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Abstract: Multimodal data fusion (electroencephalography (EEG) and functional near-infrared spec-
troscopy (fNIRS)) has been developed as an important neuroimaging research field in order to cir-
cumvent the inherent limitations of individual modalities by combining complementary information
from other modalities. This study employed an optimization-based feature selection algorithm to
systematically investigate the complementary nature of multimodal fused features. After preprocess-
ing the acquired data of both modalities (i.e., EEG and fNIRS), the temporal statistical features were
computed separately with a 10 s interval for each modality. The computed features were fused to
create a training vector. A wrapper-based binary enhanced whale optimization algorithm (E-WOA)
was used to select the optimal/efficient fused feature subset using the support-vector-machine-based
cost function. An online dataset of 29 healthy individuals was used to evaluate the performance of the
proposed methodology. The findings suggest that the proposed approach enhances the classification
performance by evaluating the degree of complementarity between characteristics and selecting the
most efficient fused subset. The binary E-WOA feature selection approach showed a high classification
rate (94.22 ± 5.39%). The classification performance exhibited a 3.85% increase compared with the con-
ventional whale optimization algorithm. The proposed hybrid classification framework outperformed
both the individual modalities and traditional feature selection classification (p < 0.01). These findings
indicate the potential efficacy of the proposed framework for several neuroclinical applications.

Keywords: optimal feature selection; hybrid BCI; binary enhanced whale optimization algorithm;
fNIRS; EEG

1. Introduction

Brain–computer interfaces (BCIs) enable interaction with the environment using brain
signals, without the involvement of muscles or the peripheral nervous system [1–3]. BCI
have flourished and developed over the past few years. One of the most widely used
paradigms in BCI research is motor imagery (MI) [4], which involves having the subject
imagine completing a task such as gripping [5] or lifting [6]. MI-BCIs are often used to
assist patients with motor function issues [7,8], either for assistance with daily living or for
rehabilitation training.
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According to Jeon et al. [9], MI tasks cause event-related desynchronization and
synchronization in electroencephalography (EEG) [10,11]. Several feature extraction tech-
niques have been developed to identify these activities [12–14]. However, because EEG
is nonstationary, it is regarded as a biological signal with a low spatial resolution, high
signal-to-noise ratio, and distortion [15]. Owing to these disadvantages, several studies
have incorporated functional near-infrared spectroscopy (fNIRS) data to enhance the effec-
tiveness of BCIs [16,17]. fNIRS detects the oxygen content in the blood to determine the
activity level of the cerebral cortex [18]. It provides a higher spatial resolution and tolerates
more motion artifacts than EEG. A 2004 study by Coyle et al. [19] used fNIRS signals to
improve BCIs for the first time. The last several decades have seen a tremendous increase
in the use of fNIRS in cognitive neuroscience owing to advances in brain research and
cognitive neuroscience technology.

Inadequate temporal resolution and a lack of feature extraction techniques frequently
result in the subpar performance of fNIRS-based BCI systems, but EEG features can be
extracted efficiently using common space patterns (CSP) [20,21]. However, the fNIRS signal
is distinct from the EEG signal. EEG reflects a range of high-frequency variations and the
electrophysiology of the brain. In contrast, fNIRS uses a signal that varies gradually to
evaluate the effect on brain hemodynamics. Integration of the complementary qualities
of EEG and fNIRS may result in a high-performance BCI because the inner edge light
signal and the electrophysiological signal do not interact [22,23]. Therefore, the use of the
complementary information provided by both modalities, together with the appropriate
feature fusion algorithms, can lead to a higher classification accuracy compared to single-
modality BCI.

According to the literature [24], two categories of EEG–fNIRS fusion frameworks
exist. In the first category, known as the decision level, features of both modalities are
independently entered into a classifier. For instance, Fazli et al. [17] used the band power
of the EEG signal, oxyhemoglobin (∆HbO), and deoxyhemoglobin (∆HbR) as features that
were individually categorized for MI tasks. A meta-classifier refined with a feedback loop
was used to integrate the results of all the classifiers. The global peak cross-validation
accuracy of each classifier was used in the feedback loop to identify the optimal strategy
for combining their outputs. Similarly, the spectral and temporal features of hybrid EEG–
fNIRS were used to classify the auditory and visual activities [25]. Both studies reported an
average accuracy improvement of 5% compared with the single modality. Shargie et al. [26]
trained two support vector machine (SVM) classifiers for the two modalities, respectively,
and performed a decision-level fusion. They also reported a significant improvement in the
classification accuracy.

The second category, known as feature-level fusion, entails selecting, altering, or
concatenating information in the best possible manner prior to model training. Studies on
the straightforward fusion of features have shown considerable improvement as compared
to the results of a single modality. Shin et al. [27] fused EEG features (the log variance of
the first and last three CSP components) and fNIRS features (average value of the time
course and average slope) to classify MI (left-hand motor imagery (LHMI) vs. right-hand
motor imagery (RHMI)) and mental arithmetic (MA) tasks (MA vs. baseline). This research
group also designed a hybrid BCI model to categorize three activities (MA, RHMI, and
resting-state activities) by combining features extracted from two EEG channels and two
fNIRS optodes [28]. Their model correctly identified the three tasks with a 77.66 ± 12.1%
accuracy. In a previous study [29], the authors investigated the performance of hybrid
EEG and fNIRS signals in classifying a set of motor tasks. The study showed that hybrid
EEG–fNIRS yielded a higher accuracy compared to that obtained using a single modality.

Sun et al. [30] developed a framework for feature fusion by employing linear, tensor,
and p-th-order polynomials. For the MI and MA tasks, their proposed model attained
classification accuracies of 77.53% and 90.19%, respectively. Their findings indicated that
feature-level fusion improves the performance of hybrid BCIs. Choosing the best features
via visual examination may be difficult, in particular when data from all the channels are



Bioengineering 2023, 10, 608 3 of 14

utilized for feature extraction. According to the literature [31,32], selecting the right activity
channels can help to improve the categorization ability. In addition, several studies have
demonstrated the effectiveness of feature selection for BCIs [33–35]. Feature selection helps
to reduce the dimensionality of the dataset, increase processing efficiency, and improve the
classification accuracy. In a recent study, Zafar et al. [36] applied a graph convolutional
network to determine the correlated activity channels in fNIRS data. A filter-based approach
was employed to determine the optimal feature set for SVM training. The authors showed
that their proposed method significantly improved the results compared to the full channel
features. However, this methodology consists of two steps, channel selection and feature
selection, making it less time-efficient.

The use of EEG–fNIRS multimodal techniques to enhance the classification ability has
yielded encouraging results. However, powerful computational strategies for the successful
incorporation of these modalities are still lacking. The techniques must consider the
various feature properties that must be developed in order to maximize the integration of
multimodalities. Such initiatives will likely result in significant breakthroughs in packages
aimed at measuring brain activity, with an increased performance compared with a single
modality. The following are the main highlights of the framework presented here:

• First, the data acquired from both modalities were preprocessed to filter them and
remove artifacts.

• Second, the statistical temporal features of both modalities were extracted with a
10 s interval.

• The features were fused, and the binary enhanced whale optimization algorithm
(E-WOA) was used to select the optimal/efficient fused feature subset and to improve
the efficiency of the multimodal characteristics by increasing their complementarity,
redundancy, and significance in relation to classification labels.

• The support-vector-machine-based cost function was used to classify the data.
• An online MI dataset of 29 healthy individuals was used for validation.
• Finally, the performance results of the proposed approach were compared with those

of conventional WOA, other optimization algorithms, and the published literature
using the same dataset.

2. Proposed Framework

Figure 1 depicts the architecture for data acquisition, preprocessing, the extraction of
temporal features, multimodal feature fusion, optimal feature selection, and model training
for hybrid BCI applications. The following sections explain each step in detail.
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Figure 1. Proposed multimodality-based framework for mental task classification.

2.1. Data Acquisition

This study used EEG and fNIRS datasets available online to validate the proposed
framework [27]. The dataset contained EEG and fNIRS data from 29 healthy participants.
The average age of the participants was 28.5 ± 3.7 years (14 men and 15 women). None of
the participants reported having any mental, neurological, or other brain disorders. The
dataset included LHMI, RHMI, MA, and baseline mental tasks. The data were collected
using EEG signals from the prefrontal, motor, parietal, and occipital brain areas, utilizing
Fz as a ground electrode at a sampling rate of 1000 Hz. The 10-5 international system was
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used for the placement of the 30 EEG electrodes. Similarly, 36 fNIRS channels were set up
around Fp1, Fpz, Fp2, C3, Oz, and C4, employing 14 sources and 16 detectors at a 3 cm
distance using the 10-5 international system. fNIRS data were acquired at a frequency of
2.5 Hz. The dataset consisted of triggered, fNIRS, and EEG data from 6 sessions of each
of 10 trials (i.e., 30 trials per task). At the start of each session, there was a 60 s rest time,
followed by 20 trials (10 per task) and another 60 s rest interval. The experiment consisted
of 2 s visual instructions, a 10 s activity phase, and a randomly allotted pre-rest period of
15–17 s. Figure 2 shows the experimental paradigm and the positions of the fNIRS and
EEG optodes and electrodes, respectively [27].
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Figure 2. (a) Position of EEG and fNIRS electrodes and optodes, respectively. (b) Experimental paradigm.

This study used EEG and fNIRS MI datasets to validate the proposed approach. For
the MI-related activities, subjects were instructed to envision their hands opening and
closing while grasping a ball. The EEG and fNIRS data were down-sampled to 200 Hz and
10 Hz, respectively, for further processing.

2.2. Preprocessing

In the preprocessing phase, the common average reference was used to re-reference
the EEG data [37]. The EOG and EEG data were filtered between 0.5 and 5 Hz and between
0.5 and 50 Hz after re-referencing, respectively. The EOG artifacts were eliminated using
a hybrid independent component analysis–regression [38]. A third-order Butterworth
band-pass filter with an 8–30 Hz cutoff frequency was applied to filter the EEG data [39].
The fNIRS data were preprocessed to eliminate physiological noise such as breathing,
heartbeats, and low-frequency drift. A third-order Butterworth low-pass filter with a cutoff
frequency of 0.1 Hz and a Butterworth high-pass filter with a cutoff frequency of 0.01 Hz
were used to preprocess the acquired fNIRS data [40,41].
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2.3. Feature Extraction

After EEG and fNIRS data preprocessing, the features for a 10 s interval were extracted.
This study focused only on the most commonly used temporal statistical features, such
as the slope, peak, mean, kurtosis, and skewness [42–44]. The peak was defined as the
highest value, and curve fitting was used to determine the slope. The following equations
were used to obtain the mean (µ, Equation (1)), skewness (Sx, Equation (2)), and kurtosis
(Kx, Equation (3)):

µ =
1
N

k2

∑
k=k1

Y(k) (1)

Sx =
Ex(Yx − µx)

3

σ3 (2)

Kx =
Ex(Yx − µx)

4

σ4 (3)

where Y corresponds to the input signal (EEG and fNIRS), σ to the standard deviation, and
Ex to the statistical expectation.

The features were extracted using all EEG and fNIRS channels. In total, 180 features
(36 channels × 5 features) were extracted from the fNIRS data, whereas the EEG data con-
tained 150 features (30 channels × 5 features). Subsequently, all features were normalized
separately for both modalities. Finally, all the features from both modalities were concate-
nated (ffNIRS:fEEG). The final fused feature vector comprised 330 features (180 (ffNIRS) +
150 (fEEG)). An optimal feature selection approach is required to obtain the most reliable
information for a robust and highly accurate EEG-fNRIS-based BCI.

2.4. Optimal Feature Selection Approach

Feature selection is a crucial step in EEG–fNIRS-based BCI systems. External devices
can be controlled and environmental communication can be performed through EEG
and fNIRS by measuring the electrical or hemodynamic activity of the brain. Owing to
the complexity, high dimensionality, noise, and abundance of redundant and irrelevant
information present in EEG and fNIRS data, feature selection is crucial. The accuracy and
speed of a BCI system can be improved using feature selection, which also helps to reduce
computational complexity and improve the interpretability of the results.

Filter and wrapper methods are the two primary divisions of feature selection ap-
proaches. Filter methods rank features according to their relevance and redundancy using
statistical or information-theoretic metrics and then select the top-ranked features for fur-
ther analysis. Wrapper approaches analyze the performance of a BCI system using several
feature subsets and select the feature subset that provides the best performance using ma-
chine learning algorithms. In this study, a binary E-WOA wrapper-based feature selection
method was applied to enhance the efficiency of the hybrid BCI.

2.4.1. Whale Optimization Algorithm (WOA)

The WOA is a metaheuristic optimization technique that was introduced in 2016 by
Mirjalili [45]. It is based on the hunting behavior of humpback whales and is intended to
address various optimization challenges. The bubble net feeding technique employed by
humpback whales, whereby they ascend near to the surface and swim in a spiral pattern to
catch their prey in a net of bubbles, serves as the model for the WOA [45]. The WOA keeps
track of a population of potential solutions, or “whales”. The algorithm updates the whales’
location using three forms of movement: encircling prey, spiral bubble net attack, and searching
for prey. The encircling of prey refers to the act of traveling in a circle around the optimal
solution so as to converge on it. Spiral bubble net attack entails traveling toward the best
solution available in the given moment, and searching for prey involves random movement.

Assuming that X(t) = (x1(t), x1(t), . . . xm(t)) represents the population of whales
in an N-dimensional search space, the position of each whale is represented by
Xi(t) = (xi,1(t), xi,1(t), . . . xi,D(t)). The matrix X(1) is randomly initialized for the first
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and subsequent iterations in the problem space. The vector X(t) values update them-
selves using the three previously defined WOA modeling methods. During optimization,
WOA considers the rate of probability (ρ) that each Xi(t) will alternate between encir-
cling/searching for prey and spiral bubble net attacking strategies using the coefficient
vector (Ai(t)). The updated position of the whale can be computed using Equation (4):

Xi(t) =


Encircling prey (ρi(t) < 0.5) and (|Ai(t)| < 1)
Search for prey (ρi(t) < 0.5) and (|Ai(t)| ≥ 1)

Spiral bubble− net attacking (ρi(t) ≥ 0.5)
, 0 < ρi(t) < 1 (4)

Ai(t) = 2× ai(t)× rand− ai(t) (5)

where ai(t) represents the linearly decreasing variable and can be computed using
Equation (6):

ai(t) = 2− t×
(

2
MaxIt

)
(6)

The mathematical model of the method of encircling prey is presented in the
following equations:

Xi(t + 1) = Xbest(t)− Ai(t)× D(t)
D(t) = |Ci(t)× Xbest(t)− Xi(t)|
Ci(t) = 2× rand

 (7)

where D(t) represents the distance between the current and optimal positions of the whale,
and Ci(t) represents the coefficient vector at the t iteration. The search for prey can be
modeled as follows:

Xi(t + 1) = Xrnd(t)− Ai(t)× D(t)
D(t) = |Ci(t)× Xrnd(t)− Xi(t)|

}
(8)

The spiral bubble net attacking method can be modeled in turn using Equation (9),
where C represents the logarithmic spiral shape:

Xi(t + 1) = D′(t)× expcl × cos(2πl) + Xbest(t)
D′(t) = |Xbest(t)− Xi(t)|

}
,−1 ≤ l ≤ 1 (9)

Although the WOA is a well-known optimization method, it is still affected by early
convergence, limited population diversity, and the misalignment of search strategies [46].
Therefore, Shahraki et al. [47] proposed enhanced WOA (E-WOA) and binary E-WOA
variants for feature selection.

2.4.2. Enhanced WOA (E-WOA)

In E-WOA, a pooling technique and three effective search tactics—migration, prefer-
ential selection, and enriched surrounding prey—enhance the effectiveness of conventional
WOAs [47]. The pooling mechanism maintains population diversity by fusing unsuccessful
solutions from each iteration with a successful solution. Advanced search techniques are
also included to strengthen the conventional WOA search techniques.

The E-WOA pool matrix (P(1), P(2), . . . , P(k)) with the members Pi = Pi(1), Pi(2), . . . ,
Pi(k) is computed using Equation (10) in the pooling mechanism at each iteration:

Pi(t) = Bi(t)× Xbrnd(t)× Bi(t) + Xworst(t) (10)

where Xbrnd(t) represents a random position near the best whale Xbest(t), and Xworst(t)
represents the worst whale at a given iteration. Bi(t) and Bi(t) are the random and reverse
vectors, meaning that the corresponding values of zero-valued elements in Bi(t) have a
value of one and the corresponding values of non-zero-valued elements in Bi(t) have a
value of zero in Bi(t). The pooling technique uses a crossover operator to improve the
diversity and combines the least viable solution with a promising solution. A new solution
is updated using the existing pool member.
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The migrating search technique randomly separates a proportion of the whales from
the group using Equation (11) to cover previously unexplored areas and enhance explo-
ration. Moreover, it is anticipated that the separated whales will boost population variety,
which will help to reduce local optima trapping:

Xi(t + 1) = Xrnd(t)− Xbrnd(t)
Xrnd(t) = rand× (δmax − δmin) + δmin

Xbrnd(t) = rand(δbest_max − δbest_min) + δbest_min

 (11)

where δbest_max and δbest_min represent the upper and lower boundaries of Xbest(t).
The preferential selection strategy enhances the search for prey approach. The prefer-

ential selection approach is modeled using Equation (12):

Xi(t + 1) = Xi(t) + Ai(t)× (Ci(t)× Prnd1(t)− Prnd2(t)) (12)

where Prnd1(t) and Prnd2(t) are randomly selected using (P(1), P(2), . . . , P(k)).
The encircling prey method from the conventional WOA is updated using the follow-

ing equation:
Xi(t + 1) = Xbest(t)− Ai(t)× D′(t)

D′(t) = |Ci(t)× Xbest(t)− Prnd3(t)|

}
(13)

Using a matrix pool, Prnd3(t) can be randomly selected. The flowchart corresponding
to E-WOA is shown in Figure 3.
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Figure 3. Flowchart of E-WOA.

Shahraki et al. [47] also proposed the binary E-WOA for feature selection. The most
significant/optimal features or variables associated with certain medical conditions can be
successfully identified using binary optimization feature selection algorithms, making them
useful for medical applications. Binary optimization feature selection algorithms assist in
increasing the accuracy and efficacy of medical diagnoses and treatments by limiting the
number of features or variables to those that are most important. The pseudo-code for the
binary E-WOA is shown in Figure 4.
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2.5. Support-Vector-Machine-Based Classification

The supervised classifier SVM has been used in several studies [42,48,49]. The main
goal of SVM is to identify the optimal discriminative hyperplane that maximizes the margin
between two classes. The so-called support vectors, or vectors on the margin, can be utilized to
describe the ideal hyperplane. The hyperplane for a 2D feature space can be defined as follows:

f (x) = w · x + b (14)

where x denotes the input test data, w denotes the weight vector, and b denotes the bias
factor. Projecting the test data from the input onto w, one can forecast the corresponding
class output (i.e., response variable).

3. Results

As previously mentioned, this study used an open dataset of MI brain tasks to validate
the proposed approach. Each trial was 10 s long and consisted of 30 trials for each task and
each participant (30 in total). The performance of the temporal features of the unimodal data
(EEG and ∆HbO-fNIRS) for all the channels using a 10 s interval is presented in Table 1. In
total, 80% of the data were used for training, whereas the remaining 20% were reserved for the
testing of the developed model. The number of features and the classification accuracy were
used as comparison metrics. Equation (15) was used to compute the classification accuracy:

Classification Accuracy (%) =
Correctly classified trail

Total no. of trails
× 100 (15)

After a critical evaluation of the findings, it was revealed that the EEG and fNIRS data
showed the highest classification accuracies (68.33% and 82.5%) for Subjects 26 and 28,
respectively. The average accuracies of EEG and fNIRS were 53.59 ± 7.88 and 58.33 ± 10.13,
respectively. The average accuracies of the two modalities were very low. Therefore, we
applied the conventional WOA and binary E-WOA approaches to check the performance
of the fused dataset. The fused feature vector contained 330 features (150 (EEG) + 180
(fNIRS)). The population selected for both optimizations was 10, with a maximum of
50 iterations. The results of the 10 runs are reported in Table 2.
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Table 1. Performance of EEG and fNIRS for LHMI vs. RHMI.

Subject
EEG fNIRS

No. of Features Accuracy (%) No. of Features Accuracy (%)

1

150

45.83 ± 11.95

180

50 ± 12.42
2 51.67 ± 12.91 66.67 ± 14.16
3 52.5 ± 11.82 71.67 ± 18.92
4 63.33 ± 12.55 62.5 ± 9
5 57.5 ± 10.72 46.67 ± 9.78
6 52.5 ± 6.86 60 ± 12.91
7 50.83 ± 14.41 51.67 ± 10.97
8 45 ± 11.92 58.33 ± 18.43
9 61.67 ± 10.54 53.33 ± 17.66
10 42.5 ± 12.08 65.83 ± 10.72
11 55.83 ± 12.45 55 ± 11.92
12 47.5 ± 11.82 58.33 ± 11.11
13 51.67 ± 12.91 65 ± 15.61
14 55 ± 18.51 53.33 ± 14.27
15 45.83 ± 7.08 51.67 ± 16.57
16 58.33 ± 15.71 54.17 ± 9
17 42.5 ± 12.08 44.17 ± 11.15
18 51.67 ± 14.59 64.17 ± 10.43
19 57.5 ± 10.72 37.5 ± 10.58
20 61.67 ± 13.72 65 ± 15.61
21 51.67 ± 12.3 65.83 ± 12.7
22 36.67 ± 5.83 38.33 ± 9.78
23 64.17 ± 14.72 51.67 ± 10.24
24 50.83 ± 13.29 55.83 ± 4.03
25 66.67 ± 14.16 60.83 ± 11.15
26 68.33 ± 6.57 66.67 ± 14.7
27 63.33 ± 5.83 74.17 ± 17.32
28 55.83 ± 9.66 82.5 ± 7.3
29 45.83 ± 15.34 60.83 ± 13.64

Average 53.59 ± 7.88 58.33 ± 10.13

Table 2. Performance of the conventional WOA and binary E-WOA for the hybrid (EEG–
fNIRS) dataset.

Subject
Conventional WOA Binary E-WOA

No. of Features Accuracy (%) No. of Features Accuracy (%)

1 96.8 ± 28.11 82.5 ± 13.86 54.4 ± 23.89 91.67 ± 5.56
2 69.3 ± 10.33 95 ± 4.3 22.5 ± 26.44 97.5 ± 7.91
3 81 ± 31.06 90.83 ± 10.72 37.5 ± 19.45 96.67 ± 4.3
4 77.9 ± 12.12 87.5 ± 9.82 35.6 ± 34.7 90 ± 6.57
5 74.2 ± 12.55 82.5 ± 9.17 33.6 ± 21.11 94.17 ± 5.62
6 63.3 ± 9.65 85.83 ± 11.82 12.9 ± 9.24 92.5 ± 4.73
7 67.1 ± 10.24 88.33 ± 5.83 23.1 ± 23.48 93.33 ± 3.51
8 77.5 ± 14.97 93.33 ± 8.61 31.7 ± 15.38 96.67 ± 4.3
9 74 ± 12.44 94.17 ± 5.62 58.2 ± 38.31 95.83 ± 4.39
10 73 ± 8.62 90 ± 7.66 42.6 ± 22.78 92.5 ± 8.29
11 73.3 ± 9.07 89.17 ± 7.91 18.8 ± 21.09 92.5 ± 4.73
12 61.4 ± 10.5 82.5 ± 7.3 13.2 ± 9.53 90 ± 7.66
13 74.7 ± 10.86 95.83 ± 5.89 29.8 ± 23.38 95 ± 5.83
14 59.7 ± 8.26 92.5 ± 6.15 22.1 ± 17.49 95.83 ± 5.89
15 68 ± 6.41 87.5 ± 8.1 21.9 ± 14.9 90.83 ± 7.3
16 72.3 ± 10.79 89.17 ± 7.91 30.7 ± 24.91 91.67 ± 6.8
17 75.5 ± 10.62 95 ± 5.83 29 ± 21.29 94.17 ± 5.62
18 65.1 ± 6.3 92.5 ± 4.73 36.2 ± 15.5 95.83 ± 5.89
19 69.1 ± 10.29 93.33 ± 6.57 30.4 ± 26.88 96.67 ± 4.3
20 69.3 ± 10.88 94.17 ± 5.62 35.8 ± 15.45 95 ± 5.83
21 66.9 ± 8.54 90.83 ± 6.15 28.9 ± 17.07 94.17 ± 6.86
22 66.1 ± 12.72 76.67 ± 13.49 22.2 ± 25.66 87.5 ± 8.1
23 68.7 ± 11.21 95 ± 8.05 34.2 ± 36.01 95 ± 5.83
24 73.4 ± 10.38 88.33 ± 8.96 32.2 ± 17.86 89.17 ± 6.86
25 68.2 ± 14.31 92.5 ± 9.98 30.9 ± 27.94 95.83 ± 5.89
26 69.5 ± 8.51 96.67 ± 5.83 27.3 ± 17.55 100 ± 0
27 59.9 ± 8.81 97.5 ± 4.03 22.5 ± 9.57 100 ± 0
28 70.5 ± 10.32 98.33 ± 3.51 26.6 ± 13.06 99.17 ± 2.64
29 68 ± 8.6 83.33 ± 8.78 14.3 ± 12.79 93.33 ± 5.27

Average 90.37 ± 7.66 94.22 ± 5.39
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As shown in Table 2, both optimization algorithms significantly enhanced the clas-
sification performance of the hybrid features from both modalities. Both wrapper-based
optimization algorithms tested the effectiveness of the features by training a model with
a subset of features. It is evident from Table 2 that the conventional WOA and bi-
nary E-WOA approaches enhanced the classification accuracy of Subject 1 using only 97
and 55 features, respectively. The binary E-WOA increased the classification accuracy by
almost 9% compared to the conventional WOA. The classification accuracy of Subject 28
was 99.17 ± 2.64, nearly 16.5% higher than that obtained with fNIRS. Subject 28 used only
26.6 ± 13.06 optimal features from both modalities out of the total number of features (330).
The box plot shown in Figure 5 summarizes the results in a simple manner.
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As shown in Figure 5, the hybrid modalities outperformed the solo modalities using
the conventional WOA and binary E-WOA. The conventional WOA and binary E-WOA
demonstrated a high classification accuracy (90.37± 7.66% and 94.22± 5.39%, respectively).
The proposed approach (binary E-WOA) only required 29.62 ± 20.78 features to train the
model. In contrast, the conventional WOA required 70.81 ± 11.63 features, as depicted in
Figure 5. Furthermore, the proposed approach (EEG–fNIRS-based binary E-WOA) was
compared to other wrapper-based techniques [50–55]. These findings are shown in Figure 6.

The comparison of the results revealed that the EEG–fNIRS-based binary E-WOA
outperformed all the other optimization algorithms in terms of the classification rate. A
two-sample t-test also proved the reliability and adaptability of the results, as shown in
Figure 6. Compared with the outcomes of the other optimization techniques, the binary E-
WOA findings were highly accurate (p < 0.01). The proposed approach was also compared
with those previously described in the literature, and the results are listed in Table 3.
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Table 3. Accuracy comparison with various studies.

Reference Year Approach Accuracy (%)

Shin et al. [27] 2016 Common spatial pattern, mean, slope, shrinkage LDA 67.5
Sun et al. [30] 2020 p-th-Order polynomial fusion 77.53

Jiang et al. [56] 2019 Independent decision path fusion 78.56
Wang et al. [57] 2022 R-CSP-E transfer and ensemble learning 66.83

He et al. [58] 2022 End-to-end multimodal multitask neural network 82.11
Present Study 2023 Temporal features and binary E-WOA 94.22 ± 5.39

4. Discussion

Multimodal hybrid techniques outperform unimodal data in terms of classifica-
tion performance using conventional machine learning or deep learning techniques [59].
Although there is variability between EEG and fNIRS data, it is not as significant as initially
believed based on the signal sources. Moreover, the adoption of certain effective techniques
for multimodal fusion improves BCI performance. Owing to the different acquisition
methods, noise sensitivities, and temporal and spatial resolutions, information from several
modalities is not directly compatible. One of the main challenges in the development of
hybrid BCIs is finding methods to integrate complementary information, maximize its
advantages, and overcome the limitations of a single model.

Shin et al. [27] computed common spatial patterns for EEG and two statistical features
for fNIRS and utilized linear discriminant analysis for MI task classification. The reported
accuracy for the hybrid BCI was only 67.5%. Similarly, in another study [56], the authors
developed an independent decision path fusion approach. He et al. [58] developed a neural
network for a hybrid BCI model. However, the computational complexity of the model
was high.

In this study, the statistical features of the two modalities were merged. Wrapper-based
and binary E-WOAs were applied to select the optimal features. The results show that the
binary E-WOA outperformed the conventional WOA in terms of accuracy (Table 2 and
Figure 5). The ability of the binary E-WOA to detect and select more appropriate features
from the hybrid EEG and fNIRS data for the classification task can be attributed to its
effective search strategy. Feature selection in the conventional WOA is entirely determined
by the objective function, which cannot accurately reflect the complexity and variety of brain
MI datasets. This may lead to the selection of irrelevant or less-than-ideal features, which
may, in turn, lead to subpar classification results, as shown in Figure 5. On the other hand,
the binary E-WOA utilizes a more complex feature selection technique that incorporates the
objective function and a collection of three advanced search strategies to assist in the search
for optimal features, as discussed in Section 2.4.2. The three effective search strategies allow
the binary E-WOA to explore the feature set more effectively and discover a more diverse
collection of optimal features. This results in an improved classification accuracy and a more
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robust classification model. Moreover, when the results of the proposed approach were
compared with those of other feature selection approaches, the binary E-WOA outperformed
them and provided more robust and accurate classification results, further validating the
reliability of the proposed framework. Therefore, it can be concluded that the proposed
binary E-WOA hybrid EEG–fNIRS framework can be used for BCI applications.

5. Conclusions

In this study, an enhanced binary variant of the WOA was applied to improve the
performance of an EEG–fNIRS-based BCI. The binary E-WOA was used to select the op-
timal statistical features for both modalities. The three novel search strategies enhanced
the classification performance of the conventional WOA. After extensive training and
testing, the proposed framework classified the MI task with a 94.22 ± 5.39% accuracy
using features from both modalities. The results also suggested that the improved binary
variant increased the classification accuracy for MI tasks by more than 3.85% compared
to the conventional WOA. Furthermore, the results were compared with those obtained
using other metaheuristic algorithms, validating the high performance of the proposed
framework for classification. To demonstrate the statistical significance of the results, a
two-sample t-test was performed, which revealed that the differences in accuracy, as com-
pared with all the other approaches, were significant (p < 0.01). Therefore, the framework
presented here may be useful for hybrid EEG–fNIRS BCI applications. In summary, the
present study indicates that the binary E-WOA hybrid EEG–fNIRS could be used as a
potential tool for various applications, including brain-controlled devices, communication,
and neurorehabilitation.
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