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Abstract: Medical image segmentation, whether semi-automatically or manually, is labor-intensive, 

subjective, and needs specialized personnel. The fully automated segmentation process recently 

gained importance due to its better design and understanding of CNNs. Considering this, we de-

cided to develop our in-house segmentation software and compare it to the systems of established 

companies, an inexperienced user, and an expert as ground truth. The companies included in the 

study have a cloud-based option that performs accurately in clinical routine (dice similarity coeffi-

cient of 0.912 to 0.949) with an average segmentation time ranging from 3′54″ to 85′54″. Our in-house 

model achieved an accuracy of 94.24% compared to the best-performing software and had the short-

est mean segmentation time of 2′03″. During the study, developing in-house segmentation software 

gave us a glimpse into the strenuous work that companies face when offering clinically relevant 

solutions. All the problems encountered were discussed with the companies and solved, so both 

parties benefited from this experience. In doing so, we demonstrated that fully automated segmen-

tation needs further research and collaboration between academics and the private sector to achieve 

full acceptance in clinical routines. 

Keywords: artificial intelligence; mandible; segmentation; 3D virtual reconstruction; CBCT; CT; 

Convolutional Neural Networks; comparison; in-house; software; patch size; Cranio-Maxillofacial 

surgery; DICOM 

 

1. Introduction 

The segmentation of anatomical structures is a process that virtually reconstructs the 

region of interest from medical images in three dimensions. It helps the physician prepare 

for surgical interventions and virtual surgical planning (VSP), visualize and interact with 

the patient’s anatomy (through three-dimensional (3D) printing or augmented and virtual 

reality (AR/VR)), and improve the medical outcome [1–6]. Until recently, the segmenta-

tion process was either manual, where the anatomical structure was labeled slice by slice, 

or semi-automatic, where the software identifies the region of interest and excludes other 

anatomical structures based on the selected threshold, marked points, or other user inputs 

[7–10]. Both segmentation types are subjective, time-intensive, and require specialized 

personnel. Artificial intelligence (AI)-based technologies are gradually being integrated 

into the clinical routine, and some companies already offer fully automated cloud-based 

solutions [11,12]. The most common techniques used for automatic segmentation are Sta-

tistical Shape Analysis [13] and Convolutional Neuronal Networks (CNNs) [14]. The last-

mentioned technique has proven itself to be especially helpful for automatic segmentation 

[15–17]; for biomedical image segmentation, the U-Net architecture exhibits state-of-the-
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art performance [18]. In some cases, both techniques are combined to further improve 

segmentation accuracy [19]. Especially in the Cranio-Maxillofacial (CMF) field, due to the 

complex anatomy of the face, AI-based segmentation solutions could be advantageous 

and lead to fully automated virtual surgical planning workflows. 

Related Work 

Previously conducted research has shown promising results for fully automated seg-

mentation using different Convolutional Neural Network (CNN) architectures. Verhelst 

P.J. et al. [12] proposed a system for mandible segmentation in which two different 3D 

U-Net CNNs were trained in two phases with 160 cone-beam computed tomography 

(CBCT) images of the skull from orthognathic surgery patients. The automatically gener-

ated mandibles were compared to user-refined AI segmentations and semi-automatic 

ones, obtaining dice similarity coefficients of 0.946 and 0.944, respectively. 

In a different approach, Lo Giudice A. et al. [20] proposed a fully convolutional deep 

encoder–decoder network that was trained on the MICCAI Head and Neck 2015 dataset 

and fine-tuned on 20 additional CBCT images. The segmentations were cut so that only 

the mandibular bone was considered for the assessment. The achieved dice similarity co-

efficient in comparison to the manual segmentations was 0.972. Apart from the mandibles, 

other anatomical structures of the skull were also automatically segmented with CNNs. 

One paper, which was published by Li Q. et al. [21], proposed a method that used a deep 

Convolutional Neural Network to segment and identify teeth from CBCT images. An-

other publication, from Kwak G.H. et al. [22], presented an automatic inferior alveolar 

canal detection system with different U-Net variants (3D SegNet, 2D U-Net, and 3D 

U-Net), where the three-dimensional U-Net performed best. 

Deep learning technologies have improved in terms of performance and accuracy in 

recent years due to the growing accessibility of new technologies and global digitalization. 

This has encouraged the development of automatic diagnosis software in dentistry, as 

shown by Ezhov M. et al. [16], who evaluated a deep learning-based system to determine 

its real-time performance on CBCT images for five different applications (segmentation of 

jaw and teeth, tooth localization, numeration, periodontitis module, caries localization, 

and periapical lesion localization). The same researchers developed an AI-based evalua-

tion tool for the pharyngeal airway in obstructive sleep apnea patients [17]. 

Other researchers, such as Yang W.F. et al. [11], used Mimics Viewer (Materialise) to 

segment the skull bones automatically. Compared to the ground truth, the segmented 

maxilla and mandible achieved dice similarity coefficient scores of 0.924 and 0.949, respec-

tively. Although strenuous, Magnetic Resonance Imaging (MRI) segmentation of soft tis-

sue has gained importance for VSP, as shown by Musatian S.A. et al. [23], who presented 

solutions for orbit and brain tumor segmentation based on CNNs. One software that is 

used in this study for semi-automatic segmentation is Brainlab IPlan. 

Considering the gains of the last decade’s affordable computing power and a better 

understanding of AI programming, we decided to develop an automatic segmentation 

software and assess its performance in the clinical routine. The main research question 

was to determine how close non-professional medical personnel in the field of CMF/AI 

for automated segmentation applications could achieve the level of established companies 

(including the leading players and known start-ups). For that, we set up a research proto-

col that included the development of in-house segmentation software, followed by com-

paring an expert and an inexperienced user with a good anatomical understanding of the 

selected companies. 

We use brand names that are/can be protected but are not marked with ®. 

2. Materials and Methods 

Our research protocol consists of setting up a fully automatic in-house segmentation 

software and comparing it with segmentation applications developed by established com-

panies and manual segmentations performed by an inexperienced user with good 
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anatomical understanding (surgeon with less than 50 segmentations) with regard to the 

ground truth performed by an expert (researcher with over 500 segmentations). We se-

lected 210 head and neck DICOM (Digital Imaging and Communications in Medicine) 

files, where the mandibles were manually segmented. The comparison was made with 

twenty selected and anonymized DICOMs (ten computed tomography (CT) and ten cone-

beam computed tomography (CBCT) images, with and without artifacts), where the ex-

pert provided the ground truth. For the analysis, we used standard surface- and volume-

based metrics. For all segmentation steps, the time was measured (segmentation duration 

and postprocessing time: filling, smoothing, and exporting). The CNN development time-

line is shown in Figure 1. 

 

Figure 1. Timeline of the CNN development. 

2.1. Statistical Analysis 

The accuracy of the mandible segmentations was measured using the dice similarity 

coefficient (DSC), average surface distance (ASD), Hausdorff distance (HD), relative vol-

ume difference (RVD), volumetric overlap error (VOE), false positive rate (FPR), and false 

negative rate (FNR). The formulas for the calculation of these metrics are shown in Table 

1. 

Table 1. List of the metrics used in this study and their formula. 

Metric Formula Legend 

Dice similarity 

coefficient (DSC) 
𝐷𝑆𝐶 =  

2|A ∩ B|

|A| + |B|
=

2 TP

2 TP + FP + FN
 

The dice similarity coefficient 

measures the similarity between 

two sets of data. 

Average surface 

distance (ASD) 
𝐴𝑆𝐷 =  

1

𝑛𝐴 + 𝑛𝐵
(∑ 𝑚𝑖𝑛

𝑏∈𝐵
‖𝑎𝑖 − 𝑏‖2

𝑛𝐴

𝑖=1

+ ∑ 𝑚𝑖𝑛
𝑎∈𝐴

‖𝑏𝑗 − 𝑎‖
2

𝑛𝐵

𝑗=1

) 

The average surface distance is the 

average of all the distances between 

the surfaces of the ground truth and 

the volume. 

Hausdorff distance 

(HD) 
𝑑𝐻 = 𝑚𝑎𝑥 {𝑠𝑢𝑝𝑥∈𝑋 𝑑(𝑥, 𝑌) , 𝑠𝑢𝑝𝑦∈𝑌 𝑑(𝑋, 𝑦)} 

The Hausdorff distance is the 

maximum distance between the 

ground truth and the volume. 

Relative volume 

difference (RVD) 
𝑅𝑉𝐷 =

|𝐵| − |𝐴|

|𝐴|
 

The relative volume difference 

measures the absolute size 

difference of the ground truth to the 

volume as a fraction of the ground 

truth. 
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Volumetric overlap 

error (VOE) 
𝑉𝑂𝐸 = 1 −

𝐷𝑆𝐶

2 − 𝐷𝑆𝐶
 

The volumetric overlap error is the 

corresponding error metric of the 

dice similarity coefficient. 

False positive rate 

(FPR) 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

The false positive rate is the 

probability that a positive result is 

given when the true value is 

negative. 

False negative rate 

(FNR) 
𝐹𝑁𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

The false negative rate or miss rate 

is the probability that the analysis 

misses a true positive. 

2.2. CNN Development 

2.2.1. Training and Validation Data 

For the training and validation of the Convolutional Neural Network (CNN), we re-

lied on open-source data containing 504 DICOMs (Fluorodeoxyglucose-Positron Emission 

Tomography (FDG-PET) and CT images) of 298 patients that were diagnosed with cancer 

in the head and neck area. The databank is offered by the McGill University, Montreal, 

Canada, and the data acquisition took place between April 2006 and November 2014 [24]. 

A total of 160 DICOM files were selected to obtain heterogeneity regarding gender distri-

bution, resolution, artifacts, and dentition, as shown in Table 2. The number of slices var-

ies between 90 and 348, with an average of 170.5. The pixel spacing in the X and Y direc-

tions varies from 0.88 × 0.88 mm to 1.37 × 1.37 mm, whereas the slice thickness varies from 

1.5 mm to 3.27 mm. The extended list is shown in Annex S1. The DICOM files were dis-

tributed among two datasets: the training dataset with 120 samples (60 with artifacts and 

60 without artifacts) and the validation dataset with 40 samples (20 with artifacts and 20 

without artifacts). Exclusion criteria were images of patients with brackets and osteosyn-

thesis materials (screws and plates). 

Table 2. List of characteristics of the images used for the training of the Convolutional Neural Net-

work. 

Nr. Studies With Artifacts Without Artifacts—With Teeth Without Artifacts—Without Teeth (Edentulous) 

Female 33 12 19 

Male 47 28 21 

Male and 

Female 
80 40 40 

2.2.2. Test Data 

For the test dataset, 10 CT and 10 CBCT images from the University Hospital of Basel 

were selected. Both subgroups contained five DICOM files with metallic artifacts and five 

without. The number of slices ranges from 169 to 489, with a mean value of 378. The pixel 

spacing in X and Y directions ranges from 0.25 × 0.25 mm to 0.59 × 0.59 mm, with a mean 

value of 0.35 × 0.35 mm, and the slice thickness varies from 0.25 mm to 3.0 mm, with a 

mean value of 0.71 mm. None of the CT images have an isotropic voxel spacing (voxel 

spacing and slice thickness have the same value), whereas 9 out of 10 CBCTs have iso-

tropic spacing. These images are representative of the ones used in the clinical routine; 

therefore, they differ greatly in aspects such as image dimension, voxel spacing, layer 

thickness, noise, etc. The same exclusion criteria were applied for the test dataset as for 

the training dataset. All images were anonymized. 
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2.2.3. Segmentation 

The DICOMs for the training and validation were imported into Mimics Innovation 

Suite (Version 24.0, Materialise NV, Leuven, Belgium), whereas the test samples were im-

ported later into Mimics Innovation Suite Version 25.0. A semi-automatic segmentation 

workflow was applied using the Threshold, Split Mask, Region Grow, Edit Mask, Multi-

ple Slice Edit, Smart Fill, and Smooth Mask tools. The teeth were included in the segmen-

tation, and the masks were filled (i.e., they do not contain any voids). The mandible and 

the inferior nerve canal were labeled as a single mask and exported as a Standard Tessel-

lation Language (STL) file. 

2.2.4. Model Architecture 

For the automatic segmentation of the mandible, the Medical Image Segmentation 

with Convolutional Neural Networks (MIScnn) Python library, Version 1.2.1 to 1.4.0 [25], 

was used. As architecture, a 3D U-Net, a Convolution Neural Network, was selected (Fig-

ure 2), which was developed for biomedical image segmentation [26]. The number of fil-

ters in the first layer (N filters) was set to 32, the number of layers of the U-Net structure 

(depth) was set to 4 as an activation function, the sigmoid function was used, and batch 

normalization was activated. The dice cross-entropy function was chosen as a loss func-

tion, which is a sum of the soft Dice Similarity Coefficient and the Cross-Entropy [27]. As 

normalization, the Z-score function was applied, and the image was resampled using a 

voxel spacing of 1.62 × 1.62 × 3.22 mm. The clipping subfunction was implemented to clip 

pixel values in a range between 50 and 3071 of the Hounsfield scale. The learning rate was 

set to 0.0001 at the beginning of the training, but through the Keras Callback function, it 

was reduced to 0.00001 once no further improvement was observed, with a patience of 10 

epochs. Scaling, rotation, elastic deformation, mirroring, brightness, contrast changes, and 

Gaussian noise were used for data augmentation (a method to increase the number of 

training samples by slightly modifying/newly creating DICOMs from existing data to 

avoid overfitting and to improve the performance of the CNN). The models were trained 

for 1000 epochs with a NVIDIA RTX 3080 GPU (12GB of VRAM), 64 GB of RAM, and an 

i9-11950H processor. The training time was about 100 h per model. 

 

Figure 2. Architecture of the Convolutional Neural Network. 

The CNN was trained in a two-phase approach. Firstly, the model was trained using 

five different cubical patch sizes (32 × 32 × 32, 64 × 64 × 64, 96 × 96 × 96, 128 × 128 × 128, 

and 160 × 160 × 160). In the second phase, the height of the best-performing input volume 
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(96 × 96 × 96) was modified along the Z axis. Five further models with patch sizes of 96 × 

96 × 32, 96 × 96 × 64, 96 × 96 × 128, and 96 × 96 × 160 were trained. The results are displayed 

in Table 3. The model trained with the 96 × 96 × 96 patch size (Figure 3) was the best-

performing and, hence, was further improved by training it with 50 additional CT images 

from the University Hospital, Basel, and its performance was tested on the test dataset. 

 

Figure 3. Graph of the evolution of the dice similarity coefficient (DCS) and its standard deviation 

(SD) of the validation samples for different patch size. 

Table 3. The patch sizes with which the CNNs were trained; the reached dice similarity coefficient 

(DSC) and its standard deviation (SD); and the epoch when it was reached. 

Patch Size Max. DSC SD Epoch 

32×32 × 32 0.222 0.073 545 

64 × 64 × 64 0.838 0.110 840 

96 × 96 × 32 0.857 0.067 635 

96 × 96 × 64 0.902 0.060 1000 

96 × 96 × 96 0.916 0.033 975 

96 × 96 × 128 0.878 0.087 995 

96 × 96 × 160 0.852 0.147 810 

128 × 128 × 128 0.907 0.038 915 

160 × 160 × 160 0.860 0.077 725 

2.3. Software Comparison 

2.3.1. Relu 

Relu (Figure 4) is an established start-up that offers fully automated cloud-based seg-

mentation for CBCT and CT images for applications in the Cranio-Maxillofacial field. The 

segmented anatomical structures are the toothless mandible, the mandibular teeth (each 

tooth individually), the inferior alveolar canal, the toothless maxillary complex, the max-

illary teeth (each tooth individually), the maxillary sinuses, the pharynx, and the soft tis-

sue. The bone segmentations include cortical and cancellous structures. Relu is ISO 13485 

compliant and has a CE mark pending. 

For the segmentation of the mandible, the anonymized DICOM files of the test da-

taset were uploaded onto the cloud system (the company names it web application) and 

the segmentations were requested, but only for the mandible, mandibular teeth, and the 

inferior nerve canal, since these are the analyzed structures. After the segmentation was 

completed, these structures were combined directly in the cloud and downloaded as one 

STL file. This was then imported into Mimics (Version 25.0) and transformed into a mask, 

which was then manually filled with the “Smart Fill” tool. Afterward, the part was 
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transformed into an object using the “Calculate Part tool”, smoothed for 4 iterations with 

the “Smooth” tool at a factor of 0.4, and finally exported as an STL file. 

With Relu, we encountered problems in 3 of the 20 test DICOMs during the segmen-

tation process regarding voxel spacing, image orientation, and cropping. All transmitted 

problems were solved by the support team. 

 

Figure 4. Relu’s user interface (CT w/A 1 displayed). 

2.3.2. Materialise Mimics Viewer 

The Materialise Viewer (Figure 5) is a cloud-based platform for online visualization 

and segmentation of DICOM files. Fully automatic segmentation can be requested for 

CMF CBCT, heart CT, shoulder CT, hip CT, knee CT, knee MRI, and all bones CT. The 

Mimics Automatic Algorithms are part of the FDA 510(k) of Mimics Medical and 

standalone CE-marked medical devices. 

For the segmentation of the mandible, the CMF CBCT segmentation algorithm was 

used, which was designed to segment both CBCT and CT. The anonymized DICOM files 

of the test dataset were inserted into a Mimics file, which was then uploaded onto Mimics 

Viewer and the segmentation was requested. The output of the fully automatic segmen-

tation was a Mimics file containing five segmented parts, which are called “Upper skull”, 

“Mandible”, “Teeth Maxilla”, “Teeth Mandible”, and “Neck”, containing the anatomy of 

skull and maxilla, mandible, maxillary teeth, mandibular teeth, and neck, respectively. 

Only the cortical bone was segmented in the Materialise Mimics Viewer, not the cancel-

lous bone. The inferior alveolar canal was not segmented. 

The file was opened with Mimics (Version 25.0) and the parts were transformed into 

masks using the “Mask from Object” tool. The mask containing the mandible and the one 

containing the mandibular teeth were combined, and the holes inside the mandible were 

filled manually with the “Smart Fill” tool in order to make volumetric comparisons pos-

sible. In the cases where there were some holes in the surface of the model, we filled them 

without intervening in the segmentation of the cortical bone. Afterward, the part was 

transformed into an object using the “Calculate Part tool”, smoothed for 4 iterations with 

the “Smooth” tool at a factor of 0.4, and finally exported as an STL file. 

With Mimics Viewer, we encountered problems in 2 of the 20 test DICOMs during 

the segmentation process regarding image orientation and cropping. All transmitted 

problems were solved by the support team. 
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Figure 5. Materialise Viewer’s user interface (CT w/A 1 displayed). 

2.3.3. Diagnocat 

Diagnocat (Figure 6) is an established start-up that offers fully automated segmenta-

tion for CBCT images and prediagnosis for 2D dental X-rays. The segmented anatomical 

structures are the toothless mandible, the mandibular teeth (each tooth individually), the 

inferior alveolar canal, the toothless maxilla, the maxillary teeth (each tooth individually), 

the cranium, the airways, and the soft tissue. The bone segmentations include cortical and 

cancellous structures. Diagnocat has a CE mark. 

For the segmentation of the mandible, the anonymized DICOM files were uploaded 

onto the cloud system and the segmentations requested (all the structures as separated 

files option). After the segmentation was completed, the mandible, the inferior alveolar 

canal, and the mandibular teeth were downloaded and combined into a single file using 

Materialise 3-Matic (Version 17.0, Materialise NV, Leuven, Belgium). This was then im-

ported into Mimics (Version 25.0) and transformed into an object using the “Calculate Part 

tool”, smoothed for 4 iterations with the “Smooth” tool at a factor of 0.4, and finally ex-

ported as an STL file. 

With Diagnocat, we encountered problems in all of the CT images and one CBCT 

image out of the twenty test DICOMs during the segmentation process. All these images 

had non-isotropic voxel spacing (CBCTs generally have isotropic voxel spacing, as shown 

in Annex S1), which needed to be adapted. All transmitted problems were solved by the 

support team. 
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Figure 6. Diagnocat’s user interface (CT w/A 1 displayed). 

2.3.4. Brainlab 

The Brainlab Elements application (Figure 7) consists of multiple applications and 

backend services for image processing of medical data (data transfer and exchange, image 

co-registration, automatic image segmentation, manual contouring, object manipulation, 

trajectory planning, etc.). The anatomical structures that can be automatically segmented 

are the optic nerve, eye, midface, skull base, skull base anterior, skull base central, skull 

base posterior, orbit volume, skull, ethmoid bone, LeFort I Template, LeFort II Template, 

LeFort III Template, LeFort III-I Template, mandible, mandible body, mandible ramus, 

frontal bone, maxilla, nasal bone, orbit, orbit floor, orbit wall medial, zygomatic bone, oc-

cipital bone, parietal bone, sphenoid bone, and temporal bone. For all bony structures, the 

cortical and cancellous bones are segmented by Brainlab. Teeth are not part of the seg-

mentation model. 

The mandible was downloaded as an STL file and was then imported into Mimics 

(Version 25.0) and transformed into a mask, which was then manually filled with the 

“Smart Fill” tool. Afterward, the part was transformed into an object using the “Calculate 

Part tool”, smoothed for 4 iterations with the “Smooth” tool at a factor of 0.4, and finally 

exported as an STL file. 

With Brainlab, no problems were encountered during the segmentation process. 
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Figure 7. Brainlab’s user interface (CT w/A 1 displayed). 

2.4. Mandible Cutting 

The following three comparisons were made: one of the mandible with teeth, one of 

just the mandibular bone, and the last of just the mandibular teeth (as shown in Figure 8). 

In order to split the mandible into the mandibular teeth and the mandibular bone, 3-Matic 

was used. For each of the 20 mandibles in the test dataset, the ground truth was used to 

manually insert three cutting planes (one horizontal and two vertical planes), which were 

used to automatically cut and split the segmented mandibles for each company using the 

3-Matic scripting tool. Two different STL files were obtained, one containing the mandib-

ular bone and one containing the mandibular teeth. 

  

 

Figure 8. Cutting planes on mandible with teeth (left), mandibular bone (right), and mandibular 

teeth (bottom). 
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3. Results 

The main results after all the assessments were made are as follows: 

− Overall, Relu performed best if the mean DSC for the mandible with teeth (mean DSC 

of 0.938) and bone (mean DSC of 0.949) is taken into consideration, which was closely 

followed by Diagnocat and then Materialise, as displayed in Tables 4 and 5. 

− Brainlab was only included for the assessment of the mandibular bone, as it does not 

offer teeth segmentation (mean DSC of 0.912), as displayed in Table 5. 

− Materialise performed best over the other software in the assessment of the mandib-

ular teeth (mean DSC of 0.864), as displayed in Table 6. 

− We could observe that in all assessments, our in-house-developed software per-

formed worst, obtaining the closest result in the mandibular bone comparison (mean 

DSC of 0.894), but achieved an accuracy of 94.24% in comparison to the best-perform-

ing software, as displayed in Tables 4–6. 

− The segmentation performed by the inexperienced user with good anatomical under-

standing (CMF surgeon) had, for all assessments, the best mean DSC, as displayed in 

Tables 4–6. 

Table 4. Mean dice similarity coefficient (DSC) of the mandible with teeth comparison. 

 Manual (Beginner) In-House Relu Materialise Diagnocat Brainlab 

Mean CT w/A 0.961 0.885 0.939 0.914 0.927 - 

Mean CT w/o A 0.968 0.891 0.935 0.903 0.921 - 

Mean CBCT w/A 0.951 0.863 0.938 0.947 0.941 - 

Mean CBCT w/o A 0.958 0.899 0.939 0.956 0.947 - 

Mean 0.960 0.884 0.938  0.930 0.934 - 

Table 5. Mean dice similarity coefficient (DSC) of the mandibular bone comparison. 

 Manual (Beginner) In-House Relu Materialise Diagnocat Brainlab 

Mean CT w/A 0.968 0.898 0.958 0.925 0.943 0.948 

Mean CT w/o A 0.969 0.900 0.952 0.909 0.936 0.943 

Mean CBCT w/A 0.963 0.873 0.944 0.959 0.948 0.852 

Mean CBCT w/o A 0.962 0.905 0.943 0.958 0.950 0.903 

Mean 0.966 0.894 0.949 0.938 0.944 0.912 

Table 6. Mean dice similarity coefficient (DSC) of the mandibular teeth comparison. 

 Manual (Beginner) In-House Relu Materialise Diagnocat Brainlab 

Mean CT w/A 0.923 0.787 0.814 0.838 0.817 - 

Mean CT w/o A 0.953 0.818 0.792 0.847 0.797 - 

Mean CBCT w/A 0.838 0.762 0.858 0.837 0.853 - 

Mean CBCT w/o A 0.935 0.841 0.889 0.935 0.903 - 

Mean 0.912 0.802 0.838 0.864 0.842 - 

For better visualization and understanding of the results, we chose to display in each 

category (CT with artifacts (Figure 9), CT without artifacts (Figure 10), CBCT with artifacts 

(Figure 11), and CBCT without artifacts (Figure 12)) the first segmented mandible. For 

that, we used the color mapping of the surface distance between the segmentation and the 

ground truth (where the segmentation is visible and the ground truth is hidden), with 

minimum and maximum ranges of −1.0 mm and +1.0 mm. 
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Manual (beginner) vs. GT (0.948 

DSC) 

 

In-house vs. GT (0.882 DSC) 

 

Relu vs. GT (0.939 DSC) 

  

Materialise vs. GT (0.919 DSC) 

 

Diagnocat vs. GT (0.930 DSC) 

 

Brainlab vs. GT (0.924 DSC) 

 

Figure 9. CT with artifacts: Color mapping of the surface distance between the segmented mandi-

bles of the CT w/A 1 image and the ground truth (GT). 

Manual (beginner) vs. GT (0.944 

DSC) 

 

In-house vs. GT (0.889 DSC) 

 

Relu vs. GT (0.939 DSC) 

 
 

Materialise vs. GT (0.909 DSC) 

 

Diagnocat vs. GT (0.926 DSC) 

 

Brainlab vs. GT (0.900 DSC) 

 

Figure 10. CT without artifacts: Color mapping of the surface distance between the segmented man-

dibles of the CT w/o A 1 image and the ground truth (GT). 
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Manual (beginner) vs. GT (0.953 

DSC) 

 

In-house vs. GT (0.896 DSC) 

 

Relu vs. GT (0.936 DSC) 

 
 

Materialise vs. GT (0.955 DSC) 

 

Diagnocat vs. GT (0.944 DSC) 

 

Brainlab vs. GT (0.911 DSC) 

 

Figure 11. CBCT with artifacts: Color mapping of the surface distance between the segmented man-

dibles of the CBCT w/A 1 image and the ground truth (GT). 

Manual (beginner) vs. GT (0.973 

DSC) 

 

In-house vs. GT (0.905 DSC) 

 

Relu vs. GT (0.943 DSC) 

 
 

Materialise vs. GT (0.961 DSC) 

 

Diagnocat vs. GT (0.950 DSC) 

 

Brainlab vs. GT (0.779 DSC) 

 

Figure 12. CBCT without artifacts: Color mapping of the surface distance between the segmented 

mandibles of the CBCT w/o A 1 image and the ground truth (GT). 

Timing: We calculated the mean values of the segmentation times for CT and CBCT 

with/without artifacts (Figure 13). We have shown that our in-house model performed 

best with the lowest mean time (2′03″), followed by Brainlab (3′54″) and Diagnocat (4′52″). 

The manually segmented mandibles (those from the expert and the inexperienced user) 
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showed similar timings (26′09″ and 22′54″, respectively). Materialise showed the highest 

mean value (85′54″). 

. 

Figure 13. Graph of the mean timing for the segmentations. 

4. Discussions 

In a clinical routine, three important factors stand out: segmentation accuracy, cost, 

and time. The segmentation accuracy result was best for manual segmentation in all com-

parisons, followed by Relu, Diagnocat, and Materialise, which all performed very simi-

larly to one another. Brainlab could only be included in the comparison of the mandibular 

bone because the segmentation did not include the teeth, as its main activity offers in-

traoperative navigation solutions. Our in-house-developed CNN performed worst in all 

of the comparisons. We encountered the problem that the segmented mandibles of our in-

house CNN had a cubical surface, which was probably due to a too high voxel spacing 

parameter. This problem could not be fixed and will require further training and improve-

ments to the model. The advantage of our system is that it has higher stability than the 

other software included in our study. We could upload all the DICOM files without any 

modifications and obtain a complete segmentation. The other software encountered some 

problems with DICOMs containing not only the skull but also, e.g., the thorax, and needed 

preprocessing (cropping) in order to obtain the segmentation. A further problem was with 

the handling of CT images, because some systems were only trained on CBCT images, 

and in many cases, images without isotropic voxel spacing were not supported and had 

to be modified. Additionally, it is worth mentioning that not all the DICOM file orienta-

tions were supported. Figures 9 and 10 show that for CT images, the segmented mandibles 

from Materialise and Diagnocat had a slight inaccuracy in the segmentation of the man-

dibular bone compared to those from Relu or Brainlab, which was probably due to differ-

ent thresholds used for the clipping during the training. Finally, the manual segmentation 

may have performed better than other automatic systems due to a similar segmentation 

protocol as the one for the ground truth. The same could apply to our in-house-developed 

CNN, which may have performed better because it was trained with a dataset prepared 

by following the same segmentation protocol. Using Mimics, which is developed by Ma-

terialise, for the manual segmentation (training and test data) and the filling process, 

could have had a positive influence on the final outcomes. Furthermore, the filling process 
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of the mandibles, which was performed manually and was needed due to the different 

segmentation approaches, could be subject to bias. Pricing is also a relevant factor that 

needs to be considered. As we were offered the segmentations by the companies for re-

search purposes, pricing was not further investigated in this study. The timing may vary 

due to the fact that most of the companies offer a cloud service, which, depending on the 

server load and internet connection, affects the segmentation time. Additionally, our 

ground truth implies that a manual segmentation process can differ from the anatomical 

specimen ground truth, which implies a scanning process. Other studies are necessary to 

compare the segmentations with laser-scanned mandibles (anatomical specimens) as the 

ground truth to improve accuracy. 

5. Conclusions 

In our study, we wanted to find out if non-professional medical personnel could be-

come close to segmentation software developed by established companies, following a 

clearly defined research protocol. The results showed that our in-house-developed model 

achieved an accuracy of 94.24% compared to the best-performing software. We also con-

clude that the segmentation performed by an inexperienced user with good anatomical 

understanding achieved the best result compared to all the other companies included in 

the study. 

The timing required to automatically segment a mandible was, for almost all of the 

software, lower than the manual segmentation. 

We can deduce that in order to obtain better quality segmentations, the CNN has to 

be trained with a dataset containing a large number of highly variable images (e.g., older 

and newer DICOM files, different types of DICOMs (CT and CBCT), and different image 

sizes, including different regions of interest and from different centers) that is constantly 

updated and enlarged due to the constantly improving image technologies. 

To fulfill today’s expectations of personalized medicine, digital workflows, including 

segmentation, need to offer stable solutions. Answers must be found for the current prob-

lems that are often encountered during the segmentation process: artifacts, amount of 

noise, voxel spacing, the size of the image, DICOM type, and image orientation. All these 

problems were reported to the companies so that solutions could be elaborated in the fu-

ture. 

For the future, the first step for implementing fully automated digital workflows is 

to generate accurate segmentations of the patient’s anatomy, which will be possible after 

solving the above-mentioned issues. 

Once the above-mentioned issues are solved, these software can be implemented in 

fully automated digital workflows, allowing new clinical applications, such as intraoper-

atively 3D-printed patient-specific implants, even in emergency situations. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/bioengineering10050604/s1, Annex S1: Test data DICOM 

properties; Annex S2: Dice similarity coefficient (DSC) of the mandible with teeth comparison; An-

nex S3: Dice similarity coefficient (DSC) of the mandibular bone comparison; Annex S4: Dice simi-

larity coefficient (DSC) of the mandibular teeth comparison; Annex S5: Mean values for the compar-

ison of the mandible with teeth segmentations, mandibular bone and mandibular teeth to the 

ground truth by using the dice similarity coefficient (DSC), average surface distance (ASD), 

Hausdorff distance (HD), relative volume difference (RVD), volumetric overlap error (VOE), false 

positive rate (FPR), and false negative rate (FNR). 
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Abbreviations 

3D Three-dimensional 

AI Artificial Intelligence 

AR Augmented Reality 

ASD Average Surface Distance 

CBCT Cone-Beam Computed Tomography 

CMF Cranio-Maxillofacial 

CNN Convolutional Neural Network 

CT Computed Tomography 

DICOM Digital Imaging and Communications in Medicine 

DSC Dice Similarity Coefficient 

FDG-PET Fluorodeoxyglucose-Positron Emission Tomography 

GT Ground Truth 

FNR False Negative Rate 

FPR False Positive Rate 

HD Hausdorff distance 

MIScnn Medical Image Segmentation with Convolutional Neural Networks 

RAS Right, Anterior Superior 

RVD Relative Volume Difference 

SD Standard Deviation 

STL Standard Tessellation Language 

VOE Volumetric Overlap Error 

VR Virtual Reality 

VSP Virtual Surgical Planning 
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