinted and adapted from reference [190].

4. Perspectives on Future Research

The case studies elaborated upon in Section 4 demonstrate the value of AM in scaffold
fabrication, which includes the ability to prepare BG or BG/polymer composite scaffolds
of the desired shape, the on-demand spatial distribution of biomaterials, and a well-
defined porous structure. These structural features play important roles in determining the
physiochemical properties of scaffolds that affect their performance in clinical bone defect
healing. The relationships between structure, physiochemical properties, and biological
function will be, in our view, a key focus of future research on the AM of BG and its
composites. This requires the development of AM technologies that are compatible with
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BG or BG/polymer feedstocks. These advancements are anticipated to remove the technical
barrier of fabricating tissue engineering scaffolds with complex structures, which essentially
determines the biological function of the scaffolds to realize safer, more effective, and more
patient-specific therapy. Here, we summarize our perspectives on how future studies may
be directed in these areas.

4.1. Toward a Higher Spatial Resolution

A higher spatial resolution of the manufacturing process enables precise tuning of
the structural properties of a BG-containing tissue engineering scaffold. Spatial resolution
down to the submicron and even the nanometer scale is useful in the precise control of
porous structures, which enables the degradation profile of the BG to be finely adjusted.
Moreover, the high-precision manufacturing process imparts cell-sensible topological
cues to the surface of scaffolds; these topological cues can be exploited for the rapid
(within several hours of contact) induction of cell morphology, and afterward, cellular
responses, presumably before a critical concentration of ions are released through BG
degradation [191].

Recently, the two-photon polymerization (2PP) technique has been successfully ap-
plied in the fabrication of glass with fine structures at the submicron scale, catching the
interest of researchers. During the 2PP process, the photopolymerization initiator is at-
tacked by two photons, generating free radicals in a highly localized region near the laser
focal spot to initiate the polymerization process, thereby achieving a high spatial resolution
of the manufacturing process (Figure 8A). Based on a 2PP AM-thermal debinding and
sintering process, Kotz et al. prepared micro-structured models, such as a micro-lens and
filtering elements with approximately 55-µm pores (Figure 8B) [192]. Further optimiza-
tion of the feedstock pushed the resolution of the 2PP process to the sub-200 nm scale
(Figure 8C) [193]. With the silica nanoparticles replaced by BG nanoparticles, it is possible
to fabricate bioactive BG or BG/polymer scaffolds with submicron structures, which po-
tentially enables more complex and precise control of the physiochemical properties and
biological functions of the resultant scaffolds.

4.2. Binder-Free AM of Pure BG Objects

Owing to their direct bone-bonding ability, pure BG scaffolds continue to hold great
research interest for bone defect treatment. Regarding the AM of pure BG parts, the
“indirect AM”, during which the additive-manufactured BG/polymer green bodies are
subjected to binder removal and glass sintering at high temperatures, remains the most
commonly applied routine. Nonetheless, this process is not only tedious, but is also
linked to numerous issues. During sintering, the as-fabricated composite scaffolds undergo
significant shrinkage, leading to distortion of the porous structure and deviation in its
size [147]. Moreover, the high temperature applied results in the generation of cracks [194]
and carbonaceous residuals that are difficult to thermally decompose [195]. In the context
of bone tissue engineering, these problems may jeopardize the geometrical fidelity, load-
bearing capacity, and biocompatibility of the resultant BG scaffolds. As a result, the
effectiveness of bone defect healing is significantly compromised.

Recently, the direct deposition of molten glass has been reported in several studies.
Zaki et al. investigated the melt extrusion of phosphate glass with low glass transition
temperatures (Figure 8D,E). The melt-quenched phosphate glasses were thermally drawn
into a rod-like preform with a diameter of 1.90 mm. A desktop FDM 3D printer equipped
with a high-temperature (~500 ◦C) extruder and build plate was used to additive man-
ufacture pure phosphate glass models in FDM mode, with the layer resolution reduced
to 100 µm [196]. In another work, Liu et al. investigated the melt deposition of silica
glass, a material typically requiring high temperatures (>1000 ◦C) to process [197,198].
As shown in Figure 8F, the feedstock was a fused silica glass filament with a diameter of
~196 µm, while four CO2 laser beams served as an energy source, focusing on the tip of
the filament to locally melt the glass. With fine-tuning of the laser power and the speed
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of feeder movement, the width of the deposited line was controlled at 240–330 µm, and a
10.5 × 3.5 × 21-mm3 (L × D × H) prism with no built-in stress was successfully produced.
While the filaments with a diameter of 200–1900 µm required a long time to melt and
led to a slow material deposition rate (100 mm/min) applied in the process, Spirrett et al.
developed a system that continuously jets fine glass powders (D50 = 45 µm) onto a building
platform, followed by irradiation with a continuous-wave, ytterbium-doped fiber laser
(Figure 8G) [199]. After optimization of the laser power and the glass feeding rate, the laser
scan speed was increased to ~700 mm/min, which significantly improved productivity.
When compared to earlier works on the melt deposition of glass, the technologies devel-
oped in these recent studies seem superior in terms of spatial resolution [198]. Although
none of these studies used BG as a raw material, it is possible that by meticulously tailoring
the glass formula, BGs with desired biological functions, along with proper thermal and
rheological properties, could be acquired to gain compatibility with these novel methods.
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4.3. Scaffold for the Regeneration of Multiple Tissues at the Bone Defect

The healing of bone defects, especially those caused by trauma, is far more complex
than a simple regeneration of bone. Typically, a bone defect involves damage to the bones
as well as the surrounding bone-attaching tissues, including the periosteum [200], articular
cartilage [201], and ligaments [202]. Therefore, complete healing of the bone defect requires
the regeneration of multiple tissues affected and, more importantly, the restoration of a
biological bonding of different tissues at their interfaces.

For this purpose, multiple “modules” are expected to be integrated into a single
scaffold, with each module mimicking the material composition, microstructure, and cell
phenotypes, which are selectively determined to upregulate the regeneration of the targeted
tissues. A more challenging issue is constructing interfaces between different modules.
It is at the limited region close to the interface that the abovementioned properties dis-
play a gradient transition, which prevents an abrupt change in the mechanical properties,
thereby ensuring an effective load transfer and mechanical stability without stress con-
centration [202]. Preferably, different modules should be fused or chemically linked to
each other at the interface, which offers stronger bonding strength compared to a stratified
structure where different modules are simply stacked together [203].

AM with BG or BG/polymer composites offers an opportunity to satisfy the above-
mentioned requirement. Because of its high flexibility, AM has long been exploited to
produce functionally graded materials. With the spatial distribution of various feedstocks,
a monolithic scaffold with gradient porosity and material composition is yielded, with the
degradation rate, permeability, and load-bearing capacity locally tuned [204–206]. Thus,
the possibility further multiplies with BG added into the feedstock. As the type and ratio of
functional elements in BG can be flexibly tuned, BGs with variable degradation rates and
element release profiles can be obtained through this approach, which enables selective
stimulation of the regeneration of different targeted tissues. Finally, the advent of multi-
material AM, as well as hybrid AM, further pushes the boundaries of complexity in the
composition and structure of BG-containing scaffolds [117,190]. With recent studies report-
ing the function of BG in stimulating the regeneration of tendons [207] and cartilage [208],
additive-manufactured scaffolds doped with different BGs seem to hold much potential for
the regeneration of multiple tissues in bone defects.

5. Conclusions

The current study offers an overview of additive-manufactured BG or BG/polymer
composites as bone tissue engineering scaffolds. AM technologies based on melt extrusion,
DIW, vat photopolymerization, and powder bed fusion have been successfully applied
to process feedstock containing BG and polymeric binders. With the selection of AM for
fabrication, the resultant BG or BG/polymer composites present well-defined geometries
and intricate porous structures. The BGs within the additive-manufactured parts main-
tained their biological function (e.g., upregulating osteogenesis inducing bone-binding
bioactivity), while the well-defined shape, size, and porous structure satisfy the need for
anatomic fitting of the bone defect and effective bone tissue ingrowth. Specifically, the
advent of bioprinting technology allows, for the first time, a viable construct containing BG
to be prepared, showing significant potential for stem cell-based therapy for bone defects.

A unique advantage of AM is that it allows a scaffold with a complex shape, intricate
porous structure, and even multiple material compositions to be fabricated with high-
precision. In this regard, we have proposed three directions that call for future research:
improving the resolution of the AM process to a submicron scale, applying binder-free
AM technologies to fabricate pure BG objects, and fabricating multi-module scaffolds that
stimulate the regeneration of multiple tissues in the bone defects. With more effort applied
to these research areas, additive-manufactured BG-containing scaffolds will undoubtedly
become more valuable to induce the safe and efficient healing of bone defects.
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AM Additive manufacturing
BCP Biphasic calcium phosphate
BG Bioactive glass
BMP-2 Bone morphogenic protein 2
m/r/hBMSC Mouse/rat/human bone mesenchymal stem cell
DIW Direct ink writing
DLP Digital light processing
DMD Digital micromirror device
E. coli Escherichia coli
EPC Endothelial progenitor cell
FDM Fused deposition modeling
GelMA Gelatin methacryloyl
HA Hydroxyapatite
hADSC Human adipose-derived stem cell
HCA Hydroxycarbonate apatite
hDPSC Human dental pulp stem cell
HIF-1α Hypoxia-inducible factor 1 α
HUVEC Human umbilical vascular endothelial cell
HYSA Hydroxy-safflower yellow A
MBG Mesoporous bioactive glass
MRSA Methicillin-resistant Staphylococcus aureus
PACG Poly (N-acryloyl 2-glycine)
PCL Poly-ε-caprolactone
PDA Polydopamine
PDLLA Poly (DL-lactic acid)
PGA Polyglycolic acid
PLA Polylactic acid
PLDLA Poly (L-co-D, L-lactic acid)
PLGA Poly (lactic-co-glycolic acid)
PLLA Poly (L-lactic acid)
PU Polyurethane
S. aureus Staphylococcus aureus
SLA Stereolithography
SLS Selective laser sintering
TIPS Thermally induced phase separation
TNF-α Tumor necrosis factor α
ZA Zoledronic acid
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