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Abstract: Video-recorded robotic-assisted surgeries allow the use of automated computer vision and
artificial intelligence/deep learning methods for quality assessment and workflow analysis in surgical
phase recognition. We considered a dataset of 209 videos of robotic-assisted laparoscopic inguinal
hernia repair (RALIHR) collected from 8 surgeons, defined rigorous ground-truth annotation rules,
then pre-processed and annotated the videos. We deployed seven deep learning models to establish
the baseline accuracy for surgical phase recognition and explored four advanced architectures. For
rapid execution of the studies, we initially engaged three dozen MS-level engineering students in a
competitive classroom setting, followed by focused research. We unified the data processing pipeline
in a confirmatory study, and explored a number of scenarios which differ in how the DL networks
were trained and evaluated. For the scenario with 21 validation videos of all surgeons, the Video
Swin Transformer model achieved ~0.85 validation accuracy, and the Perceiver IO model achieved
~0.84. Our studies affirm the necessity of close collaborative research between medical experts and
engineers for developing automated surgical phase recognition models deployable in clinical settings.

Keywords: surgical phase recognition; inguinal hernia repair; robotic-assisted laparoscopic surgery;
computer vision; deep learning; AI; convolutional neural network; transformers

1. Introduction

Artificial intelligence (AI) in the form of machine learning (ML) or deep learning (DL)
refers to training machines to automatically perform a selection of “intelligent tasks”. The
potential advantages of AI in medicine include labor reduction and, possibly, improve-
ment of the quality of analysis for healthcare [1]. In surgery, the abundance of video data
from intraoperative recordings creates an opportunity for training computer programs
to interpret visual data using computer vision (CV) and DL [2–4]. Although CV/DL can
in principle be used in many facets of video interpretation, such as instrument recogni-
tion and even skill assessment, the most widespread use is currently in surgical phase
recognition [2,3].

Surgical phase recognition is of interest for its potential utility in workflow analysis
and evaluation of technical quality. Automation of the assessment of operative phases
would be a useful adjunct in such analysis for reducing costs and labor. Several types of
operations are amenable to segmentation/classification by DL models. Most reports have
focused on laparoscopic surgeries, especially sleeve gastrectomy [5,6], sigmoidectomy [7],
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myotomy [8], and cholecystectomy [9]. One of the most prevailing benchmarks is based
on the Cholec80 [9] surgical workflow dataset. The earliest attempt was by the dataset
developers in 2016, achieving an accuracy of 75.2%. The model, namely EndoNet, adopted
a convolutional neural network (CNN) for feature extraction, followed by a support vector
machine and a hidden Markov model for temporal phase inference. Later reports incor-
porated time dependency into the DL models in multiple fashions, with some examples
including SV-RCNet (81.6%, 2018) using LSTM [10] and TeCNO (88.6%, 2020) using 3D
convolutions [11]. Utilization of the attention mechanisms was reported by TMRNet (90.1%,
2021) [12] and Trans-SVNet (90.3%, 2021) [13]. A recent attempt in 2023 using 3D convolu-
tion with positional encodings reported 92.3%, which is believed to be the best result on
Cholec80 [14].

Generally, studies on surgical phase recognition have been single-institutional studies,
with internal resources of both: (1) video acquisition and labeling and (2) CV/DL algorithm
design and validation [5–8]. Recently, more papers on DL have been featured in clinical
journals, which indicates that CV/DL methods in surgery are moving from pure demon-
strations of “Can we do it?” to more applied uses, answering: “What can we do with it?” [4].
Such a shift in emphasis requires ongoing collaborations between surgeons and engineers.
Aside from collaboration per se, additional advantages might be found in the introduc-
tion of competition between groups, yielding repeatable, more robust results and novel
solutions. This was carried out with the Surgical Action Triplet Recognition Challenge
hosted by the Medical Image Computing and Computer-Assisted Interventions (MICCAI)
2021, in which groups competed to produce the best possible algorithm to predict so-called
triplet classes (instrument + action + target) during laparoscopic cholecystectomy [15]. In
the CholectTriplet 2021 challenge, the winning group outperformed the baseline model
published by the hosts [15,16].

The studies reported in this paper describe the establishment of a team and a process
for collaboration between clinicians and engineers working on applications of CV/DL in
surgeries, development of robust ground-truth annotations for RALIHR phase recognition,
verification of baseline recognition accuracies, and exploration of advanced methods for
improving the performance. The studies incorporated the training of three dozen students
who, in a competitive fashion, produced a large set of easily comparable results. The key
outcomes of the studies are a robust workflow and CV/DL models with accuracies in the
range of ~0.85 for a non-ideal dataset acquired from eight surgeons.

2. Materials and Methods
2.1. Video Acquisition, Annotation, and Processing

A large video dataset of RALIHR is available at our health system (Northwell Health,
Hempstead, NY, USA) through commercial agreement with a video recording device
platform (C-SATS, Inc., Seattle, WA, USA). Videos of RALIHR obtained from eight surgeons
were downloaded and stripped of all potentially identifying information prior to CV/DL
processing. This study was deemed exempt by the Northwell IRB (IRB #19-0254).

An iterative, collaborative method and approach to ground-truth annotations for the
RALIHR phases was developed and implemented. Phases were defined, with the priority
being feasibility of machine-based detection. For example, periods of transitions or pauses
between clearly defined phases commonly exist in real-life surgeries. Regarding them
as a part of adjacent phases would negatively affect model learning due to the injection
of ambiguous visual information. Here, a compromise was made between strict surgical
definitions and the ease of task completion, hedging toward stricter definitions of each of
the phases. All annotations were completed by a single surgical trainee (D.B.). The surgical
phases to be annotated are defined in Table A1.

Videos were uniformly processed in the following manner. De-identified videos
were processed with the FFmpeg video/audio processing library to reduce the frame-per-
second (FPS) from 30 FPS, as encoded on the C-SATS platform, to 1 FPS to reduce the
computational load. This reduction has a negligible impact on the phase recognition task.
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A frame resolution of either 760 × 468 or 1280 × 760 was maintained, the audio track
was removed, and the video format was kept in H.264. Completely de-identified videos
were shared with the engineering team via upload to the institutional Google Drive folder
(Google, Mountain View, CA, USA).

2.2. Competitive Model Creation

The simplest possible way of formulating video-based surgical phase recognition is
to treat it as a classification problem, where the frames from the videos are individually
categorized into a set of predefined phases. This modeling approach easily adapts to
different choices regarding temporal information: the frames are either independent of
one another or temporally related, depending on the model configuration. A variety of
image and video classification methodologies can be chosen for this task. For an image
classification model, the input is processed on a per-frame basis. A video-based model, on
the contrary, takes input of short video clips, configurable in duration.

We tasked a class of master-level students with creating their own CV/DL models for
RALIHR phase recognition, or a customized model published in the literature, for rapid
development and experiments of state-of-the-art models in surgical phase recognition.
Students were divided into groups and provided with de-identified video data and the
ground-truth annotations. Background literature on CV/DL models for surgical video
analysis was suggested. No restrictions were placed on how or with which resources
students could devise their models. The results had to be submitted into a competition
on Kaggle, which is a web environment featuring various open-source datasets (Kaggle,
San Francisco, CA, USA). The teams then produced an accompanying report with code
provided in GitHub repositories (GitHub, San Francisco, CA, USA). The main metric of
interest is the accuracy score for multi-class classification. The projects were completed in
the Spring Semester of 2022 as a part of a class at Columbia University.

2.3. Confirmatory Baseline Study

In order to explore the various methodologies attempted by different student groups,
a confirmatory baseline study was conducted to verify and establish a comprehensive
procedure for data processing and model evaluation. Statistics about the dataset were
analyzed with respect to the frequency and duration of every surgical phase in each video.
A severely imbalanced data percentage between phases was identified as one of the major
factors reducing the model performance. We addressed this by merging data-scarce phases
into data-abundant ones that share enough visual similarity. Seven of the original fourteen
phases were preserved, as shown in Table A2. To reduce overfitting and promote model
generalization, every input image was augmented by random resized cropping (taking a
randomly distorted portion of the image with a ratio of 0.9–1.1 and resizing the output to a
common shape of 224 × 224) and a random horizontal flip with a probability of 0.5. The
effect of diversity in the training set was also explored.

For the purpose of validating the pipelines before exploring advanced architectures,
the DL models in this study were chosen with the aim of being simple enough to verify
the robustness of other components of the pipeline and to minimize the influence on the
final results imposed by the model itself. The ResNet50 backbone [17] was selected for
the baseline studies due to its robustness and ability of adaptation to both frame-based
and temporal models. Residual neural networks (ResNet) are a popular backbone type of
convolutional neural networks (CNN) that have achieved great success in general image
classification tasks [18]. Convolution has been a widely used technique in signal processing
due to its ability to extract meaningful low-dimensional features from large redundant data
sources (e.g., videos and audio). The features can further be used to perform tasks such as
classification. The ResNet-50 model is named for having 50 layers in total with internal
skip connections, known as the residuals. It is a rather efficient but naïve architecture since
all input images are considered independent of each other. This simplification makes the
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model well-suited for a baseline study. A wide variety of advanced models also adopt
ResNet as a feature extraction backbone.

We explored a number of scenarios using different train–test splits of the whole dataset,
detailed in Section 3.1. They were proposed with considerations of: (1) data availability
at the time of study, (2) consistency for comparisons between cases, and (3) diversity of
data sources from different surgeons. The optimal train–test split found by the experiments
involved all collected videos into the dataset. The goal was to keep as many videos as
possible for model training, while preserving enough quantity and diversity for evaluation
(detailed in Section 3.3.2). This particular split was adopted by later experiments with
advanced models. The study was completed in the Summer Semester of 2022.

2.4. Explorations of Advanced Models

Following the established baselines from Summer 2022, several new models with
more advanced architectures were explored by the engineering team, with ResNet-50 used
for comparisons. All models were trained by minimizing the cross-entropy loss with a
learning rate of 1 × 10−5. The study was conducted during the Fall Semester of 2022 and
the Spring Semester of 2023.

Perceiver IO [19]: Transformers [20] were initially introduced to the field of natural lan-
guage processing (NLP). They are founded on the attention mechanism, which successfully
addresses long-term memory issues by globally combining the information from the entire
input sequence. Perceiver IO is a modification of the naïve transformers and enables the
transformer architecture to handle different data modalities without changing the model
structure. Input data are first processed by a pretrained ResNet-50 that converts images
into representative features. The features are then fed to the attention modules either in the
form of independent frames or video clips per configuration. ResNet-50 weights are frozen
during model fine-tuning.

Video Swin Transformer [21]: The initial architecture of the Swin Transformer [22] is
a hierarchical transformer model that uses shifted windowing for attention computation
to greatly improve the model efficiency. The Video Swin Transformer generalizes this
idea to the video domain, where 3D local windows are shifted instead of 2D windows
used for images. This allows the model to learn long-range dependencies across multiple
frames. The Video Swin Transformer outperforms previous state-of-the-art models on
several video classification tasks while using fewer parameters and less computation. We
adopted the tiny variant (Swin-T) of the Video Swin Transformer model pretrained for
action recognition tasks [23] in non-medical scenarios, modified the final classification layer,
and fine-tuned it on our dataset. The input images are directly fed into the model in short
video clips and are passed through several transformer blocks. Features are extracted by
each block using a 3D window of size 2 × 4 × 4. Similar to a CNN-like structure, spatial
sizes are gradually down-sampled, and the dimensions of features are gradually increased.
Readers are referred to the Video Swin Transformer paper for more details [21].

3. Results

The studies of competitive model creation, confirmatory baseline, and advanced model
explorations were carried out in a sequential manner, each motivated by previous results
and conclusions.

3.1. Dataset and Annotations

From the total dataset of the 211 videos collected from 8 surgeons, 2 were excluded for
having inconsistent data vs. annotations, while the remaining 209 videos were accordingly
incorporated into the dataset: 186 videos from surgeon “01” and 23 videos from the 7 other
surgeons. Heterogeneous components of the videos included additional phases (primary
hernia repair, an optional suturing task to close the defect, primarily) in 20 cases, incomplete
phases (video beginning after the start of preperitoneal dissection) in 2 cases, and early
mesh excision (mesh placed before the scoring or dissection of the peritoneum) in 2 cases.
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The recorded videos in the dataset have an average length of ~54 min, each containing
~33 recurring phases (same phases may appear more than once at different times during a
surgery). Different train–test dataset splitting schemes were explored at different stages
throughout the study. Some representative cases are presented in Table 1, the details of
which are described in the following sections.

Table 1. Different train–test splits (in number of videos) used in the study. The test/validation
accuracies on a sufficiently trained ResNet-50 (with the phase-merging technique described in
Section 3.3.1) are provided for reference.

Case Total
#Videos

Train Test ResNet
AccuracySurgeon 01 Others Surgeon 01 Others

1 120 70 - 47 3 0.7870
2 186 136 - 50 - 0.8015
3 40 * 17 23 - - 0.6916
4 209 186 - - 23 0.4808
5 209 173 15 15 6 0.7704

* Case intended for cross-validation without a test set. Accuracy is represented by the average of the best-
performing epoch on each fold.

3.2. Competition Results

Twelve student groups submitted their models to the competition as part of the
assignment. We used the train–test setup in Case 1 (Table 1), including all the videos that
were available at that time of the course. The models’ main performances and structures
are summarized in Table 2.

Table 2. Accuracies of competition models and their architectures from Spring 2022.

ID Accuracy Model Architecture

1 0.8199 TMRNet CNN + LSTM + Attention
2 0.8111 TMRNet CNN + LSTM + Attention
3 0.7955 MobileNet CNN + Output Smoothing
4 0.7951 TeCNO CNN 3D
5 0.7948 TMRNet CNN + LSTM + Attention
6 0.7930 - CNN + LSTM
7 0.7917 EfficientNet CNN + Output Smoothing
8 0.7816 SV-RCNet CNN + LSTM
9 0.7809 - CNN + LSTM

10 0.7659 ConvNeXt CNN
11 0.7619 - CNN + LSTM
12 0.1006 X3D CNN 3D

Seven out of the twelve student groups adopted a recurrent Long Short-Term Memory
network (LSTM) into their architectures for temporal embeddings, while another two
approached this goal using 3D convolutions [11,24]. The increase of accuracy compared
before and after adding LSTMs was generally reported to be ~1%. The other three groups
merely used a CNN and did not incorporate such an embedding, but two of them (Groups 3
and 7) postprocessed the model outputs by taking the average of the predictions within
a sliding window of thirteen frames. The smoothing technique reported a 1.9% and 1.0%
increase in accuracy for Groups 3 and 7, respectively, surpassing the performance of adding
an LSTM. The two top-performing groups, with accuracies of 0.8199 and 0.8111, adopted
the Temporal Memory Relation Network (TMRNet) [12]. The architecture features both
CNN and LSTM appended with an attention layer for aggregation of long-range temporal
dependencies.

Regarding complexity–accuracy trade-offs, it is worth noting that the output averaging
is simple to compute, and attention mechanisms are shown to be more potent in long-term
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memory, while being fully parallelizable, as opposed to recurrent networks. We therefore
argue that output-smoothing and attention mechanisms are mutually diverse but more
appropriate candidates than LSTMs for integrating temporal surgical information.

3.3. Pre-Processing and Evaluation Pipelines

While the competition models were developed independently by different student
groups using various data processing and validation pipelines, the engineering team
requires the establishment of a robust pipeline on which all future models can be evaluated
and uniformly compared. The following subsections of the paper discuss the proposed
solutions for several pressing issues generally reported by the student teams.

3.3.1. Phase Merging

Visualizations of dataset statistics are provided in Figure 1. A brighter color indicates
longer durations (e.g., peritoneal closure and reduction of hernia appears drastically more
often than adhesiolysis and catheter insertion). While the annotation scheme is strict and
intuitive with more phase definitions, a deep learning model can easily suffer from a lack of
training data on less frequent categories. The competition models uniformly reported low
class-wise accuracies on: (1) blurry, with <0.1% of total frames, (2) primary hernia repair,
with ~0.7% of total frames, and (3) stationary idle, with ~1.0% of total frames. A merging
strategy was adopted which proposed to take all phases with less than 3% frequency and
combine them into other more predominant phases that are visually similar to the original
ones (Table A2). Exceptionally, two less frequent phases (out of body and peritoneal scoring)
were kept due to having distinct visual features.
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Sufficient training of a ResNet-50 model, on the same Case 1 (Table 1) dataset before
and after merging, revealed a ~0.25 increase in the macro F1-score, from 0.5349 to 0.7851,
while yielding a similar accuracy of 0.7862 and 0.7870. Considering that the learning from
an imbalanced dataset can be a topic in-and-of-itself, phase merging has been presented to
be a decent work-around for this particular study. All experiments and analyses described
below were conducted with merged labels.

3.3.2. Data Diversity

Apart from the imbalance between surgical phases, there also existed an imbalance
in data sources, i.e., there was a dramatically larger number of videos from surgeon “01”
(186 videos) compared to the 7 other surgeons (23 videos in total). We further conducted a
5-fold cross-validation using Case 3 (Table 1) with 40 videos, with all surgeons mixed as
evenly as possible (17 videos randomly sampled from surgeon “01”, 23 videos taken from
the 7 other surgeons). The average accuracy yielded by the cross-validation was 0.6916. As
a comparison, training with more videos of a single surgeon, as in Case 4 (Table 1), resulted
in a much lower accuracy of 0.4808. This informs that training on a variety of surgeons is a
better option even when few videos are available.

We further explored Case 5 (Table 1) with all available data included while mixing up
different surgeons for more diversity. A total of 188 videos were sampled, with 173 of them
from surgeon “01” and 15 from the other surgeons for the training set, leaving 21 videos,
with 15 from surgeon “01” and 6 from the others, for the validation set. In order to spare as
many videos as possible for model training, especially the ones from the “other” surgeons,
we deliberately did not construct a test set and kept a small but diverse validation set: at
least one video from every surgeon was included in the validation set, except for surgeon
“08”, who had only a single recorded video. The results on a sufficiently trained ResNet-50
are summarized in Table 3, emphasizing the difference in performances between different
surgeon groups.

Table 3. Validation accuracy of ResNet-50 on Case 5 (Table 1).

Source Accuracy Videos

Surgeon 01 0.8096 15
Surgeons 02–08 0.7025 6

All surgeons 0.7704 21
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With this particular train–test splitting scheme, we were able to increase the accuracy
on other surgeons by more than 20% compared to Case 4 and achieved better accuracy than
the cross-validation, while roughly maintaining the best result on surgeon “01”. Therefore,
Case 5 (Table 1) was adopted into the exploration of new models in Section 3.4.

3.3.3. Edge Cropping

Some recorded videos contain text boxes with the surgical robot status (as shown
on the Figure 2a) overlaid on the image. This raises concern that important classification
information may undesirably leak into the DL models for these particular videos, causing
models to learn from the text rather than from the surgical content. To assess if this problem
may occur, we utilized a method called Grad-CAM [25,26], which traces the gradients of
the model output backwards and projects them to the image input. The projected results
represent a heat map of the regions of interest from which the predictions are generated by
a DL model. The result is exemplified in Figure 2 using a sufficiently trained ResNet-50
on Case 5 (Table 1). The image shows the reduction of the hernia phase with the model
focusing on the hernia defect (upper part of the image). A brighter color indicates higher
importance of that region, illustrated in pixel values.
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Figure 2. Example of region of interest (b) overlaid on the original image (a) from which the
predictions were generated.

With 1000 randomly sampled images from the dataset, the average gradient on the
position with text boxes was reported to be 0.23 (±0.01), while the average gradient from
the pristine areas of the images was 0.31 (±0.07). An independent T-test comparing the
two areas resulted in a score of 4.91 (p-value < 1 × 10−10). This finding eliminated previous
concerns by providing quantitative evidence that the model infers mainly from regions
outside of the text box areas, yielding no specific cropping steps.

3.4. Other Advanced Models

After establishing a comprehensive pipeline with the baseline study, we further ex-
perimented with more advanced model architectures using Case 5 (Table 1). The ability
to embed temporal information was emphasized as a comparison to ResNet-50, which
assumes independence between input images. Both the selected models, Video Swin
Transformer and Perceiver IO, have been reported as strong candidates for video model-
ing [19,21]. Table 4 summarizes their results obtained from the validation set.

Table 4. Performance of the explored models.

Model Accuracy Clip Length Parameters (M) Inference Time * (ms)

ResNet-50 0.7704 1 25.6 8.7 ± 0.7
Perceiver IO 0.8414 16 36.3 47.4 ± 0.5

Swin-T 0.8491 10 28.0 13.14 ± 5.2
* Inference time includes only the model forward pass tested with 300 samples on NVIDIA A100.
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Specifically, Perceiver IO adopted a latent space of size 8 × 512 and an input clip of
16 frames. Performance was boosted by as much as ~7%, to 0.8414, without any fine-tuning
on the ResNet-50 backbone, compared to the ~1% increase induced by LSTMs (described in
Section 3.2), demonstrating the superiority of transformers in learning long-term temporal
dependencies. Swin-T, on the other hand, takes an input clip of 10 frames divided into
3D patches of shape 2 × 4 × 4. It therefore contains a smaller number of parameters
comparable to that of ResNet-50, however it reported the best performance of 0.8491. It
was indicated that a more powerful feature extraction backbone (e.g., Swin Transformer or
ViT [27]) may further improve the final outcome.

An illustration of Video Swin Transformer predictions on 10 videos from the validation
set compared to the ground truths is shown in Figure 3. The confusion matrix on the entire
validation set is presented in Figure 4. A darker cell color represents more samples, labeled
by its proportion within the validation set. The model achieved both high precision and
recall even on the less frequent phases, such as out of body and peritoneal scoring. However,
minor confusions were observed between particular phases. An example is that ~39% of
frames from preperitoneal dissection were classified into reduction of hernia. This behavior
was anticipated as we noticed that the borderline between these two phases can sometimes
be vague due to the nature of phase definitions (detailed in Table A1). Transitionary idle is
another easily misclassified phase, considering that it occupies the time period between
other well-defined phases, and thus could possibly share their visual features.
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4. Discussion

We presented a series of studies conducted in a collaborative fashion by the medical
team and the engineering team. We built a comprehensive pipeline incorporating data col-
lection, annotation, data processing, DL-based model creation, and evaluation for surgical
phase recognition for RALIHR.

4.1. Ground-Truth Annotations

A major amount of effort and time were dedicated to ground-truth annotations. There
are significant challenges with annotations for CV/DL projects in surgery, the critical one
being the balancing between the availability of annotators and the requisite expertise for
doing the work properly (e.g., college students cannot simply take up annotation without
knowing basic surgical techniques) [28,29]. Even with surgical trainees or attendings,
the annotations must be very clear and unambiguous. The annotation rules have been
iteratively refined to align the expert surgical knowledge with pragmatic engineering needs.

4.2. Classroom Competition

The engineering skills required to create and modify CV/DL models to generate
meaningful output for a particular goal demand notable expertise. We sought an effective
way for our academic collaboration and developed the idea of a competition amongst the
MS-level students to test this approach, with appropriate training and faculty guidance.
The results indicate that the approach is feasible and highly effective in the early stage of
such projects, as the entirety of this collaboration took only several weeks in the Spring of
2022, with seven different DL models tested and compared for clarity of operative phases
and in-between video scenes.

It should be remarked that DL models experimented in such a competitive setting
are often taken off-the-shelf without being carefully tuned for the intended dataset. High
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heterogeneity exists between student groups in terms of their approaches to data processing
and model evaluation. We emphasize the necessity of confirmatory study as an immediate
follow-up to the competitions. No further attempts should be made on performance
improvements if there is not much certainty that the methodology to be explored is the
desirable or even correct direction to pursue.

4.3. CV/DL Methodologies

Experiments with more than a dozen DL models with various architectures were
conducted throughout the study. It was evident that different architectural components
yielded inherently different performances. A general conclusion is that temporal embed-
dings are crucial to model accuracy at the higher-end. Image-based models tend to reach
their bottleneck at around ~0.8, including Tiny-ViT [27], which reported an accuracy of
0.8271 despite being a particularly strong image classification backbone. Despite the overall
success of video-based models over image-based ones, there were particular cases where
such models failed. The competition results (Table 2) suggested that X3D [24], a traditional
video recognition model using 3D convolutions, may be unsuitable for surgical phase
recognition. However, its variant TeCNO was able to reach satisfactory results both in
the literature [11] and on our dataset (Table 2). We also experimented with MoviNet [30],
which uses a similar 3D convolution mechanism. The model obtained an accuracy of 0.8121,
which was inferior to other advanced models. In comparison, attention-based models
such as Perceiver IO and Video Swin Transformer (including the TMRNet reported in
competition, Table 2) performed exceptionally well among the experimented architectures,
beating other models based on LSTMs and 3D convolutions.

It was also reported by the baseline study that the impact of the augmentation tech-
nique on the ResNet-50 results was not significant. Subsequent experiments of removing
random horizontal flipping improved the accuracy in the advanced models, possibly indi-
cating that the horizontal alignment of visual elements in RALIHR (such as surgical tools
or the view perspective of operative areas) plays an important role in phase prediction.
We also studied the impact of color- and lighting-based augmentations, including ran-
dom color jitter and histogram equalization. We observed the best results when applying
contrast-limited adaptive histogram equalization (CLAHE), an improvement of the naïve
histogram equalization technique that improves contrast in local regions of the input image.
The underlying rationale is to brighten the darker parts in a recorded video as they may
also contain critical features for phase recognition.

One missing part is finding an appropriate way to encode prior information. Surgical
procedures tend to bear hierarchical structures which can be easily defined by humans but
hard to learn by DL models. For example, a suturing operation would never precede a
dissection/scoring operation in a fully recorded video. This type of knowledge can either
be adopted as a postprocessing technique independent of the model, as in SV-RCNet [10],
or incorporated into the loss calculation that supervises and facilitates model learning.
There can be a wide range of possible approaches to be experimented in future studies.

4.4. Clinical Applications

The ultimate goal of our collaborative studies is to bring the CV/DL models into
operating rooms. This goal requires the model to robustly generalize to unseen videos from
unseen surgeons, while being able to process input data and make inferences fast enough
in real time.

The generalizability, to date, is mainly limited by the quantity of annotated data.
A multi-institutional study with 36 different surgeons on DL-based phase recognition
for laparoscopic cholecystectomy found that differences in model performance between
surgeons were minimal [31]. Our findings suggest differently, which implies that the
conclusions from laparoscopic cholecystectomy may be limited to surgeons with small case
volumes. Additionally, the technical performance of RALIHR may be less standardized
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than a cholecystectomy, and systematic differences between surgeons may matter more for
CV/DL models in these cases.

Another difficulty regularly encountered was the exceedingly long time a model
takes to train. A single epoch may run for 2.5 h on the 188-video training set for complex
architectures such as the Video Swin Transformer, even when using an advanced graphics
processing unit (GPU) such as the NVIDIA A100. The inference time for these models will
also be consequently longer (as described in Table 4). Furthermore, it may be impossible
during the deployment in operating rooms to gain access to high-end GPUs, making it
important to maintain a feasible hardware requirement when exploring new models.

The current model, with future advancements, could be integrated into hospital and
operating room software to help optimize the surgical workflow. Operating room staff can
be continuously informed about the status of the procedure and know when a surgeon
requires different instruments or needs help. For example, if a certain phase is taking longer
than it should, an alarm system could be linked to the software to indicate to supervisors
that the surgeon may require assistance. It can also help operating room staff to know
what instruments will be needed during a surgery so that they are ready when it is time
for the next phase. Automatic phase recognition in real-time has important implications in
optimizing the organization of the operating room and possibly improving the quality of
the care delivered.

5. Conclusions

The focus of the presented work was the automation of the analysis of recorded
RALIHR surgeries. We described a series of studies on CV/DL models for surgical phase
recognition, executed by an inter-institutional team of medical experts, engineering stu-
dents, and researchers. The studies encompassed data collection, image preprocessing,
ground-truth annotations, and algorithm development. More than a dozen models were
evaluated and compared for multiple-use case scenarios, through classroom competition
and focused research, achieving accuracies in phase recognition as high as ~0.85. This
is the first comprehensive study comparing the performances of DL models for phase
recognition in RALIHR. The studies are unique in that they effectively engaged students
who participated in an advanced-level course in the process of comprehensive investigation
on many models. This collaboration between the medical team and the engineering team is
essential to optimizing operating room workflow through innovative computer vision and
deep learning methodologies.
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Appendix A

This appendix contains surgical phase definitions of all 14 phases for RALIHR in
Table A1. The proposed merging strategy in Section 3.3.1 is described in Table A2.

Table A1. Definitions of the 14 different phases used for RALIHR.

ID Phase Name Start End

1 Adhesiolysis First dissection of adhesion Last cauterization/dissection of adhesion
2 Peritoneal scoring First cautery against peritoneum End of last cautery against peritoneum

3 Preperitoneal dissection 1 First dissection movement after
peritoneum opened Grasping hernia sac

4 Reduction of hernia 2 First grasp of hernia contents Hernia is released
5 Mesh positioning Mesh first grasped Mesh placed and operator moves away

6 Mesh placement First grasping mesh prior to placement
over hernia site Last movement of mesh

7 Positioning suture Suture is grasped First suture placed in peritoneum/primary
repair or returned to resting site

8 Primary hernia repair Stitch placed at hernia defect Suture is cut or operator moves away, stitch
after finishing the last knot

9 Catheter insertion Needle penetrates peritoneum Last movement of catheter
10 Peritoneal closure Initial stitch to close peritoneum Cutting suture

11 Transitory idle End of preceding defined phase, with
instrument movement Start of subsequent defined phase

12 Stationary idle End of preceding defined phase, without
instrument movement Start of subsequent defined phase

13 Out of body Intracavitary space is no longer visible or
when static begins Intracavitary space is again visible

14 Blurry Abnormal resolution > 50% Resolution normalizes or camera removed
1,2 Preperitoneal dissection phase and reduction of hernia phase may overlap, but we define reduction of hernia to
be the phase where the hernia is being grasped for simplicity and for clinical utility.

Table A2. Strategy of phase merging. Seven phases are kept after merging.

ID Phase Name Merged to

1 Adhesiolysis Preperitoneal dissection
2 Peritoneal scoring -
3 Preperitoneal dissection -
4 Reduction of hernia -
5 Mesh positioning Mesh placement
6 Mesh placement -
7 Positioning suture Mesh placement
8 Primary hernia repair Reduction of hernia
9 Catheter insertion Mesh placement
10 Peritoneal closure -
11 Transitory idle -
12 Stationary idle Transitionary idle
13 Out of body -
14 Blurry Previous *

* Merged dynamically to whichever phase the frame preceding it in a video belongs to.
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