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Abstract: Stereotactic brain tumor segmentation based on 3D neuroimaging data is a challenging
task due to the complexity of the brain architecture, extreme heterogeneity of tumor malformations,
and the extreme variability of intensity signal and noise distributions. Early tumor diagnosis can help
medical professionals to select optimal medical treatment plans that can potentially save lives. Artifi-
cial intelligence (AI) has previously been used for automated tumor diagnostics and segmentation
models. However, the model development, validation, and reproducibility processes are challenging.
Often, cumulative efforts are required to produce a fully automated and reliable computer-aided
diagnostic system for tumor segmentation. This study proposes an enhanced deep neural network
approach, the 3D-Znet model, based on the variational autoencoder–autodecoder Znet method, for
segmenting 3D MR (magnetic resonance) volumes. The 3D-Znet artificial neural network architecture
relies on fully dense connections to enable the reuse of features on multiple levels to improve model
performance. It consists of four encoders and four decoders along with the initial input and the final
output blocks. Encoder–decoder blocks in the network include double convolutional 3D layers, 3D
batch normalization, and an activation function. These are followed by size normalization between
inputs and outputs and network concatenation across the encoding and decoding branches. The
proposed deep convolutional neural network model was trained and validated using a multimodal
stereotactic neuroimaging dataset (BraTS2020) that includes multimodal tumor masks. Evaluation
of the pretrained model resulted in the following dice coefficient scores: Whole Tumor (WT) = 0.91,
Tumor Core (TC) = 0.85, and Enhanced Tumor (ET) = 0.86. The performance of the proposed 3D-Znet
method is comparable to other state-of-the-art methods. Our protocol demonstrates the importance
of data augmentation to avoid overfitting and enhance model performance.

Keywords: deep learning; 3D tumor segmentation; encoder–decoder; Znet; multimodal neuroimaging
data

1. Introduction

Contemporary deep learning techniques are widely used in many fields such as agri-
culture, self-driving cars, fraud detection, and healthcare [1–4]. Adequate attention to deep
learning applications in healthcare emerged recently, including brain tumor diagnostics,
detection, and segmentation [5–7]. Massive amounts of valuable, multi-source, spatiotem-
poral, and multiscale data have recently become available in many applied, theoretical,
experimental, data science, and healthcare domains [8]. Early detection, accurate prognosti-
cation, and precise tracking of diseases contribute heavily to saving lives, finding optimal
treatments, and reducing the economic burden for patients and healthcare systems. Similar
benefits of machine learning and artificial intelligence are applied to studies of brain tumors
and neuro-oncology [9]. In this work, we will present a deep convolutional neural network
(CNN) approach, 3D-Znet, to learn the neuroimaging affinities and segment prospective
brain tumors using publicly available datasets, BraTS (2020). The 3D-Znet approach is
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originally inspired by the variational encoder–decoder framework and the skip connection
concept to enable the model to reuse features on multiple levels. The model was evaluated
using the BraTS (2020) datasets. Assessment of the proposed approach indicates high
overall mean dice coefficient scores for whole tumor (0.91), tumor core (0.85), and enhanced
tumor (0.86) masks. The augmentation of the original data sample and appropriate data
preprocessing provided a performance boost and enhanced the model predictions.

High-resolution stereotactic medical imaging is critical for patients with brain tumors.
Such non-invasive data acquisition protocols rapidly evolve over time, and this drives
the development of powerful AI techniques that transform these 3D imaging scans into
actionable information and knowledge that can improve the care of patients. Working
with medical images such as computed tomography (CT) and magnetic resonance imaging
(MRI) is challenging due to data complexity, the large size of the data, and the variability
of coordinate representation systems and storage formats [10]. In practice, it is essential
to understand the data and medical coordinate systems before applying deep learning
techniques, e.g., anatomical and voxel (3D volume-element corresponding to 2D pixel
elements) coordinate frameworks. Figure 1A shows the anatomical coordinate system
(ACS). ACS comprises three cardinal projection planes illustrating the basic anatomical
position of organs in the human body as objects in a solid dense 3D scene. The planes
describe the MRI volume orientation. Sagittal cross-sections show 2D image projections
of the volume from a side angle (traversing left-to-right direction), the coronal plane from
the front view (traversing back-to-front), and the axial plane reveals images as taken from
the top down (transverse traversing from top-to-bottom), and Figure 1B shows the brain
voxel coordinate system [11–14]. Deep learning systems provide thriving environments
for computer vision and semantic segmentation applications. Variational autoencoder–
autodecoders are deep learning networks commonly used to translate an input x into an
output r (x) via a two-step process—encoder and decoder. Figure 2 shows a demonstration
of an autoencoder
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Figure 1. Part (A) is the anatomical coordinate system (ACS); the sagittal plane is vertical to the
ground, traversing from right (R) to left (L). A coronal plane is vertical to the ground, perpendicular to
the sagittal plane and spanning from anterior (A) to the posterior (P) part of the brain. The transverse
axial plane is horizontal, traversing from superior (S) to the inferior (I) part. Part (B) is the voxel
coordinate system with i, j, and k coordinates of a point [15,16].
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DNN framework. In the encoding phase, the network takes an input x and lowers
the representation (size) of x as it moves through the network layers. This process con-
tinues until a certain bottleneck is reached, where the output represents a small feature
representation. The subsequent decoder phase does the opposite inflationary process by
increasing the feature representation to produce an output r (x) with the same dimension as
the initial network input x [17,18]. In principle, depending on the application, the output
layer may generate objects of size either smaller or larger than the size of the initial input.
For example, for producing a higher resolution image reconstruction (super-resolution)
from input size 32 × 32, an additional layer can be added at the end of the network so that
the decoder outputs a larger image of size 64 × 64. However, for semantic segmentation,
the output size is usually equal to the input size [19].
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Figure 2. A schematic of an encoder–decoder architecture that maps inputs to outputs preserving
the dimensions of the imaging input and the semantic segmentation output. Skip connections are
used in some architectures to transfer feature representation from encoder to decoder such as in the
Unet [20] and Vnet [21] CNN models.

Deep convolutional neural networks (DCNN) are neural networks based on artificial
neurons that are structured into layers. The network layers are connected using virtual
edges carrying model weights that are computationally estimated during the DCNN model
fitting. The initial layer is called the input layer, and the final layer is the output layer.
Intermediate hidden layers, located between input and output layers, recursively transform
the feature space of one layer to the next. CNNs contain convolutional layers and non-
convolutional layers. Convolutional layers include a kernel (filter) to extract features from
the preceding input. Patterns are iteratively learned by sliding the filter over the preceding
input and calculating the dot-product of the filter and the prior input; a process called
(kernel) convolution, and the result of convolving is called a feature map. In the early
stages of the CNN fitting, feature maps contain basic patterns, such as edges and corners
(basic building blocks). In contrast, later feature maps deeper into the network layers
expose more refined patterns (details) that contribute to forming the final output. Among a
series of convolutional layers, the feature maps down-sample the images using pooling
operations. CNNs are adaptive and can be used to obtain solutions for various types of
data in multiple dimensions. Specifically, 2D convolution is used for 2D imaging data
indexed in the height and width dimensions and representing scalar or vector intensities,
such as gray-scale or RGB images. Higher-dimensional (hyper) volumes, such as 3D solids,
require 3D and appropriate higher-dimensional convolutions that are suitable for data of
the given dimension (e.g., height, width, and depth for 3D volumes such as MR images).
Figure 3 shows the architectural difference between 2D and 3D convolutions [22–24].
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images, such as CT scans, whereas 3D convolution is used for stereotactic volumetric data, such CT
and MR images [22–24].

The study introduces a new approach for segmenting 3D MR volumes using a deep
neural network called the 3D-Znet model. This model is an improvement of the variational
autoencoder–autodecoder Znet method and uses fully dense connections to improve its
performance. The architecture includes four encoders and four decoders, each containing
double convolutional 3D layers, 3D batch normalization, and an activation function. The
model was trained and validated using the BraTS2020 dataset, which contains multimodal
tumor masks. The evaluation of the model showed that it performed well with dice
coefficient scores of 0.91 for Whole Tumor, 0.85 for Tumor Core, and 0.86 for Enhanced
Tumor, which are comparable to other state-of-the-art methods. The study also emphasizes
the importance of data augmentation in enhancing the model’s performance and avoiding
overfitting. The rest of the paper is organized as follows: First, we give an overview of the
most related work in the field of medical images segmentation, secondly, we describe the
methodology, preprocessing phase, the architecture of the proposed model, the training
phase, and the evaluation methods. Thirdly, we discuss the experimental results and
a comparison with previous results in the literature, and finally is the conclusion and
future work.

2. Related Work

In their study [25], Karayegen and Aksahin proposed a convolutional neural network
approach to diagnose and segment 3D brain tumors using a deep neural network pre-
trained on the 2020 Brain Tumor Segmentation (BraTS2020) dataset [26]. The authors had
normalised the dataset into two classes (background and tumor), however, the dataset has
four class categories. During data preprocessing, the authors used histogram equalization
to enhance the classifications of edges in each region. To solve memory issues and enhance
training performance, they used a random patches mechanism (80 and 90 patches) of sizes
36 × 36 × 155 and 40 × 40 × 155. The evaluation results showed an ability to diagnose
and segment tumors with promising results.

Another study by [27] attempts 3D brain tumor segmentation using SegNet algo-
rithm on BraTS dataset. In this study, the investigators trained all the modules separately
and integrated them during the post-processing. The four feature maps fused to form
one feature map and then a decision tree algorithm was used to classify the output into
malignant and benign. Results and evaluation showed a potential for this approach for
brain tumor segmentation. A recent report [28] proposed a fusion deep learning called
RMU-Net model for 3D semantic segmentation of BraTS datasets. The model is motivated
by U-net and MobileNetV2. RMU-Net’s training time is higher than other well known
segmentation models, however, the model produces promising results. Another recent
study [29] proposed the cascaded V-Nets approach for brain tumor segmentation for multi-
modal brain MR imaging. V-Net is considered as a well-performing approach in semantic
segmentation using a cascaded structure and ensemble method to enhance segmentation
results. The model architecture consists of encoder, decoder, and skip connections. The
approach also suggests segmenting the whole tumor first and then splitting the output
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into edema, enhancing tumor, and necrosis. The architecture was trained on the BraTS
data and validated independently using local hospitals datasets showing considerable
improvements in quality of tumor segmentation. The approach of an independent previous
study [29] relied on the usage of prior knowledge, training the model jointly on 3D and 2D
data, using ensembling methodology, and introducing post-processing to gain better tumor
segmentation. The authors utilized three UNets with distinct inputs, then ensembled the
equivalent three outputs, and finally applied the post-processing techniques. The first Unet
network used 3D patches of multimodal MR images, the second UNet employed brain
parcellation as an extra input, and the last network used 2D slices of multimodal MR images.
Then brain parcellation and probability maps for each class from the prior network were
obtained and tested using BraTS (2018), BraTS (2020), and other local datasets. The final
results for this approach were promising, however, compared to other methods, training
time is substantially increased due to using multiple Unet DCNNs. A recent study [30]
proposed a brain tumor segmentation method based on an ensemble of 3D U-Nets with dif-
ferent hyper-parameters trained on non-uniformly extracted patches. They created a brain
tumor segmentation method using an ensemble of 3D U-Nets. Six networks with varying
numbers of encoding/decoding blocks, patch sizes, and loss weights were trained and en-
sembled by averaging the final prediction probabilities. The ensemble model outperformed
any of the single models in terms of results. However, the ensemble method requires
extensive computational power and is time-consuming. Moreover, [31] proposed a novel
transformer-based method for 3D medical image segmentation. The method is effective at
extracting local and global characteristics; in addition, the authors designed a combination
of transformer structure and CNN, as well as an ETrans (Enhanced Transformer) model, to
enhance detail feature extraction. This model was used to extract local detailed features,
allowing the model to perform well in segmenting categories that occupy a small portion of
the image. However, due to the extensive use of the transformer structure, the performance
when segmenting the edges was insufficient. Another study [32] used magnetic resonance
images (MRI) to classify images of Alzheimer’s disease (AD) using deep convolutional
neural networks (CNN) involving CNN and transfer learning (Visual Geometry Group
(VGG)16 and VGG19). Images of Alzheimer’s disease were divided into four categories by
neurologists, and the results were assessed using a range of metrics, where VGG-19 was
the best in three categories. The research in [33] proposed a machine-learning diagnostic
system for COVID-19. For a quicker and more accurate detection of possible COVID-19
instances, four machine learning algorithms—Random Forest (RF), XGBoost, and Light
Gradient Boosting Machine (LGBM)—were applied. The dataset utilized the pertinent
symptoms for the identification of a suspicious person from COVID-19 symptoms. The
results showed that real-time data capturing can efficiently diagnose COVID-19 patients.
A recent study [34] suggested a three-stage approach to address brain tumor segmenta-
tion. First, a morphological operation pre-processing is applied to remove the skull bone
from the image. Then, the particle swarm optimization (PSO) algorithm with a two-way
fixed-effects analysis of variance (ANOVA)-based fitness function is utilized to find the
optimal block containing the brain lesion. Finally, the K-means clustering algorithm is
used to distinguish the detected block as tumor or non-tumor. The study used the BraTS
2015 database and their private dataset from Kouba imaging center-Algiers (KICA), which
showed the model’s capability to segment brain tumors.

Despite the availability of various methods and algorithms for brain tumor segmenta-
tion, achieving high accuracy in detecting the tumor area and distinguishing it from healthy
brain tissue remains challenging and requires further investigation, and the development
of methods that are more efficient and effective in detecting and segmenting brain tumors
will contribute to the field, especially in cases where the tumor size is small or the tumor is
located in a complex area of the brain.
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3. Methods
3.1. Dataset and Pre-Processing

In our study, we used the BraTS 2020 dataset to evaluate the performance of the
3D-Znet model [34,35]. The dataset consists of multi-modal MR images for 369 patients
that were captured using two methods of segmentation consisting of Gross total resection
(n = 359) and Subtotal resection (n = 10). Two types of brain tumor neuroimaging data
were available, which consisted of high-grade gliomas (n = 237) and low-grade gliomas
(n = 132). The meta-data provides two characteristics of the patients from whom the scans
were extracted—the survival (days) and age (years). Using linear regression analysis [2],
it was observed that there was a significant downward relationship between length of
survival and age. A 10-year increase in age decreased the length of survival by 118 days
(b = −118; 95% CI: [−160, −70]; p < 0.001). These results reflect the importance of this study
to develop a better detection tool for early detection to improve the survival rate of patients
with brain tumors.

The data (multimodal 3D Brats 2020 scans) were compiled from 19 contributing
sites [35] and are available in compressed neuroimaging NIFTI file format (.nii.gz) [36].
For each patient, there are five volumes, and each volume dimension is 240 × 240 × 155
representing height, width, and depth, respectively: fluid-attenuated inversion recovery
(Flair), T1-weighted (T1), contrast T1-weighted (T1ce), T2-weighted (T2), and ground
truth segmentation (seg). The ground truth volume (seg) has four distinct pixel values:
no tumor (the value of 0), non-enhancing tumor core NET (the value of 1), peritumoral
edema ED (the value of 2), enhancing tumor ET (the value of 4), and the value of 3
represents missing label. The ground truth was segmented manually by one-to-four
expert neuro-radiologists [26,36,37]. Figure 4 shows the sample data volume from the
BraTs dataset using Nilearn (Statistics for NeuroImaging in python) [38]. The raw or
compressed NIFTI files can also be easily displayed using the SOCR BrainViewer webapp
(https://socr.umich.edu/HTML5/BrainViewer/ (accessed on 6 March 2023).
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Figure 4. (A) Cardinal projection cross sections of the Echo Planar Imaging (EPI) data: Coronal, Axial,
and Sagittal planes of a sample Flair volume. (B) EPI plots: Coronal, Axial, and Sagittal for a ground
truth volume (mask). (C) Anatomical plots of Coronal, Axial, and Sagittal for a sample Flair volume.
(D) Region of Interest overlap between ground truth and Flair volumes: Coronal, Axial, and Sagittal
cross sectional planes.

https://socr.umich.edu/HTML5/BrainViewer/
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The brain MR images were collected from 19 institutions. This site heterogeneity
requires pre-processing to establish corresponding homologies between datasets from
different locations and enhance model performance. The 3D volumes were co-registered to
a standard anatomical template (an atlas) of an exact resolution of 1 × 1 × 1 mm3, and then
skull-stripped [34] to remove extra-cerebral tissue. Min-max normalization was used to
temper intensity variation and to scale the intensity to a uniform scale between 0 and 1. We
also reshaped the original volumes dimension from 240 × 240 × 155 to 128 × 128 × 128,
which represent the stereotactic height, width, and depth (slices) dimensions, respectively.
Resizing can affect model accuracy; however, it was performed to meet the available
hardware resources and to minimize training time.

Data augmentation is used to produce more samples of data from the available dataset
using techniques to modify the existing data, such as flipping images, zooming in and
out, rotating by a certain angle, or using more complex synthetic algorithms. We used
rotation by angles −5◦ to 15◦ degrees to expand the training data from 369 to 1845 volumes,
where 60% were used for training and the rest for testing. Figure 5 shows a sample volume
before and after data augmentation. The segmented volume (ground truth) was used to
generate three volumes: Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC).
WT volume is a copy of ground truth volume, where pixel values are a combination of
nonenhancing tumor core NET (1), peritumoral edema ED (2), enhancing tumor ET (4),
and the values of the remaining pixels are non-tumor (value 0). ET is another copy of the
segmented volume, where pixel values correspond to enhancing tumor ET (4) and the rest
of the pixel values correspond to non-tumor (value 0). The third copy of the segmented
volume (TC) has the values for non-enhancing tumor core NET (1), enhancing tumor
ET (4) and, the rest are 0 (non-tumor). Finally, the three generated volumes are stacked
together to form one multi-modal tensor of dimension (3 × 128 × 128 × 128). On the
other hand, actual image volumes fluid-attenuated inversion recovery (Flair), T1-weighted
(T1), contrast T1-weighted (T1ce), and T2-weighted (T2) are stacked together to form one
multi-modal volume with the dimension of (4× 128× 128× 128). Figure 6 shows the entire
workflow pipeline demonstrating the data preprocessing, model fitting, Znet assessment,
and result reporting protocol.
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3.2. 3D-Znet Architecture

The prior 2D-Znet model encoder–decoder framework [39] inspired the new 3D-Znet
architecture, which is used for stereotactic (3D) neuroimaging volumes, such as multi-
modal MR images. The 3D-Znet architecture relies on fully connected connections (dense
connections), which is very powerful in biomedical applications, segmentation, and predic-
tion [40].

The objective of dense connections is to enable the model to reuse features on multiple
levels to improve model performance [41], where every block of input layers is densely
connected to the subsequent block of nodes in the next layer. 3D-Znet incorporates four
encoders and four decoders paired with input and output blocks. Each block of the
encoder–decoder consists of double convolutional 3D layers, 3D batch normalization,
and an activation function (ReLU). These are followed by size normalization between
inputs and outputs to facilitate network concatenation and to produce the inputs for the
subsequent encoder–decoder blocks. Encoder blocks differ from decoder blocks by using
the 3D-maxpooling to downsample the input along its width, height, and depth. In contrast,
the decoder block utilizes upsampling to generate super-resolution inputs and retain the
original volumetric dimensions at the last decoder block. Conv3d uses a 3D convolution
over an input tensor. In the simplest case, the output value of the conv3d with input size
(N, Cin, D, H, W) is a tensor sized (N, Cout, Dout, Hout, Wout), where N is the batch size,
C is the number of channels, D is the depth, H, and W are highest and width, respectively.
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The conv3d parameters are kernel_size = 3, stride = 1, and padding = 1. The role of batch
normalization is to make the training quicker and more stable by re-centering and re-scaling
the input tensor. The overall 3D-Znet architecture is illustrated in Figure 7.

Bioengineering 2023, 10, x FOR PEER REVIEW 9 of 15 
 

size, C is the number of channels, D is the depth, H, and W are highest and width, respec-

tively. The conv3d parameters are kernel_size = 3, stride = 1, and padding = 1. The role of 

batch normalization is to make the training quicker and more stable by re-centering and 

re-scaling the input tensor. The overall 3D-Znet architecture is illustrated in Figure 7. 

 

Figure 7. The proposed 3D-Znet architecture for 3D MRI brain tumor segmentation, composed of 

encoder–decoder blocks and fully connected connections (dense connections) for a sample spatial 

dimensions of (3,64,64,64). 

3.3. Evaluation Metrics 

A key part of DNN model evaluation requires reliable similarity measures to quan-

tify the similarity (or discrepancy) between the ground truth output and the DNN-gener-

ated output (Znet segmented masks). Assessing image segmentation is non-trivial, since 

there is no unique and perfect evaluation framework [42,43]. However, metrics such as 

the dice similarity coefficient are useful for evaluating and tracking the similarity between 

segmented image outputs and the corresponding target tumor masks [28]. The set-theo-

retic dice coefficient is a measure comparing a pair of sets, MS (machine segmentation) and 

GT (ground truth), by calculating their intersection sizes divided by their union. The ana-

lytical form for the dice coefficient is shown in following equation: 

𝑑𝑖𝑐𝑒 =
|𝑀𝑆 ∪ 𝐺𝑇|

|𝑀𝑆 ∩ 𝐺𝑇|
  

Figure 7. The proposed 3D-Znet architecture for 3D MRI brain tumor segmentation, composed of
encoder–decoder blocks and fully connected connections (dense connections) for a sample spatial
dimensions of (3,64,64,64).

3.3. Evaluation Metrics

A key part of DNN model evaluation requires reliable similarity measures to quantify
the similarity (or discrepancy) between the ground truth output and the DNN-generated
output (Znet segmented masks). Assessing image segmentation is non-trivial, since there
is no unique and perfect evaluation framework [42,43]. However, metrics such as the
dice similarity coefficient are useful for evaluating and tracking the similarity between
segmented image outputs and the corresponding target tumor masks [28]. The set-theoretic
dice coefficient is a measure comparing a pair of sets, MS (machine segmentation) and GT
(ground truth), by calculating their intersection sizes divided by their union. The analytical
form for the dice coefficient is shown in following equation:

dice =
|MS ∪ GT|
|MS ∩ GT|

3.4. Model Training

We trained the model for 50 epochs using an adaptive moment estimation (ADAM) op-
timizer [44], images volumetric of size 128 × 128 × 128 pixels, a batch size of 1 due
to memory limitation, and a binary cross-entropy loss function [45]. Hardware and
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software specifications include 2 × 16-core Intel Xeon CPUs, 1× NVidia Titan 12 GB
GPU, 128 GB RAM, 6 TB HDD storage, Ubuntu 18.04.5 LTS, Nvidia GPU driver v460.91,
CUDA 11.2 + CuDNN 8.1, Torch v1.10.0, torchvision v0.11.1, Spyder v4.2.5, and other
supporting python libraries, with a running time of about 45 min for each epochs. See
the project GitHub repository for details, code, and complete end-to-end protocol, https:
//github.com/SOCR/DL_ZNet_3D_BrainSeg (accessed on 6 March 2023).

4. Experimental Results

In this section, we summarize the 3D-Znet model performance using a series of
experiments aiming to identify an optimal multimodal tumor mask segmentation using
the BraTS (2020) public dataset containing the stereotactic MR volumes. Initially, the data
augmentation process was necessary to expand the data samples from the original sample
of 369 raw volumes to a larger 1, 845 sample of training volumetric data using 3D affine
transformations. The resulting augmented dataset was divided into training (80%) and
testing (20%) sets. Then, all stereotactic data were resized to 128 × 128 × 128 tensors to
reduce training complexity and fit the joint 3D-Znet model fitting on all training data within
the available RAM limits. Each data sample contains the annotated mask (ground truth),
which was processed to obtain three masks called ET (Enhanced Tumor), TC (Tumor Core),
and WT (Whole Tumor). The results of training the previously discussed approach 3D-Znet
(Figure 7) showed a mean dice correlation of 0.91 for segmenting the whole tumor, 0.85 for
tumor core, and 0.86 for segmenting the most difficult enhanced tumor. This corresponds
to an overall average dice segmentation coefficient of 0.87. These results provide strong
evidence of the ability of the proposed 3D-Znet DCNN method to reliably segment different
types of brain tumors where the DCNN-generated tumor masks are in very good agreement
with human expert delineations and other state-of-the-art models (see Table 1).

Table 1. Comparison of the 3D-Znet model to previous segmentation models based on the mean
dice coefficient using three types of outputs; tumor core (TC), enhanced tumor (ET), and whole
tumor (WT).

Model Information Dice Coefficient Dataset Ref.
WT TC ET Avg.

Robust Deep Learning and Ranger for brain
tumor segmentation 3D Unet 88.9% 81.4% 84.1% 85.0% Brats2020 [46]

Modality-Pairing learning method using 3D
U-Net 89.1% 81.6% 84.2% 84.9% BraTS2020 [47]

Hybrid High-resolution and Non-local Feature
Network 91.3% 78.8% 85.5% 85.2% BraTS2020 [48]

MobileNetV2 with residual blocks as encoder
and upsampling part of U-Net as decoder 91.4% 83.3% 88.1% 87.6% BraTS2020 [28]

Asymmetric U-Net embedding network for 3D
brain tumor segmentation 80.7% 69.7% 75.2% 75.2% BraTS2020 [49]

Deep Convolutional Neural Networks with
spherical space transformed input data 86.9% 79.0% 80.7% 82.2% BraTS2020 [50]

Context Aware 3D UNet for Brain Tumor
Segmentation 89.1% 79.1% 84.7% 84.3% BraTS2020 [51]

Cascade of three Deep Layer Aggregation
neural networks 88.6% 79.0% 83.0% 83.5% BraTS2020 [52]

Multi-encoder Network for brain tumor
segmentation 70.2% 73.9% 88.3% 77.5% BraTS2020 [53]

3D-Znet encoder-decoder Network for 3D
brain tumor segmentation 90.6% 84.5% 85.9% 87.0% BraTS2020 Current

Some visualization examples of the Znet output on testing data are shown in Figure 8.
To visually inspect the raw brain images, the corresponding anatomical expert-drawn

https://github.com/SOCR/DL_ZNet_3D_BrainSeg
https://github.com/SOCR/DL_ZNet_3D_BrainSeg
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manually delineated tumor masks, and contrast these against the 3D-Znet predictions, the
figure shows axial 2D cross-sections of the 3D volumes. The left panels show the ground
truth tumor masks superimposed on the observed MRI volumetric data (image sections)
and displayed in green color. The middle panels depict the 3D-Znet prediction masks
overlayed on the MRI sections, and the right panels illustrate the overlap between ground
truth and DNN-derived tumor masks. There is good agreement between the actual (human
expert) and the 3D-Znet (CNN) predicted tumor boundaries. The latter appear a little
more regular, smoother, and less complex compared to the native masks, which tend to
have highly curved boundaries. Subsequent studies may need to investigate the issue
of DCNN regularization of predicted imaging results, understand the underlying causes,
and potentially correct for or adjust the DCNN parameters to allow for more irregular
boundary shapes.

1 
 

 
Figure 8. An example of applying the 3D-Znet model to segment the expected brain tumor mask
using one random validation-set test-case.
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5. Conclusions

In this manuscript, we proposed an efficient deep convolutional neural network
(CNN) approach, 3D-Znet, to learn the stereotactic neuroimaging affinities and segment
prospective brain tumors using publicly available datasets, such as BraTS (2020). The same
3D-Znet model can be retrained, or refined using transfer learning, on other supervised
learning problems. The proposed approach was originally inspired by the variational
encoder–decoder framework and the skip connection concept to enable the model to reuse
features on multiple levels. The 3D-Znet model includes four encoders and four decoders
along with input and output blocks. The model was evaluated using the BraTS (2020)
datasets. Assessment of the proposed approach indicates high overall mean dice coefficient
scores for whole tumor (0.91), tumor core (0.85), and enhanced tumor (0.86) masks. The
augmentation of the original data sample and appropriate data preprocessing provided a
performance boost and enhanced the Znet model predictions. In addition, we found that
data augmentation plays an important role in avoiding model overfitting. On the other
hand, data augmentation requires significantly more computational resources, longer train-
ing time, and significant computational infrastructure during the learning process. These
upfront costs of training the Znet model on augmented data do not present a computa-
tional burden during the subsequent Znet tumor prediction, model validation, translations,
and clinical assessment. We found that predicting the enhanced and tumor concentrated
masks represented the most challenging tumor segmentation problem in the Brats (2020)
archive. This may be explained by the low number of pixels in these types of tumors and
potentially highly-subjective diagnoses by trained neuro-radiologists for complex tumor
types. Prospective work to expand, improve, and generalize the proposed Znet model may
involve alternative strategies to overcome limited data samples, swapping the 3D convolu-
tional layers in the DCNN by 3D wavelet or 3D fractal encoding-decoding transformations,
and utilizing different learning techniques. The problem of generating efficient, reliable,
and realistic algorithms for segmenting high-dimensional and multimodal neuroimaging
data with supervised ground truth labels is difficult. Solutions to this problem may have
direct implications to advancing clinical care as well as provide novel mechanisms to
synthetically generate unlimited (simulated) realistic neuroimaging data that can be used
to train the next-generation AI/ML algorithms that are more sensitive, expeditious, and
pragmatic. In addition, transfer learning approaches based on the proposed 3D-Znet may
also reduce the training time and provide more accurate predictions. Deep learning models
are complex models that often have a large number of parameters. This complexity can
lead to inherent uncertainty, which refers to the fact that the model may not fully capture
the underlying data distribution. Moreover, there are many hyperparameters that can be
tuned in deep learning models, such as learning rate, batch size, and dropout rate. The
choice of hyperparameters can affect the model’s performance and uncertainty. Addressing
these uncertainties is an ongoing area of research in deep learning.

All software, pretrained 3D-Znet models, and end-to-end electronic python notebook
used in this study are available in the project GitHub repository (https://github.com/
SOCR/DL_ZNet_3D_BrainSeg, accessed on 6 March 2023).
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