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Abstract: As COVID-19 pandemic public health measures are easing globally, the emergence of
new SARS-CoV-2 strains continue to present high risk for vulnerable populations. The antibody-
mediated protection acquired from vaccination and/or infection is seen to wane over time and
the immunocompromised populations can no longer expect benefit from monoclonal antibody
prophylaxis. Hence, there is a need to monitor new variants and its effect on vaccine performance. In
this context, surveillance of new SARS-CoV-2 infections and serology testing are gaining consensus for
use as screening methods, especially for at-risk groups. Here, we described an improved COVID-19
screening strategy, comprising predictive algorithms and concurrent, rapid, accurate, and quantitative
SARS-CoV-2 antigen and host antibody testing strategy, at point of care (POC). We conducted a
retrospective analysis of 2553 pre- and asymptomatic patients who were tested for SARS-CoV-
2 by RT-PCR. The pre-screening model had an AUC (CI) of 0.76 (0.73–0.78). Despite being the
default method for screening, body temperature had lower AUC (0.52 [0.49–0.55]) compared to case
incidence rate (0.65 [0.62–0.68]). POC assays for SARS-CoV-2 nucleocapsid protein (NP) and spike (S)
receptor binding domain (RBD) IgG antibody showed promising preliminary results, demonstrating
a convenient, rapid (<20 min), quantitative, and sensitive (ng/mL) antigen/antibody assay. This
integrated pre-screening model and simultaneous antigen/antibody approach may significantly
improve accuracy of COVID-19 infection and host immunity screening, helping address unmet needs
for monitoring vaccine effectiveness and severe disease surveillance.

Keywords: artificial intelligence; COVID-19; clinical decision making; lab-on-a-chip; nucleocapsid
antigen; spike RBD IgG; SARS-CoV-2 immunity

1. Introduction

As the fight against COVID-19 enters its fourth year, public health mandates around
the pandemic started moving towards surveillance of new variants of concern (VOC), vac-
cination efficacy, and protection of vulnerable populations. While over 13 billion vaccine
doses were administered worldwide so far [1], studies showed that antibody-mediated pro-
tection wanes over time and is variable in certain populations (aged and/or immunocom-
promised individuals, those with underlying medical conditions, etc.) [2,3]. Furthermore,
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the SARS-CoV-2 virus continues to evolve. Indeed, the Omicron VOC was the dominant
driver for global disease spread since 2022, having high transmission and infectivity rates,
a propensity for break-through infections, and evasion of vaccination-induced immu-
nity [4–6]. This situation is a concern for the at-risk populations—older adults, individuals
with certain underlying medical conditions, and the immunocompromised—where the
rates of severe disease and hospitalization remain high [7,8]. Though the bivalent vaccines
showed improved efficacy and protection against the Omicron variant [9,10], only 17% of
the total population received the updated vaccination [11]. With easing of containment
measures (e.g., masking, social distancing, self-isolation, travel restrictions) [12], waning
seroprevalence levels, plus high transmissibility, and infectivity associated with new VOCs,
transmission of infection to the at-risk communities is a challenging issue [4,13].

During this new phase of pandemic response, screening and surveillance of the at-
risk population can help contain transmission rates, guide vaccination strategy, and aid
the prevention of severe disease and associated morbidity and mortality. Additionally,
a screening strategy may help guide convalescent plasma donations, a key therapy for
immunocompromised patients who are susceptible to refractory infection [14]. With rising
transmissibility associated with newer VOCs, waning immunity across population and
asymptomatic/pre-symptomatic cases serving as a driving force for the community spread
of COVID-19 [15–17], population level at-home antigen tests became a critical tool for
breaking the chain of transmission [18].

Real-time reverse transcriptase polymerase chain reaction (RT-PCR) remained the
current gold standard method for SARS-CoV-2 detection, especially in the first 5 days of
infection with viral load peaking around day 4 [19,20]. While this method has excellent
sensitivity, results are usually reported in days, and this method requires specialized lab-
oratories and highly trained technicians, making the methodology unsuitable for POC
screening. Although potentially less sensitive than RT-PCR, rapid (~15 min) and inexpen-
sive immunoassays for SARS-CoV-2 antigen detect specific viral proteins (e.g., S protein,
NP, hemagglutinin esterase protein) found in the virus and are deemed more appropriate
for POC use. POC testing strategies utilized for the COVID-19 pandemic response include
testing viral nucleic acid, viral antigen, viral protein, host antibody, and cytokines. While
RT-PCR and ELISA represent quantitative gold-standard lab based clinical testing, the
use of lateral-flow assays, miniaturized PCR, lab-on-a-chip, microfluidics-paper based
assays, isothermal nucleic acid testing, aptamer-assisted assay, among others, represent
rapid advances and emerging technologies in the area of non/semi/fully quantitative
POC testing strategies [21]. Quantitative POC strategies such as microfluidics-powered
lab-on-a-chip strategy can provide additional advantages over other POC methods such
as multiplexing capabilities—combining antigen and antibody detection with high sensi-
tivity and specificity, quantitation (such as RT-PCR or ELISA), ability to integrate smart
algorithms, and intuitive reporting. While nucleic acid testing represents high sensitivity,
evolving strains of SARS-CoV-2 often present false positive/negative testing, until such
time that specific probes are available.

Whereas molecular diagnostic tests such as nucleic acid based testing including
RT-PCR and antigen tests can only reveal whether a person is currently infected with
SARS-CoV-2, antibody tests detect the body’s humoral immune response (IgG, IgA, IgM)
following viral exposure and/or vaccination. Antibody responses can appear by day
5–7 post infection exposure, and it can persist in the bloodstream for many months after
infection [22,23]. Serological assays can give insights into the host’s disease progression,
vaccination response, and protective effectiveness [24]. Studies showed that IgG antibod-
ies against viral proteins correlate with disease severity and outcomes [25,26]. Multiple
SARS-CoV-2 vaccine studies demonstrated a direct correlation between vaccine efficacy,
neutralizing antibody titers, and the titer of RBD targeting antibodies [24]. Thus, as-
sessing anti-SARS-CoV-2 antibody titers can help inform vaccine efficacy and timing of
booster administration, particularly in demand among at-risk populations where achieving
vaccine-induced humoral protection was challenging [2,27]. Even in low-risk populations,
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protective efficacy wanes by 20–30% in the 6 months following vaccination [3], while newly
evolved variants, such as the Omicron variants, showed that vaccination induced immune
evasion [28,29]. These datasets informed the need for updating vaccination policy and
monitoring vulnerable patient groups.

Molecular testing combined with serological assays can improve the overall diagnosis
of SARS-CoV-2 [30,31]. However, current clinical settings that host concurrent antigen and
antibody detection are limited due to need for expensive laboratory equipment, specialized
technical training, and long assay wait times. A rapid and quantitative POC screening of
SARS-CoV-2 viral antigen and viral-specific antibodies concurrently would certainly aid
disease monitoring and management. The development and customization of these POC
quantitative diagnostic tests tailored for the at-risk community (e.g., retirement homes,
cancer care centers, critical care clinics, etc.) is a key priority alongside its use with gated
patient screening and risk-based triage procedures. None of the existing diagnostic tests
cover both the initial screening process as well as comprehensive POC diagnostic testing
for those patients with elevated risks of infection. Over the past few years, we developed
diagnostic tools suitable for POC clinical settings, including a platform to digitize biology
with the capacity to learn [32], a COVID-19 seroprevalence assessment platform [33], an oral
cytopathology platform for assessment of potentially malignant oral lesions [34]. Recently,
we published a general framework for implementing a POC clinical decision support
system [35] which was adapted to the task of predicting mortality in cardiac patients with
COVID-19 [36]. More recently, a two-tiered system for evaluating COVID-19 prognosis in
inpatient and outpatient settings was developed using data from a diverse population of
patients across the New York City metropolitan area and externally validated using data
from hospitals in Wuhan, China [31].

In the current study, we explored whether pre-screening patients using convenient
non-laboratory data can predict COVID-19 status in patients without symptoms. This paper
also demonstrated a quantitative strategy for concurrent COVID-19 and host antibody
screening, suitable for use in POC settings, that has potential to be assisted simultaneously
with the newly developed pre-screening method reported here. A preliminary assay
validation was performed for this duplex COVID-19 test including a combination SARS-
CoV-2 NP antigen and host IgG antibody, covering the entire diagnostic timeline of the
disease with a single multiplexed test. This device integrated a lab-on-a-chip microfluidics
platform facilitating automated liquid sample handling, with an easy, simple and sensitive
assay readout and AI-assisted screening.

2. Materials and Methods
2.1. Patient Data

Pre-screening algorithms were developed from a retrospective analysis of asymp-
tomatic or pre-symptomatic patient encounters resulting in a COVID-19 RT-PCR positive
test. Data were collected across clinics and hospitals within the Family Health Centers
(FHC) network at New York University (NYU) Langone from 1 January to 25 June 2020,
although the first known positive case in the state of New York was detected 1 March 2020.
Test positivity prior to this date was assumed 0. Data were analyzed at the encounter level
rather than the patient level because many patients had multiple encounters. Symptomatic
patient encounters, in which one or more primary COVID-19 symptoms (cough, fever,
shortness of breath) was present, were excluded. Physiological predictors were evaluated
at two levels (systolic blood pressure < 120 mmHg, diastolic blood pressure < 80 mmHg,
body temperature ≥ 99 ◦F, pulse rate < 80 bpm, oxygen saturation ≤ 96%). County-level
testing data were acquired from the New York State Department of Health (New York State
Statewide COVID-19 Testing 2020). For each patient, a local positivity rate was calculated
(i.e., the average test positivity rate within the county of the reporting health center from
8 days to 1 day prior to the patient encounter). Similarly, case incidence rate was calculated
as the local 7-day average cases per 100,000. Consistent with NYU’s institutional review
board (IRB) policy and federal regulations, this study did not involve human participants
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and did not require IRB review. The data set is available from the authors upon reasonable
request and with permission of FHC at NYU Langone. Currently, with the changing dy-
namics of COVID pandemic scenario and infectivity across society, the COVID community
clinics are no longer performing community surveillance data collection.

2.2. Model Development and Statistical Analysis

Pre-screening models were developed using similar procedures described in an earlier
publication [37]. A lasso logistic regression model was trained to distinguish between
asymptomatic or pre-symptomatic patient encounters that resulted in a positive vs. negative
result for SARS-CoV-2 by RT-PCR. Continuous predictors were standardized with mean of
zero and variance of one. Missing data were imputed using the multivariate imputation by
chained equations package in statistical software R [38]. Samples in the training and test sets
were partitioned and trained using stratified 5-fold cross-validation. Model cutoffs were
selected to obtain at least 90% sensitivity. Diagnostic performance was documented in terms
of mean area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). Normally distributed predictors were compared
using an independent sample t-test. Proportions were compared using the chi-squared
test [39,40]. Two-sided tests were considered statistically significant for p < 0.05.

2.3. COVID-19 Antigen/Antibody Assay Development

The quantitative POC antigen/antibody combination test was developed for the
detection of SARS-CoV-2 NP and anti-S RBD IgG antibody. In-house fabricated agarose
beads sensors, with potential to host a variety of proteins and molecules, were utilized as the
backbone for assay chemistry. The anti-NP monoclonal antibody (Sino Biological, Wayne,
PA, USA; #40143-R019) was conjugated to the agarose bead sensors, as was recombinant
RBD protein. The RBD was produced in Expi293F cells transfected with the vector pCAGGS
SARS-CoV-2 RBD (BEI Resources #NR-52309) following the methods of [41], but using
PEI as the transfection reagent, then supplementing the media with valproic acid [42].
Anti-NP polyclonal antibody (Sino Biological #40588-T62) was conjugated to a fluorescent
tag (Alexa Fluor 488 conjugation labeling kit, Invitrogen, Waltham, MA, USA; #A20181),
and a secondary anti-rabbit antibody (Invitrogen) was also procured. Antigen (2019-nCoV
nucleocapsid His recombinant protein, Sino Biological #40588-V08B) and antibody (2019-
nCoV spike S1 antibody IgG, Sino Biological #40150-R007) assessments were made in PBS
(Thermo Fisher Scientific, Waltham, MA, USA). A 10% (w/v) bovine serum albumin (BSA)
(Sigma-Aldrich, St. Louis, MO, USA) solution was used for reagent stability, blocking
nonspecific binding, and was used as sample carrier spiked in a dose-dependent manner
with the analytes.

The assay design, reagent optimization, and proof of concept experimentation were
performed on multi-well plates with inserts (Corning™ Trans well™ Multiple Well Plate
with Permeable Polycarbonate Membrane Inserts, Fisher Scientific, Hampton, NH, USA).
The polycarbonate membrane inserts allowed easy placement and immersion of the agarose
beads in the sample buffer to allow the completion of different assay steps, somewhat
mimicking the microfluidic environment within the cartridge, without disruption to the
agarose bead integrity. Post wash steps, the beads were imaged under the fluorescence mi-
croscope by separating the inserts onto the imaging tray, while the beads were continued to
be supported by the insert membrane. After the proof of concept and reagent optimization
was completed, the assay was performed in a titrated manner with appropriate controls.
Images were captured on a fluorescent microscope on FITC, Cy5, and DAPI channels and
stacked to generate image outputs used for analysis, followed by whole bead fluorescence
measurements. The concentration vs. intensity curve determined an initial detection range.

This concurrent NP antigen and host IgG antibody detection assay was next performed
using prototype microfluidic cartridges adapted to the current application, non-form factor
instrumentation, and software described previously [43]. The disposable injection-molded
cartridge system was layered with the double-sided adhesive and polyethylene terephtha-
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late laminates on top and a hydrophilic laminate material on the bottom allowed sample
wicking through capillary action, and it consisted of interconnected microfluidics segments
for facilitating various immunoassay stages, including sample and reagent introduction
and delivery, mixing, bubbles and debris removal, and dedicated fluorescent analyte image
acquisition through optical fluorescence signal readout. The fabrication of microfluidic
cartridge, imaging, and analysis work was detailed in our recent publication, in develop-
ment of our parallel effort to demonstrate the seroprevalence assessment of COVID-19 and
vaccination-induced humoral antibody response, leading to this expanded work [33].

Analyte-specific beads were deposited into the cartridge, allowing multiple measure-
ments on the same assay. The 16 min assay was performed at room temperature under
continuous flow (PBS). Bead sensor priming, sample delivery, reagent incubation, wash
steps, and image collection were completed using an Olympus fluorescent microscope and
syringe pumps. Furthermore, standard curves for the concurrent assays were completed
using spiked samples (0, 2.4, 10, 40, 160, 625, 2500, 2500, and 10,000 ng/mL) and fit to
5-parameter logistic regression. Limit-of-detection (LOD) values were calculated using
blank control replicates (average signal intensity plus 3 standard deviations).

3. Results and Discussion

Evolving strains of SARS-CoV-2 continue to present high rates of transmissibility,
infectivity, and an ability to evade vaccine-induced protection. The risk for severe disease
remains high among at-risk individuals with high viral exposure, those with underlying
medical conditions, and older adults. Although a large majority of the population received
at least the primary series of vaccination and/or were infected at least once, the sero-
prevalence rates waned over time. With asymptomatic and pre-symptomatic cases serving
as the main driving force for community spread, there remains concern that screening
individuals for symptoms, elevated temperature, or vaccination record may be inadequate
to detect subclinical infection and/or predict immune status. Concurrent infection and
seroprevalence screening can help assess vaccination status, predict protection, manage
patient care and risks, and monitor disease outbreaks.

The novel screening approach described in this study can provide near real-time
COVID-19 status, thus promptly identifying infected individuals and thereby reducing the
risk of them spreading COVID-19. This tool can also screen individuals at high risk for
developing severe disease and requiring hospitalization. This current study encompassed
the development of an integrated COVID-19 screening capability for POC settings that
fits within the scope of a larger multi-tiered clinical decision support ecosystem to assess
the entire disease spectrum of COVID-19 in multiple care settings (Figure 1) [35]. One
envisioned use of the proposed COVID-19 screening tool is for care providers in assessing
the risk of transmission during in-person exams, treatments, or procedures. The process
starts with patients seeking care, e.g., at an elderly care home, cancer care clinic, dental
office, etc. Patients may be evaluated for the presence of one or more COVID-19 symptoms
(fever, cough, and shortness of breath). If symptomatic, patients should be asked to
reschedule for another date after their symptoms resolve. Patients without symptoms
were then pre-screened using the pre-screening algorithm. Those with pre-screening scores
above the high-risk threshold may be recommended for the rapid, quantitative COVID-19
antigen/antibody test.

A retrospective analysis determined whether pre-screening could effectively rule out
COVID-19 negative patients (i.e., to reduce the number of unnecessary tests). Many patients
had multiple encounters, and we based our analysis on a total of 3477 patient encounters re-
sulting in RT-PCR tests at NYU Langone Health FHCs. Patient encounters with one or more
primary symptoms (cough, fever, shortness of breath) were excluded (n = 924 encounters).
The remaining 2553 asymptomatic or pre-symptomatic patient encounters either tested
negative (n = 2059 encounters) or positive (n = 494 encounters) for SARS-CoV-2 by RT-PCR
(Figure S1).
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Figure 1. Clinical decision support system for COVID-19 screening. Prior to entering the care
setting, patients may be screened for the presence of one or more COVID-19 symptoms (fever, cough,
and shortness of breath). If symptomatic, patients should be rescheduled for a later date. The
Pre-screening Algorithm (Tier 0) helps determine if a patient is eligible for COVID-19 screening.
Patients with a high pre-screening score are recommended for the rapid antigen/antibody screening.
Beyond the scope of this work and published elsewhere are prognostic models (Tier 1 and Tier 2) for
predicting COVID-19 mortality in inpatient, outpatient, and hospital settings [36].

Table 1 shows the characteristics of the study population at the patient and encounter
levels. A total of 1074 asymptomatic or pre-symptomatic patients were included. Com-
paring patients who tested positive vs. negative, age, gender, and body mass index were
statistically similar. White and Asian populations accounted for a smaller proportion of the
positives relative to those testing negative (p = 0.005 and 0.021). Those with Hispanic ethnic-
ity accounted for 56.6% of the positives vs. 38.7% negatives (p < 0.001). Comorbid condition
rates were similar in those that tested positive vs. negative. At the patient encounter level,
all physiological measurements discriminated between the RT-PCR-positive and negative
groups at their respective cutoffs (all p < 0.05). The local positivity rate was higher for
patients testing positive (32.8%) vs. negative (17.7%) (p < 0.001). Similarly, the local case
incidence rate was higher for COVID-19 positives vs. negatives (30.1 vs. 21.4 cases per
100,000, p < 0.001). Details of daily changes in positivity rates and case incidence rates
from New York State Department of Health are detailed in Figure S2, though the models
developed in this study used a 7-day averaged rate prior to the patient’s encounter.

Table 1. Characteristics of asymptomatic or pre-symptomatic patients resulting in a RT-PCR test for
SARS-CoV-2 at NYU Langone Health’s FHCs. Data are represented as n (%) or mean ± standard
deviation. chronic obstructive pulmonary disease (COPD). SpO2 is oxygen saturation. Local positivity
rate is the 7-day average test positivity in the county where the patient received care. Local case
incidence rate is the 7-day average case incidence in the county where the patient received care.

RT-PCR Negative RT-PCR Positive p-Value

Patient-level

No. of patients 770 304

Encounters per patient 1.3 ± 0.6 1.2 ± 0.5 0.015

Age 48 ± 17 47 ± 17 0.443

Gender (no. of males) 280 (36.4) 112 (36.8) 0.883

Body mass index 29.3 ± 7.9 27.9 ± 5.3 0.130
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Table 1. Cont.

RT-PCR Negative RT-PCR Positive p-Value

Race

White 298 (38.7) 90 (29.6) 0.005

Black 137 (17.8) 44 (14.5) 0.191

Asian 77 (10.0) 17 (5.6) 0.021

Other 258 (33.5) 153 (50.3) <0.001

Ethnicity—Hispanic 298 (38.7) 172 (56.6) <0.001

Cardiac comorbidities 218 (28.3) 73 (24.0) 0.154

Hypertension 186 (24.2) 70 (23.0) 0.696

Peripheral vascular disease 83 (10.8) 23 (7.6) 0.112

Heart failure 38 (4.9) 11 (3.6) 0.352

Cerebrovascular disease 30 (3.9) 14 (4.6) 0.598

Myocardial infarction 21 (2.7) 8 (2.6) 0.931

Ischemic heart disease 8 (1.0) 6 (2.0) 0.224

Asthma 81 (10.5) 24 (7.9) 0.192

Cancer 49 (6.4) 18 (5.9) 0.787

COPD 104 (13.5) 30 (9.9) 0.104

Diabetes 116 (15.1) 49 (16.1) 0.666

HIV/AIDS 4 (0.5) 3 (1.0) 0.391

Liver disease 30 (3.9) 12 (3.9) 0.969

Renal disease 35 (4.5) 13 (4.3) 0.848

Encounter level

No. of encounters 2059 494

Systolic blood pressure < 120 mmHg 270 (13.1) 141 (28.5) <0.001

Diastolic blood pressure < 80 mmHg 426 (20.7) 186 (37.7) <0.001

Temperature ≥ 99 ◦F 47 (2.3) 29 (5.9) <0.001

Pulse < 80 bpm 251 (12.2) 87 (17.6) 0.001

SpO2 ≤ 96% 105 (5.1) 74 (15.0) <0.001

Local Positivity Rate (%) 17.7 ± 17.6 32.8 ± 20.1 <0.001

Local Case Incidence Rate (cases per 100,000) 21.4 ± 15.8 30.1 ± 16.2 <0.001

Pre-screening models for COVID-19 were developed and internally validated (Figure 2).
The local test positivity rate was the strongest individual predictor (univariate AUC
[95% CI] 0.71 [0.67–0.73]). The full model, which combined environmental, physiolog-
ical, and demographic factors, had an AUC of 0.76 (0.73–0.78). Median (IQR) COVID-19
pre-screening scores were 12 (8–22) and 28 (15–44) for negative and positive patients,
respectively.

Figure 3 shows various diagnostic models that were developed to demonstrate the
incremental effect of adding predictors, utilizing 2553 patient encounters (Figure S1).
Despite being the default method for screening in clinical settings, temperature had only
chance levels of association with PCR results (AUC = 0.52 [0.49–0.55]). The preferred model
(case incidence rate only) had an AUC of 0.65 (0.62–0.68). The diagnostic performance of
the full pre-screening model and the preferred pre-screening model, using case incidence
rate, local positivity rate, oxygen saturation, temperature, race, ethnicity are shown in
Tables S1 and S2.
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Figure 3. Diagnostic models for discriminating COVID-19 positive vs. negative (RT-PCR) in
asymptomatic/pre-symptomatic individuals. The CIR-only model is the preferred pre-screening
model (red). Temp. is body temperature ≥99 ◦F. SpO2 is oxygen saturation ≤96%. CIR is the case
incidence rate. LPR is the local positivity rate. Race/Ethn is race and ethnicity of the 2553 patient
encounters utilized for developing a pre-screening model in this study.
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Furthermore, the diagnostic performance for models discriminating COVID-19 pos-
itive vs. negative (RT-PCR) in pre- and asymptomatic individuals is demonstrated in
Table S3. While the lasso regression coefficients for the full model and preferred model are
stated in Tables S4 and S5.

Despite being the de facto method for COVID-19 screening to date, temperature was
found to be relatively ineffective at distinguishing which pre- or asymptomatic patients
were infected. However, temperature checks may still play an important role in detecting
symptomatic individuals who unknowingly present with a fever. Likewise, measurements
of oxygen saturation did not show significant improvements over temperature despite
its potential importance in monitoring disease progression in confirmed COVID-19 cases.
One unexpected finding of this analysis was that when and where a person was screened
was the most important factor in predicting COVID-19 status. The local test positivity rate
and case incidence rate were the strongest predictors of COVID-19 status, outperforming
physiological and demographic factors. This result demonstrates the significance of time-
and location-specific spread data within communities in estimating the pre-test probabilities
for COVID-19 screening. This result may be especially relevant for large clinical centers
which see an influx of patients from a broader geographic region.

Combining test positivity with recorded race and ethnicity changed the performance
(AUC 0.76); however, the inclusion of racial and ethnic information was dependent on
information collected at time of patient registration and may not generalize well to less
diverse populations [44]. While comorbidities are widely recognized to increase risk of
severe complications from COVID-19, there were no significant differences in BMI, diabetes,
and renal disease between patients with/without positive RT-PCR. In addition, while
test positivity rate was a better predictor than incidence rate, the testing data available
to date are only reliably available at the US state level, not the county level, and are,
thus, inappropriate for risk assessment in states with an uneven geographical distribution
of cases. For these reasons, we designated the model with case incidence rate as the
preferred model.

While the pre-screening algorithm determined who is at elevated risk with 90% sensi-
tivity (Table S2), the completion of COVID-19 antibody and antigen testing, which typically
have high specificity (~99%), had the potential to improve the diagnostic performance.
We envision that patients scoring above the threshold on the pre-screening assessment
would be recommended for an on-site POC combinatorial antigen/antibody test. Assay
validation on trans well plates with inserts permitted directed transition to optimization of
assays through multiple stages of the microfluidics-facilitated assay on evolving cartridge
and instrumentation designs, as detailed in Figure 4. The fully integrated microfluidic
network enabled assay system shown in Figure 4F functioned as a portable diagnostic
system applicable for POC testing.

The conceptual basis for simultaneous COVID-19 NP antigen and host IgG antibody
assay sequence is shown schematically in Figure 5. The antigen/antibody capturing beads
helps complete the assay and capture the immunocomplex, while the presence of the
control beads act as quality control simultaneously for each assay. First, during stage 1
(Figure 5), approximately 100 µL of the sample with/without antigen and antibody was
introduced to the cartridge input port and simultaneously wicking through the long loop
of microfluidic channel, short of the main bubble trap and vent membrane. During stage 2,
the sample port was sealed once the sample is fully wicked into the channel and followed
by enabling the sample delivery over the bead array through buffer flow via right blister.
A standard transport protocol was developed through optimization of various priming,
sample/reagent delivery, incubation, and wash flow rates and volume, using automated
fluid routing to control buffer flow. In stage 3, following sample delivery, a wash step
was enabled to remove unbound protein. Next, during stage 4, the antigen detection
reagent (conjugated to Alexa Fluor 488) was introduced via the right reagent pad, over the
bead array, through sustained buffer flow, followed by incubation, as seen in stage 5. The
presence of the SARS-CoV-2 NP antigen in the sample, captured onto the beads followed
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by the detection reagent, causes the beads to fluoresce, as a result of the antigen immune-
complex formation. Next, a thorough wash was enabled in stage 6. Finally, stage 6B shows
the first image capture step, post wash, concluding the antigen detection immunoassay.
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Figure 4. Cartridge and instrument evolution is shown for the following stages: (A) non form factor
flow cell serviced with syringe pumps and imaged by commercial epi-fluorescence microscope,
(B) non form factor laminate prototype serviced with syringe pumps and imaged by commercial epi-
fluorescence microscope, (C) form factor laminate prototype serviced with syringe pumps and imaged
by commercial epi-fluorescence microscope, (D) form factor laminate prototype with embedded
blister packs and imaged by commercial epi-fluorescence microscope, (E) form factor laminate
prototype with embedded blister packs and imaged by monorail customized epi-fluorescence image
station, (F) production ready cartridge and analyzer instrumentation suitable for point of care
measurements. The use of multiple stages of image instrumentation and cartridge has allowed for the
various subsystems to be tested and key subcomponents to be isolated. At the time of this submission
fully integrated instrumentation shown in panel F is available for drug testing applications. This
instrumentation is designed to be programmable allowing for its adaptation to other applications
including COVID-19 duplex testing. The application specific testing is planned for the near future.

As the multiplexed immunoassay progressed towards the antibody detection steps,
during stage 7, the antibody detection reagent (conjugated to Alexa Fluor 488) was intro-
duced via the left reagent pad through buffer flow pushing the reagent over the bead array
(Stage 7), followed by incubation (Stage 8) and final wash (Stage 9). In the presence of
SARS-CoV-2 IgG antibody in the sample, the post-assay completion image (the second
image captured during the entire assay) showed the antibody capture beads fluorescing as
a result of the antibody immune-complex formation (Stage 9C).

This combination test modality allows for the placement of positive and negative
control beads alongside the antigen and antibody reactive beads. Both antibody and antigen
assays can be completed through the spatial placement of specific reactive bead ensembles
within the array. Likewise, the 250–300 µm, in-house fabricated, analyte capturing agarose
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beads (conjugated with complementary protein) were placed in the 4 × 5 format bead array,
each with a vertically tapering well.
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Figure 5. COVID-19 antigen/antibody assay sequence. Step 1 shows the sample (antigen +/−
antibody) loaded to the cartridge input port, followed by sample delivery over the bead array
through buffer flow via right blister (Step 2) and finished with a wash step (Step 3). Step 4 shows
introduction of the antigen detection reagent conjugated to Alexa Fluor 488 (Step 4B) via the right
reagent pad, over the bead array, followed by incubation (Step 5) and wash (Step 6) steps. In the
presence of SARS-CoV-2 NP antigen in the sample, the post-assay completion image shows antigen
capture beads fluorescing as a result of the antigen immune-complex formation (Step 6B). Finally,
Step 7 shows the introduction of the antibody detection reagent conjugated to Alexa Fluor 488
(Step 7C) via the left reagent pad over the bead array, followed by final incubation (Step 8) and
final wash (Step 9) steps. In the presence of SARS-CoV-2 IgG1 antibody in the sample, the post-
assay completion image shows the antibody capture beads fluorescing as a result of the antibody
immune-complex formation (Step 9C).

To demonstrate initial validation, standard curves for antigen (SARS-CoV-2 NP) and
antibody (anti-S RBD IgG) were completed with 4-fold serially diluted analyte-spiked sam-
ple buffer, covering a range of high viral antigen and immune response load (10,000 ng/mL)
to very low loads (2 ng/mL) (Figure 6). Standard curves showed a pattern of progressive
fluorescence intensity and increasing signal-to-blank ratio (SBR), with intra-assay precision
ranging from 7 to 25%. This work generated a LOD of ~24 ng/mL for the antigen and
~30 ng/mL for antibody detection. The LOD was determined over the five-parameter logis-
tic regression fit, utilizing the calculated LOD MFI using blank control replicates (average
signal intensity plus standard deviation) (Figure 6E). The clinical validation of this new AI
integrated concurrent assay utilizing non-invasive sampling of saliva will be reported in
future works.

Diagnostics at the POC are critical for successfully mitigating COVID-19 transmission
risk in asymptomatic and pre-symptomatic populations. Expanding access to in situ testing
capabilities adds significant convenience to the risk management infrastructure much
needed in communities with vulnerable individuals, such as retirement homes, cancer
care centers, and critical care clinics. While the current gold-standard RT-PCR and ELISA
detection techniques are highly valuable, the added time, cost, and demand-supply chain
are major bottlenecks for processing the growing needs for testing. Convenient antigen
testing combined with rapid antibody-based testing has much potential in addressing
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these testing bottlenecks. In contrast to traditional immunochromatographic strip and
ELISA techniques, the multiplexed microfluidics-based assay developed here has the
potential to achieve high sensitivity in a convenient format with noninvasive sampling
while maintaining high specificity.
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Figure 6. The POC microfluidics-based combination antigen/antibody assay tool. Illustration of
assay cartridge (A) shows an array of 20 programmable agarose bead sensors (B), with antigen and
antibody capture beads imaged separately at steps 6 and 9 of assay (see Figure 5 for sequence of fluidic
steps), respectively, and stitched together to constitute the final image. The bead sensor serves as a
high surface area substrate for developing programmable immunoassays for COVID-19 antigen and
antibody detection (C). Multiplexed fluorescent images show bead sensor arrangement and captured
analyte via fluorescence, with variation in signal intensity at various concentrations (D). Averaged
bead fluorescence intensity (MFI) from the multiplexed assays were used to calibrate standard curves
for the antigen and antibody tests (E). Standard curves were completed using spiked samples (0, 2.4,
10, 40, 160, 625, 2500, 2500, and 10,000 ng/mL) and fit to 5-parameter logistic regression. Limit-of-
detection (LOD) values were calculated using blank control replicates (average signal intensity plus 3
standard deviations).
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Furthermore, viral antigen detection, in conjunction with screening host antibodies,
may be a helpful strategy to achieve early detection of SARS-CoV-2 infection. NP, utilized in
this work, is one of the most predominantly expressed and abundant protein in SARS-CoV-
2 virions, ideal for early diagnostic detection, detectable up to 1 day before the appearance
of clinical symptoms [45]. Importantly, it has three distinct domains, highly conserved
across the coronaviruses, that are subject to lower mutagenic changes associated with newer
evolving VOC, compared to the S and RBD protein [46–48], making them good targets
for detection.

The concurrent assay developed here also utilized the anti-S RBD IgG to reflect the
high utility and specificity of antibody-mediated protection associated with vaccination
and/or infection. Most major COVID-19 vaccines elicit specific immune responses against
the S protein of SARS-CoV-2, preventing the virion from host cell binding, fusion, and
entry [49]. Additionally, SARS-CoV-2-infected individuals and/or vaccinated individuals
both elicit a robust host IgG response against the S and receptor binding protein but not the
NP [50]. This antibody-mediated response, particularly the IgG seroprevalence, was used
as a surrogate marker to address the efficacy and protection conferred by the vaccines [48].
Thus, serological assays with IgG assessment can aid the understanding of a patient’s
clinical status following viral infection and response to vaccination [24].

Our concurrent assay described a fully functional multiplexing of COVID-19 infection
and host immune response biomarkers. A significant challenge with multiplexing is cross-
reactivity between capture and detecting reagents, particularly in combining immunoassay
formats. These issues can be mitigated through optimization of reagent sources, subtypes,
blocking strategies, assay flow rates, and volumes. Additionally, limitations of this testing
strategy included obtaining negative results in patients during their incubation period who
later become infectious.

Multiple qualitative POC antigen or separately antibody detection strategies were
approved by emergency used authorization by the FDA, significantly easing the testing
bottlenecks across the pandemic timeline. Though the work in this manuscript represents
a POC, quantitative, and concurrent antigen and antibody testing strategy, embodying a
significant advancement over the antigen only or antibody only tests which are mostly
non/semi-quantitative POC applications.

While this current work served to demonstrate initial method validation and a promis-
ing implementation for high-risk settings; requiring rapid, cost-effective, convenient, and
accurate screening results, future work will involve further assessment of qualitative per-
formance (sensitivity and specificity) and blinded validation of the combinatorial format
with real patient samples confirmed by RT-PCR and lab-based serological testing methods.

A quantitative concurrent antigen/antibody screening platform may also be useful
for assessment of COVID-19 convalescent plasma donor fitness. The passive transfer of
anti–SARS-CoV-2 neutralizing antibodies from the plasma of recently recovered individuals
to patients with severe COVID-19 is associated with a decrease in incidences of disease
progression, hospitalization, and mortality [14]. Patients who are immunocompromised
have higher risk for morbidity and mortality associated with COVID-19, since they less
frequently elicit low antibody responses to vaccines. This convalescent plasma transfer
therapy, when administered early in the disease course, is associated with mortality benefit
for patients who are at high-risk for COVID-19 [14]. In these circumstances, early iden-
tification of a donor is key. This process can be aided by a rapid and accurate screening
platform with concurrent antigen and antibody detection described in this paper, utilizing
minimally invasive sampling such as saliva. Recently, another study showed the value
of a concurrent antigen/antibody detection utilizing saliva [51]. Detecting SARS-CoV-2
from oro-/nasopharyngeal swabs requires high-quality specimens with a sufficient sam-
pling of intact viral RNA. However, viral loads in the respiratory tract were shown to
be highly variable, leading to high false-negative rates. Saliva emerged as a promising
alternative to nasopharyngeal swabs for COVID-19 diagnosis and monitoring [52,53], in
which testing accuracy may be improved by saliva’s more uniform availability of antigens
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and antibodies. The saliva sampling solution proposed here circumvents the limitations of
oro- and nasopharyngeal sampling as patients can self-collect saliva samples with minimal
instruction. Our work adds significant value over existing POC technologies, describing
the incorporation of a pre-screening algorithm alongside a rapid, accurate, and quantitative,
simultaneous SARS-CoV-2 NP antigen and host IgG antibody detection at the POC.

4. Conclusions

As the public health demands for COVID-19 pandemic change, there is a strong need
to rapidly adapt testing strategies, monitoring both the infection and immune status of
patients, especially directed towards the vulnerable populations. To facilitate public health
policy decisions, governments across the globe use estimates of transmission rates, case
numbers, and fatality rates. The assessment of infection can help mitigate transmission,
while insights on virus-specific antibody titer levels can help recognize changes in the
antibody-mediated protection affected by new, rapidly evolving SARS-CoV-2 variants and
vaccination response. The pre-screening algorithm alongside simultaneous multiplexing
capabilities and its streamlined workflow described in this paper represent important steps
towards building an infrastructure necessary in this next phase of pandemic, continue
protecting the at-risk individuals, and provide information to clinicians and public health
policy makers to facilitate this process.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering10060670/s1, Figure S1: Disposition of
patient encounters; Figure S2: Test positivity rates (A) and case incidence rates (B) from New York
State Department of Health for the three counties in which the NYU Family Health Centers are lo-
cated. While the figures below show daily changes in positivity and incidence, the models developed
in this study used 7-day averaged rates prior to the patient’s encounter (i.e., averaged 1–8 days before
encounter). Although, the dataset compilation from NYU Langone began in 1 January 2020, the first
known positive COVID-19 case in the State of New York was detected on 1 March 2020, represented
in this figure.; Table S1: Diagnostic performance of the full model (local positivity rate, SpO2 ≤ 96%,
temperature ≥ 99 ◦F, race, and ethnicity); Table S2: Diagnostic performance of the preferred model
(case incidence rate); Table S3: Table of diagnostic performance for models discriminating COVID-19
positive vs. negative (RT-PCR) in pre- and asymptomatic individuals. This table corresponds to the
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saturation ≤96%. CIR is the case incidence rate. LPR is the local positivity rate; Table S4: Lasso
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the preferred model.

Author Contributions: K.S.R. contributed to conception and design, data acquisition, analysis and
interpretation, drafted and critically revised the manuscript; M.P.M. contributed to conception and
design, data acquisition, analysis, and interpretation, drafted and critically revised the manuscript;
N.J.C. contributed to interpretation, drafted and critically revised the manuscript; I.D. contributed
to interpretation, critically revised manuscript; G.W.S. contributed to acquisition, critically revised
manuscript; H.M. contributed to acquisition, critically revised manuscript; H.D. contributed to acqui-
sition, critically revised manuscript; D.F. contributed to interpretation, critically revised manuscript;
J.T.M. contributed to conception and design, data acquisition, analysis, and interpretation, critically
revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Renaissance Health Service Corporation and Delta Dental
of Michigan. Funding was also provided by the NIH through the National Institute on Drug Abuse
(NIH grant no. R42DA041959). The content is solely the responsibility of the authors and does not
necessarily represent or reflect the views of the funding agencies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data was generated by developing a novel detection platform at the
McDevitt Lab. All data in support of this study is available by contacting the corresponding author
and/or the first authors.

https://www.mdpi.com/article/10.3390/bioengineering10060670/s1


Bioengineering 2023, 10, 670 15 of 17

Acknowledgments: This work was funded by Renaissance Health Service Corporation and Delta
Dental of Michigan. The following reagent was produced under HHSN272201400008C and obtained
through BEI Resources, NIAID, NIH: Vector pCAGGS Containing the SARS-Related Coronavirus 2,
Wuhan-Hu-1 Spike Glycoprotein Receptor Binding Domain (RBD), NR-52309.

Conflicts of Interest: K.S.R., M.P.M., N.J.C. and J.T.M. have a patent pending based in part on the
work presented in this manuscript. M.P.M. served as a paid consultant for SensoDx and has a
provisional patent pending. N.J.C. has a provisional patent pending. J.T.M. has a provisional patent
pending. In addition, he has an ownership position and an equity interest in SensoDx II LLC, Victor,
NY, USA and OraLiva, Inc., Naples, FL, USA. All other authors declare no competing interest.

References
1. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 1 March 2023).
2. Bergman, P.; Blennow, O.; Hansson, L.; Mielke, S.; Nowak, P.; Chen, P.; Söderdahl, G.; Österborg, A.; Smith, C.I.E.; Wullimann, D.;

et al. Safety and Efficacy of the MRNA BNT162b2 Vaccine against SARS-CoV-2 in Five Groups of Immunocompromised Patients
and Healthy Controls in a Prospective Open-Label Clinical Trial. eBioMedicine 2021, 74, 103705. [CrossRef] [PubMed]

3. Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.;
Smith, P.G.; et al. Duration of Effectiveness of Vaccines against SARS-CoV-2 Infection and COVID-19 Disease: Results of a
Systematic Review and Meta-Regression. Lancet 2022, 399, 924–944. [CrossRef] [PubMed]

4. CDC SARS-CoV-2 Variant Classifications and Definitions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/
variants/variant-classifications.html (accessed on 1 March 2023).

5. Zhang, X.; Wu, S.; Wu, B.; Yang, Q.; Chen, A.; Li, Y.; Zhang, Y.; Pan, T.; Zhang, H.; He, X. SARS-CoV-2 Omicron Strain Exhibits
Potent Capabilities for Immune Evasion and Viral Entrance. Signal Transduct. Target. Ther. 2021, 6, 430. [CrossRef] [PubMed]

6. Kurhade, C.; Zou, J.; Xia, H.; Liu, M.; Chang, H.C.; Ren, P.; Xie, X.; Shi, P.-Y. Low Neutralization of SARS-CoV-2 Omicron
BA.2.75.2, BQ.1.1 and XBB.1 by Parental mRNA Vaccine or a BA.5 Bivalent Booster. Nat. Med. 2022, 430, 344–347. [CrossRef]

7. CDC Underlying Medical Conditions—COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker
(accessed on 1 March 2023).

8. Xue, L.; Jing, S.; Zhang, K.; Milne, R.; Wang, H. Infectivity versus Fatality of SARS-CoV-2 Mutations and Influenza. Int. J. Infect.
Dis. 2022, 121, 195–202. [CrossRef]

9. Chalkias, S.; Harper, C.; Vrbicky, K.; Walsh, S.R.; Essink, B.; Brosz, A.; McGhee, N.; Tomassini, J.E.; Chen, X.; Chang, Y.; et al.
A Bivalent Omicron-Containing Booster Vaccine against COVID-19. N. Engl. J. Med. 2022, 387, 1279–1291. [CrossRef]

10. Chalkias, S.; Whatley, J.; Eder, F.; Essink, B.; Khetan, S.; Bradley, P.; Brosz, A.; McGhee, N.; Tomassini, J.E.; Chen, X.; et al. Safety
and Immunogenicity of Omicron BA.4/BA.5 Bivalent Vaccine Against COVID-19. medRxiv 2022. [CrossRef]

11. CDC COVID-19 Vaccinations in the United States. Available online: https://covid.cdc.gov/covid-data-tracker/#vaccinations_
vacc-people-booster-percent-pop5 (accessed on 3 March 2023).

12. CDC Updates and Shortens Recommended Isolation and Quarantine Period for General Population. Available online:
https://www.cdc.gov/media/releases/2021/s1227-isolation-quarantine-guidance.html (accessed on 1 March 2023).

13. Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.;
et al. Rapid Epidemic Expansion of the SARS-CoV-2 Omicron Variant in Southern Africa. Nature 2022, 603, 679–686. [CrossRef]

14. Senefeld, J.W.; Franchini, M.; Mengoli, C.; Cruciani, M.; Zani, M.; Gorman, E.K.; Focosi, D.; Casadevall, A.; Joyner, M.J. COVID-19
Convalescent Plasma for the Treatment of Immunocompromised Patients: A Systematic Review and Meta-Analysis. JAMA Netw.
Open 2023, 6, e2250647. [CrossRef]

15. Almadhi, M.A.; Abdulrahman, A.; Sharaf, S.A.; AlSaad, D.; Stevenson, N.J.; Atkin, S.L.; AlQahtani, M.M. The High Prevalence of
Asymptomatic SARS-CoV-2 Infection Reveals the Silent Spread of COVID-19. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis.
2021, 105, 656–661. [CrossRef]

16. Gandhi, M.; Yokoe, D.S.; Havlir, D.V. Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control COVID-19.
N. Engl. J. Med. 2020, 382, 2158–2160. [CrossRef]

17. Ra, S.H.; Lim, J.S.; Kim, G.; Kim, M.J.; Jung, J.; Kim, S.-H. Upper Respiratory Viral Load in Asymptomatic Individuals and Mildly
Symptomatic Patients with SARS-CoV-2 Infection. Thorax 2021, 76, 61–63. [CrossRef]

18. Peeling, R.W.; Sia, S.K. Lessons from COVID-19 for Improving Diagnostic Access in Future Pandemics. Lab. Chip. 2023, 23,
1376–1388. [CrossRef] [PubMed]

19. Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.;
et al. Virological Assessment of Hospitalized Patients with COVID-2019. Nature 2020, 581, 465–469. [CrossRef]

20. Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral Load of SARS-CoV-2 in Clinical Samples. Lancet Infect. Dis. 2020, 20,
411–412. [CrossRef] [PubMed]

21. Zhang, W.; He, Y.; Feng, Z.; Zhang, J. Recent advances of functional nucleic acid-based sensors for point-of-care detection of
SARS-CoV-2. Microchim. Acta 2022, 189, 128. [CrossRef]

22. Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.;
Oliveira, T.Y.; et al. Evolution of Antibody Immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [CrossRef] [PubMed]

https://covid19.who.int
https://doi.org/10.1016/j.ebiom.2021.103705
https://www.ncbi.nlm.nih.gov/pubmed/34861491
https://doi.org/10.1016/S0140-6736(22)00152-0
https://www.ncbi.nlm.nih.gov/pubmed/35202601
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
https://doi.org/10.1038/s41392-021-00852-5
https://www.ncbi.nlm.nih.gov/pubmed/34921135
https://doi.org/10.1038/s41591-022-02162-x
https://covid.cdc.gov/covid-data-tracker
https://doi.org/10.1016/j.ijid.2022.05.031
https://doi.org/10.1056/NEJMoa2208343
https://doi.org/10.1101/2022.12.11.22283166
https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-people-booster-percent-pop5
https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-people-booster-percent-pop5
https://www.cdc.gov/media/releases/2021/s1227-isolation-quarantine-guidance.html
https://doi.org/10.1038/s41586-022-04411-y
https://doi.org/10.1001/jamanetworkopen.2022.50647
https://doi.org/10.1016/j.ijid.2021.02.100
https://doi.org/10.1056/NEJMe2009758
https://doi.org/10.1136/thoraxjnl-2020-215042
https://doi.org/10.1039/D2LC00662F
https://www.ncbi.nlm.nih.gov/pubmed/36629022
https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1016/S1473-3099(20)30113-4
https://www.ncbi.nlm.nih.gov/pubmed/32105638
https://doi.org/10.1007/s00604-022-05242-4
https://doi.org/10.1038/s41586-021-03207-w
https://www.ncbi.nlm.nih.gov/pubmed/33461210


Bioengineering 2023, 10, 670 16 of 17

23. Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.;
Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020, 383,
1724–1734. [CrossRef]

24. Gilbert, P.B.; Montefiori, D.C.; McDermott, A.B.; Fong, Y.; Benkeser, D.; Deng, W.; Zhou, H.; Houchens, C.R.; Martins, K.;
Jayashankar, L.; et al. Immune Correlates Analysis of the MRNA-1273 COVID-19 Vaccine Efficacy Clinical Trial. Science 2022, 375,
43–50. [CrossRef]

25. Fenwick, C.; Croxatto, A.; Coste, A.T.; Pojer, F.; André, C.; Pellaton, C.; Farina, A.; Campos, J.; Hacker, D.; Lau, K.; et al.
Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses Impact the Estimates of Infections in Population-Based
Seroprevalence Studies. J. Virol. 2021, 95, e01828-20. [CrossRef]

26. Dispinseri, S.; Secchi, M.; Pirillo, M.F.; Tolazzi, M.; Borghi, M.; Brigatti, C.; De Angelis, M.L.; Baratella, M.; Bazzigaluppi, E.;
Venturi, G.; et al. Neutralizing Antibody Responses to SARS-CoV-2 in Symptomatic COVID-19 Is Persistent and Critical for
Survival. Nat. Commun. 2021, 12, 2670. [CrossRef] [PubMed]

27. Fujimoto, A.B.; Keskinocak, P.; Yildirim, I. Significance of SARS-CoV-2 Specific Antibody Testing during COVID-19 Vaccine
Allocation. Vaccine 2021, 39, 5055–5063. [CrossRef] [PubMed]

28. Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.-M.;
et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [CrossRef]
[PubMed]

29. Rajsri, K.S.; Singh, M.; Rao, M. Efficacy of COVID-19 Vaccines Against the Omicron Variant of SARS-CoV-2. 2023. Available
online: https://www.preprints.org/manuscript/202303.0097/v1 (accessed on 1 March 2023).

30. Liu, R.; Liu, X.; Yuan, L.; Han, H.; Shereen, M.A.; Zhen, J.; Niu, Z.; Li, D.; Liu, F.; Wu, K.; et al. Analysis of Adjunctive
Serological Detection to Nucleic Acid Test for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection
Diagnosis. Int. Immunopharmacol. 2020, 86, 106746. [CrossRef]

31. Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Dela Cruz, C.S.; Wang, Y.; Wu, C.; Xiao, Y.; et al. Profiling Early Humoral
Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 778–785.
[CrossRef] [PubMed]

32. McRae, M.P.; Simmons, G.; Wong, J.; McDevitt, J.T. Programmable Bio-Nanochip Platform: A Point-of-Care Biosensor System
with the Capacity To Learn. Acc. Chem. Res. 2016, 49, 1359–1368. [CrossRef]

33. Rajsri, K.S.; McRae, M.P.; Simmons, G.W.; Christodoulides, N.J.; Matz, H.; Dooley, H.; Koide, A.; Koide, S.; McDevitt, J.T. A Rapid
and Sensitive Microfluidics-Based Tool for Seroprevalence Immunity Assessment of COVID-19 and Vaccination-Induced Humoral
Antibody Response at the Point of Care. Biosensors 2022, 12, 621. [CrossRef]

34. McRae, M.P.; Modak, S.S.; Simmons, G.W.; Trochesset, D.A.; Kerr, A.R.; Thornhill, M.H.; Redding, S.W.; Vigneswaran, N.;
Kang, S.K.; Christodoulides, N.J.; et al. Point-of-care Oral Cytology Tool for the Screening and Assessment of Potentially
Malignant Oral Lesions. Cancer Cytopathol. 2020, 128, 207–220. [CrossRef]

35. McRae, M.P.; Bozkurt, B.; Ballantyne, C.M.; Sanchez, X.; Christodoulides, N.; Simmons, G.; Nambi, V.; Misra, A.; Miller, C.S.;
Ebersole, J.L.; et al. Cardiac ScoreCard: A Diagnostic Multivariate Index Assay System for Predicting a Spectrum of Cardiovascular
Disease. Expert Syst. Appl. 2016, 54, 136–147. [CrossRef]

36. McRae, P.M.; Issac, P.D.; Sharif, I.; Anderman, J.; Fenyo, D.; Sinokrot, O.; Stella, K.K.; Christodoulides, C.; Vurmaz, D.;
Simmons, W.G.; et al. Managing COVID-19 With a Clinical Decision Support Tool in a Community Health Network: Algorithm
Development and Validation. J. Med. Internet Res. 2020, 22, 33. [CrossRef]

37. McRae, M.P.; Simmons, G.W.; Christodoulides, N.J.; Lu, Z.; Kang, S.K.; Fenyo, D.; Alcorn, T.; Dapkins, I.P.; Sharif, I.; Vurmaz, D.;
et al. Clinical Decision Support Tool and Rapid Point-of-Care Platform for Determining Disease Severity in Patients with
COVID-19. Lab. Chip 2020, 20, 2075–2085. [CrossRef]

38. Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67.
[CrossRef]

39. Campbell, I. Chi-Squared and Fisher–Irwin Tests of Two-by-Two Tables with Small Sample Recommendations. Stat. Med. 2007,
26, 3661–3675. [CrossRef] [PubMed]

40. Richardson, J.T.E. The Analysis of 2 × 2 Contingency Tables—Yet Again. Stat. Med. 2011, 30, 890, author reply 891–892. [CrossRef]
[PubMed]

41. Stadlbauer, D.; Amanat, F.; Chromikova, V.; Jiang, K.; Strohmeier, S.; Arunkumar, G.A.; Tan, J.; Bhavsar, D.; Capuano, C.;
Kirkpatrick, E.; et al. SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for a Serological Assay, Antigen Production,
and Test Setup. Curr. Protoc. Microbiol. 2020, 57, e100. [CrossRef] [PubMed]

42. Fang, X.T.; Sehlin, D.; Lannfelt, L.; Syvänen, S.; Hultqvist, G. Efficient and Inexpensive Transient Expression of Multispecific
Multivalent Antibodies in Expi293 Cells. Biol. Proced. Online 2017, 19, 11. [CrossRef]

43. McRae, M.P.; Simmons, G.W.; Wong, J.; Shadfan, B.; Gopalkrishnan, S.; Christodoulides, N.; McDevitt, J.T. Programmable
Bio-Nano-Chip System: A Flexible Point-of-Care Platform for Bioscience and Clinical Measurements. Lab. Chip. 2015, 15,
4020–4031. [CrossRef]

44. Vyas, D.A.; Eisenstein, L.G.; Jones, D.S. Hidden in Plain Sight—Reconsidering the Use of Race Correction in Clinical Algorithms.
N. Engl. J. Med. 2020, 383, 874–882. [CrossRef]

https://doi.org/10.1056/NEJMoa2026116
https://doi.org/10.1126/science.abm3425
https://doi.org/10.1128/JVI.01828-20
https://doi.org/10.1038/s41467-021-22958-8
https://www.ncbi.nlm.nih.gov/pubmed/33976165
https://doi.org/10.1016/j.vaccine.2021.06.067
https://www.ncbi.nlm.nih.gov/pubmed/34274126
https://doi.org/10.1056/NEJMoa2119451
https://www.ncbi.nlm.nih.gov/pubmed/35249272
https://www.preprints.org/manuscript/202303.0097/v1
https://doi.org/10.1016/j.intimp.2020.106746
https://doi.org/10.1093/cid/ciaa310
https://www.ncbi.nlm.nih.gov/pubmed/32198501
https://doi.org/10.1021/acs.accounts.6b00112
https://doi.org/10.3390/bios12080621
https://doi.org/10.1002/cncy.22236
https://doi.org/10.1016/j.eswa.2016.01.029
https://doi.org/10.2196/22033
https://doi.org/10.1039/D0LC00373E
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1002/sim.2832
https://www.ncbi.nlm.nih.gov/pubmed/17315184
https://doi.org/10.1002/sim.4116
https://www.ncbi.nlm.nih.gov/pubmed/21432882
https://doi.org/10.1002/cpmc.100
https://www.ncbi.nlm.nih.gov/pubmed/32302069
https://doi.org/10.1186/s12575-017-0060-7
https://doi.org/10.1039/C5LC00636H
https://doi.org/10.1056/NEJMms2004740


Bioengineering 2023, 10, 670 17 of 17

45. Che, X.-Y.; Hao, W.; Wang, Y.; Di, B.; Yin, K.; Xu, Y.-C.; Feng, C.-S.; Wan, Z.-Y.; Cheng, V.C.C.; Yuen, K.-Y. Nucleocapsid Protein as
Early Diagnostic Marker for SARS. Emerg. Infect. Dis. 2004, 10, 1947–1949. [CrossRef]

46. Peng, Y.; Du, N.; Lei, Y.; Dorje, S.; Qi, J.; Luo, T.; Gao, G.F.; Song, H. Structures of the SARS-CoV-2 Nucleocapsid and Their
Perspectives for Drug Design. EMBO J. 2020, 39, e105938. [CrossRef]

47. Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; et al. Crystal Structure of
SARS-CoV-2 Nucleocapsid Protein RNA Binding Domain Reveals Potential Unique Drug Targeting Sites. Acta Pharm. Sin. 2020,
10, 1228–1238. [CrossRef] [PubMed]

48. Chang, C.; Hou, M.-H.; Chang, C.-F.; Hsiao, C.-D.; Huang, T. The SARS Coronavirus Nucleocapsid Protein—Forms and Functions.
Antivir. Res. 2014, 103, 39–50. [CrossRef]

49. CDC Science Brief: SARS-CoV-2 Infection-Induced and Vaccine-Induced Immunity—Coronavirus Disease 2019 (COVID-19).
Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/vaccine-induced-immunity.html
(accessed on 4 March 2023).

50. Dörschug, A.; Frickmann, H.; Schwanbeck, J.; Yilmaz, E.; Mese, K.; Hahn, A.; Groß, U.; Zautner, A.E. Comparative Assessment of
Sera from Individuals after S-Gene RNA-Based SARS-CoV-2 Vaccination with Spike-Protein-Based and Nucleocapsid-Based
Serological Assays. Diagnostics 2021, 11, 426. [CrossRef]

51. Najjar, D.; Rainbow, J.; Sharma Timilsina, S.; Jolly, P.; de Puig, H.; Yafia, M.; Durr, N.; Sallum, H.; Alter, G.; Li, J.Z.; et al.
A Lab-on-a-Chip for the Concurrent Electrochemical Detection of SARS-CoV-2 RNA and Anti-SARS-CoV-2 Antibodies in Saliva
and Plasma. Nat. Biomed. Eng. 2022, 6, 968–978. [CrossRef] [PubMed]

52. Wyllie, A.L.; Fournier, J.; Casanovas-Massana, A.; Campbell, M.; Tokuyama, M.; Vijayakumar, P.; Warren, J.L.; Geng, B.; Muenker,
M.C.; Moore, A.J.; et al. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. N. Engl. J. Med. 2020, 383,
1283–1286. [CrossRef] [PubMed]

53. Kojima, N.; Turner, F.; Slepnev, V.; Bacelar, A.; Deming, L.; Kodeboyina, S.; Klausner, J.D. Self-Collected Oral Fluid and Nasal
Swabs Demonstrate Comparable Sensitivity to Clinician Collected Nasopharyngeal Swabs for Coronavirus Disease 2019 Detection.
Clin. Infect. Dis. 2021, 73, e3106–e3109. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3201/eid1011.040516
https://doi.org/10.15252/embj.2020105938
https://doi.org/10.1016/j.apsb.2020.04.009
https://www.ncbi.nlm.nih.gov/pubmed/32363136
https://doi.org/10.1016/j.antiviral.2013.12.009
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/vaccine-induced-immunity.html
https://doi.org/10.3390/diagnostics11030426
https://doi.org/10.1038/s41551-022-00919-w
https://www.ncbi.nlm.nih.gov/pubmed/35941191
https://doi.org/10.1056/NEJMc2016359
https://www.ncbi.nlm.nih.gov/pubmed/32857487
https://doi.org/10.1093/cid/ciaa1589

	Introduction 
	Materials and Methods 
	Patient Data 
	Model Development and Statistical Analysis 
	COVID-19 Antigen/Antibody Assay Development 

	Results and Discussion 
	Conclusions 
	References

