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Abstract: Electroencephalogram (EEG) signals immensely suffer from several physiological artifacts,
including electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) artifacts,
which must be removed to ensure EEG’s usability. This paper proposes a novel one-dimensional
convolutional neural network (1D-CNN), i.e., MultiResUNet3+, to denoise physiological artifacts
from corrupted EEG. A publicly available dataset containing clean EEG, EOG, and EMG segments is
used to generate semi-synthetic noisy EEG to train, validate and test the proposed MultiResUNet3+,
along with four other 1D-CNN models (FPN, UNet, MCGUNet, LinkNet). Adopting a five-fold
cross-validation technique, all five models’ performance is measured by estimating temporal and
spectral percentage reduction in artifacts, temporal and spectral relative root mean squared error, and
average power ratio of each of the five EEG bands to whole spectra. The proposed MultiResUNet3+
achieved the highest temporal and spectral percentage reduction of 94.82% and 92.84%, respectively,
in EOG artifacts removal from EOG-contaminated EEG. Moreover, compared to the other four
1D-segmentation models, the proposed MultiResUNet3+ eliminated 83.21% of the spectral artifacts
from the EMG-corrupted EEG, which is also the highest. In most situations, our proposed model
performed better than the other four 1D-CNN models, evident by the computed performance
evaluation metrics.

Keywords: electroencephalogram (EEG); electrooculogram (EOG); electromyogram (EMG); artifacts;
denoising; MultiResUNet3+; 1D-CNN; deep learning

1. Introduction

The electrophysiological activity of the cerebral cortex of the human brain is repre-
sented by electroencephalogram (EEG) signals, which are non-invasively recorded at the
scalp [1]. EEG is crucial for various therapeutic applications as well as neurological research.
Long-duration human epileptic seizure episodes are routinely detected with EEG [2,3]. EEG
is also widely used for other purposes, such as Alzheimer’s disease diagnosis [4,5], sleep
stages measurement [6], assessment of cognitive workload [7], recognition of human emo-
tion [8], establishing brain-computer interfaces (BCIs) [9], biometric systems [10], etc. EEG
recordings, nevertheless, greatly suffer from a range of physiological and non-physiological
artifacts, such as ocular/electrooculogram (EOG) artifacts [11], myogenic/electromyogram
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(EMG) noises [12], cardiac/electrocardiogram (ECG) abnormalities [13,14], power line noise
and motion artifacts [15–17]. These noises will significantly impact the EEG data analysis
outcome and may even lead to an entirely wrong diagnosis in the worst cases. To remove
the physiological artifacts and maintain the neural information of EEG as much as possible,
it is required to develop efficient, reliable, and robust algorithms/models.

One frequently used strategy to remove artifacts from EEG data involved converting
the signal from the time domain to the frequency domain using the Fourier Transform (FT)
and filtering out the spectral components corresponding to the artifacts. After discarding
the noise component/s and taking the inverse FT, a noise-free signal can be obtained. EEG
denoising was also carried out using filters, including the adaptive, Wiener, and Kalman
filters [18–20]. Other signal processing-based techniques, such as the Hilbert–Huang
Transformation (HHT) [21,22], empirical mode decomposition (EMD) [23,24], variational
mode decomposition (VMD) [16], wavelet packet decomposition (WPD) [17], independent
component analysis (ICA) [25,26], and canonical correlation analysis (CCA) [27], etc.,
were also utilized. These methods primarily relied on linear transformation and several
presumptions, which is a severe limitation—particularly, capturing artifactual signals as
the reference is an essential requirement for all types of adaptive filtering. Therefore,
the denoising performance could be relatively subpar without the reference signal. The
HHT-based artifact removal technique makes the false assumption that the noisy signals
or components encoded in EEG have specific time properties from the other components.
In [22,28], via an adaptable manner, the EEG signals were decomposed into intrinsic
mode functions (IMFs), and the instantaneous frequency of the IMF was computed using
HHT. The IMFs with significant deviations from other IMFs in terms of instantaneous
frequency were discarded, considering them as artifact components. In [29,30], EEG signals
were divided into several modes for both EMD-based and ICA-based techniques, and
the noise-related components were subsequently removed using some predetermined
criteria. The elimination of EMG artifacts typically involved CCA-based EEG denoising
techniques, assuming that the muscle artifacts had infrequent stereotyped topographies and
low autocorrelation. The muscle artifacts to be eliminated were determined by the CCA,
which decomposes the EEG data into two or more uncorrelated components [15]. Some
hybrid techniques like Ensemble EMD (EEMD) in combination with ICA (EEMD-ICA) [31]
and EEMD-CCA [32] were investigated to remove EEG noises. However, the necessity
of prior assumptions remains unresolved despite performance boosts compared to other
conventional approaches. As an illustration, the value of autocorrelation thresholds in the
EEMD-CCA needs to be chosen empirically through trial and error [33].

Recently, deep learning (DL) has garnered increasing interest. The effectiveness of
DL-based models has significantly improved because of the growth of computing resources,
the continuous development of novel network designs, and the processing capability of
vast amounts of data, etc. DL has been successfully used to address various technical
issues, including image processing [34–36] and natural language processing [37–39]. EEG-
based motor imagery classification [40–42], EEG reconstruction [43,44], and EEG signal
creation [45,46] are some noteworthy examples of EEG-related analysis where DL tech-
niques have been utilized. Some established DL models, such as auto-encoder [47,48],
simple and complex convolutional neural networks (CNNs) with/without residual con-
nections [49,50], recurrent neural networks (RNNs) [50,51], and generative adversarial
networks (GANs) [52], have also been used to remove artifacts from contaminated EEG. To
disentangle neural signals from artifacts in the embedding space and recreate the noise-free
signal, a new deep learning framework called DeepSeparator has been introduced [53]. Al-
though significant progress has been made in the denoising of EEG through the utilization
of DL-based methods, there are still some drawbacks in the studies reported earlier, such
as lack of robust framework, non-usage of k-fold cross-validation methods, testing with a
selective portion of the dataset, lack of model’s generalizability, the potential for further
performance improvements, and the lack of appropriate performance metrics to evaluate
the models.
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This work is carried out with the motivation of implementing a robust and reliable DL-
based model capable of removing major physiological artifacts (EOG/EMG/simultaneous
EOG and EMG) from the contaminated EEG signals with improved performance. In this
light, a novel one-dimensional (1D) segmentation network (MultiResUNet3+) to denoise
(i) ocular/EOG, (ii) myogenic/EMG, and (iii) simultaneous EOG and EMG artifacts from
contaminated EEG is proposed, and the efficacy of the MultiResUNet3+ model is com-
pared with four other 1D-CNN models, namely (i) Feature Pyramid Network (FPN) [54],
(ii) UNet [55], (iii) MCGUNet [56], and (iv) LinkNet [57]. Semi-synthetic EEG segments
were generated from a publicly available dataset for training and testing DL-based 1D-CNN
models [50]. The quantitative and qualitative findings from the proposed MultiResUNet3+,
along with four other 1D-CNN models, provide strong evidence of the capacity of DL
models to acquire knowledge of the intrinsic characteristics of artifacts mixed into EEG
data, detect them, and remove/reduce them reliably and efficiently. The following are our
primary contributions, in brief:

• The proposed MultiResUNet3+ can effectively denoise EOG, EMG, and concurrent
EOG and EMG artifacts from corrupted EEG waveforms.

• We have created a diverse and representative semi-synthetic EEG dataset closely
resembling real-world corrupted EEG signals. The proposed 1D-segmentation model
was trained and evaluated using 5-fold cross-validation, which ensured the reliability
and robustness of the proposed model.

• We used five well-established performance metrics to comprehensively assess and
compare the denoising performance of each of the five 1D-segmentation models.

• Our developed model may be used for denoising multi-channel, actual EEG data as
the model was trained with diverse artifactual data.

The remainder of this manuscript has been structured as follows: Section 2 explains
the intricacies of the novel MultiResUNet3+ segmentation network’s architecture. This
is trailed by a comprehensive overview of the EEG dataset employed, together with the
semi-synthetic EEG data generation and normalization approaches that have been adopted
in this study. Section 3 provides the experimental details, explaining the formulae of the
performance metrics that are readily available for usage. The quantitative and qualitative
performance of the proposed model compared with four different 1D-CNN models is
provided in Section 4, and an analysis of the results is presented. Section 5 comprises a
cogent discussion of the outcomes, including the limitations inherent in our study, while
the paper is concluded concisely in Section 6.

2. Materials and Methods

Using the most up-to-date 1D-CNN-based segmentation networks, Figure 1 shows the
end-to-end framework suggested in this study for efficiently denoising EEG signals semi-
synthetically corrupted by EOG/EMG/concurrent EOG and EMG artifacts. The figure
provides a comprehensive visual representation of our proposed approach and requires no
further elucidation.

In the subsequent sub-sections, we detail our proposed MultiResUNet3+ segmen-
tation network, which forms the core of our denoising framework. We also present a
concise overview of the EEG dataset employed in this work and discuss the semi-synthetic
data generation and normalization techniques adopted in our study, which are crucial in
achieving reliable and robust denoising results.
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Figure 1. Proposed framework for removing physiological artifacts from EEG signals.

2.1. Proposed Novel MultiResUNet3+ Model Description

Our proposed MultiResUNet3+ model for segmentation effectively combines the
concepts of MultiResUNet [58] and UNet3+ [59] networks inside a single framework. The
building blocks of the 1D-MultiResUNet3+ model used in this study (depth of 5) have been
depicted in Figure 2.
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Figure 2. The proposed MultiResUNet3+ segmentation model architecture.

UNet3+ consists of full-scale skip connections combining interconnections between
the encoders and the decoders and intra-connections between the decoder sub-networks.
Unlike UNet [55] and UNet++ [60], UNet3+ can incorporate small and larger-scale feature
maps in each decoder layer, allowing it to extract fine and coarse-grained semantics in full
scales. It was employed in the MultiResUNet3+ for this application to effectively minimize
semantically different EOG and EMG artifacts from EEG waveforms. EMG requires a finer
approach, while EOG-induced impurities are coarser. Nevertheless, UNet3+ still used
direct skip connections for inter- and intra-connections, prevailing the semantic gap issue
in the basic UNet architecture, which was solved by more advanced architectures, such as
UNet++ and MultiResUNet. To reduce the semantic gap, MultiResUNet or similar architec-
tures proposed replacing the skip connections with various formations of convolutional
blocks. Reducing the semantic gaps in this application will help the model efficiently learn
and generate EEG features, especially when EOG and EMG noises are mixed, to create
a more realistic but challenging scenario. Therefore, contrary to UNet3+, our proposed
MultiResUNet3+ contains full-scale Residual Paths (Figure 3) instead of direct skip con-
nections for inter- and intra-connections. Instead of combining the encoder and decoder
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features straightforwardly (e.g., concatenation in UNet and addition in LinkNet [57]), the
encoder features are passed through several convolutional layers with residual connections
(Figure 4). Mentionable that residual connections [35] have been beneficial in several deep
learning applications during their learning process. The depth of the network affects how
many residual-convolutional blocks are used in the inter- and intra-ResPaths for MultiRe-
sUNet3+. For example, for the model drawn in Figure 2 with a depth of 5, the number of
residual-convolutional blocks along the inter-ResPaths will be 4, 3, 2, and 1, respectively,
generated from shallower to deeper layers. On the other hand, for the intra-ResPaths
densely connecting the decoders, the number of residual-convolutional blocks will be 1, 2,
3, and 4, respectively, from deeper to shallower layers. More residual-convolutional blocks
are placed along the ResPaths generated from a shallower layer for improved processing of
the coarser features.
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Figure 4. Residual Path architecture adapted from [58] used for inter- and intra-connections in
MultiResUNet3+ is expected to reduce the semantic gaps by replacing direct skip connections. This
particular ResPath represents the one produced from X1

En and X2
De among the inter- and intra-

ResPaths, respectively, in Figure 2.

Here, Figure 3 represents the full-scale aggregated feature map creation process for
MultiResUNet3+ for the decoder X3

De. Similar to MultiResUNet, the feature map from the
same scale encoder layer X3

En is received by the decoder following a ResPath. However,
contrary to MultiResUNet, a set of encoder-decoder Residual Paths delivers the semantically
enhanced low-level detailed information from the smaller-scale encoder layers X1

En and
X2

En through non-overlapping max-pooling operations.
On the other hand, higher-level semantic information is conveyed from the larger-scale

decoder layers, such as X4
De and X5

De, through intra-ResPath connections by utilizing nearest
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interpolation. Now, as in Figures 2 and 3, there are five total inter- and intra-Residual Paths
(Figure 4) containing same-resolution feature maps waiting to be unified before reaching
X3

De. To properly merge the shallow and deep semantic information, we perform a feature
aggregation mechanism on the ResPaths by placing a Multi-Residual or MultiRes Block
(Figure 5) containing W = n × d input kernels or filters of size 3 × 3 after concatenating the
five feature maps. Here, n denotes the input filter number, and the depth of the model is
represented by d. For example, if n is 64 and d is 5, W will be 320.
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The MultiRes Block used in MultiResUNet3+ is similar to the “Module A” of the
InceptionV4 network [61]. It consists of a succession of 3× 3 sized filters being concatenated
and then element-wise added by a residual connection passed through a 1× 1 convolutional
block to squeeze dimensions. This helps us to aggregate spatial features from various
context sizes while avoiding expensive filters with larger kernels (e.g., 5 × 5 or 7 × 7,
primarily used in earlier Inception networks). For the MultiRes block, instead of keeping
the number of filters the same, it is more efficient and less expensive to gradually increase
them while keeping the total number of filters the same as if it were a single convolutional
block, as explained in [58]. For instance, if the number of input filters for the MultiRes block
used for feature aggregation is W = n × d = 320, the width of the three convolution blocks
inside the MultiRes block will be w/6 = round(320/6) ≈ 53, W

3 = round(320/3) ≈ 107,
and w/2 = 160, respectively. Each MultiRes block is followed by batch normalization and
ReLU activation layers.

2.2. Dataset Description

A publicly available dataset, namely EEGdenoiseNet [50], was found to be suit-
able for this work as it contained pre-processed, well-structured physiological segments
gathered from various sources, including 4514 clean EEG segments, 3400 pure EOG seg-
ments, and 5598 clean EMG segments. We have used these readily available segments
to generate semi-synthetic noisy EEG, which were used to train and test the five distinct
1D-segmentation models.

Several signal-processing techniques were adopted by the EEGdenoiseNet [50] authors.
They processed the clean EEG signals (collected from several sources) by applying a
bandpass filter with the lower and upper cutoff frequencies of 1 and 80 Hz, removed
the power line noise using a notch filter, and then down-sampled at 256 Hz. The clean
EEG signals were then segmented, and 4514 clean EEG segments were generated, each
containing 512 data points. The clean EOG signals (horizontal and vertical) were bandpass
filtered with a passband of 0.3–10 Hz, resampled to 256 data points per second. These
processed clean EOG signals were segmented, and 3400 segments were produced, where
each clean EOG segment has 512 data points, the same as the EEG segments. The EMG
signal was filtered using a bandpass filter with a lower cutoff frequency of 1 Hz and
upper cutoff frequency of 120 Hz, and the powerline frequency component was removed
using a notch filter. Then the raw EMG signals were resampled to 512 data points per
second, and 5598 clean muscle/EMG segments were generated, each containing 1024 data
points [50]. As EMG signals have essential features in the high-frequency band, the clean
EMG signals were sampled at 512 Hz to retain those features and morphology. Figure 6
depicts one clean EEG, one clean vertical EOG, one pure horizontal EOG, and one clean
EMG segment sample. Since the authors of [50] adopted all the necessary pre-processing
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techniques, no further pre-processing steps were undertaken in this study. Instead, the
publicly available segments are directly used to produce a large and diverse semi-synthetic
corrupted EEG dataset.
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Figure 6. Sample (a) clean or ground truth EEG, (b) pure vertical EOG, (c) noise-free horizontal EOG,
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compared to clean EEG and EOG segments.

2.3. Semi-Synthetic Electroencephalogram Segment Generation and Normalization

For this study, we generate semi-synthetic EOG, EMG, and EOG-EMG contaminated
EEG segments from the true signals in the EEGdenoiseNet dataset. By linearly mixing
one clean EEG segment with one clean EOG and/or EMG segment using Equation (1), a
semi-synthetic corrupted EEG segment can be produced [50]:

y = x + λ·n (1)

Here, x denotes the ground truth or clean EEG segments, y is the generated semi-
synthetic noisy EEG, and n characterizes the EOG and/or EMG artifacts. By solving
Equation (2) and altering the scaling factor λ, the signal-to-noise Ratio (SNR) of the semi-
synthetically generated contaminated EEG segment can easily be adjusted to different
levels as follows [50]:

SNR = 10 log
RMS(x)

RMS(λ·n) (2)

For the computation of root mean square (RMS) value, Equation (3) is utilized [50]:

RMS(w) =

√
1
m∑m

i=1 w2
i (3)

Here, m stands for the total number of data points of segment w, and wi stands
for the ith sample point of w. The scaling factor λ is pivotal in determining the SNR of
the semi-synthetic, corrupted EEG segments. As a rule of thumb, a lower value of λ
corresponds to a higher SNR, whereas a higher λ leads to a poorer SNR. The SNR of EEG
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solely corrupted by EOG artifacts typically falls within the range of −7 to 2 dB, as reported
in previous studies [23]. On the other hand, EEG signals corrupted by EMG artifacts
exhibit a comparatively wider range of SNR, typically ranging from −7 to 4 dB [62]. The
availability of ground truth and noisy EEG segments allowed us to train, test and validate
the deep learning models for EEG denoising. However, rather than directly feeding the
(x, y) pairs into the 1D-CNN models, we considered the standard deviation of the corrupted
EEG segments (σy) and divided the clean and contaminated EEG signals by this value
(Equation (4)). The result was a pair of rescaled or normalized segments (x̂, ŷ), fed to the
1D-segmentation models for training, testing, and validation.

x̂ =
x
σy

; ŷ =
y
σy

(4)

Since deep learning models are sensitive to variations in the magnitude of input data,
without scaling or normalization, the model may be unable to make useful inferences.
Normalization aids in keeping all input features of equal importance, which is especially
helpful when dealing with large-scale data variations. Normalization also helps the model
to converge faster during model training by minimizing the variance of the input data.
Moreover, the training process can be accelerated via normalization, and the model’s
learning capacity can be facilitated. Again, normalization aids in avoiding overfitting.

In this study, the EOG-contaminated EEG segments were generated by linearly mixing
randomly chosen 3400 clean EEG segments (out of 4514 clean EEG segments) with the
available 3400 EOG segments. This process was repeated for ten different integer SNR
levels (−7 to 2 dB), producing 34,000 semi-synthetic EOG-contaminated EEG segments. The
sampling frequency of both EOG and EEG segments was kept at 256 Hz. It is worthwhile
to mention that as there were 4514 clean EEG segments available, we could easily produce
45,140 semi-synthetic corrupted EEG segments for ten different SNR levels by using some
clean EOG more than once during linear mixing. However, this process was avoided to
prevent data-leaking issues.

Similarly, EMG-contaminated EEG segments were created by combining the EEG
segments with the randomly selected clean EMG segments for 10 different SNR levels.
Before linearly mixing EEG and EMG segments, all the clean EEG segments were up-
sampled by a factor of 2 to match the number of data points each EMG segment contains.
The upsampling of EEG (from 256 to 512 Hz) did not cause any morphological change
in EEG segments as the bandwidth of EEG is 1–80 Hz [63]. Eventually, we generated
45,140 EMG-contaminated EEG segments for the ten different SNR levels semi-synthetically.
The simultaneous EOG and EMG contaminated EEG segments were generated by mixing
the 3400 clean EEG segments (randomly taken out from 4514 clean EEG segments) with
3400 EOG and 3400 EMG (randomly taken out of 5598 EMG segments) segments for ten
different SNR levels. The clean EEG and EOG segments were up-sampled at 512 Hz
before linear mixing to match the sampling frequency of the EMG segments. This process
generated 34,000 corrupted EEG segments for all ten different SNR levels. Figure 7a
displays a picked at-random EOG-contaminated EEG segment. Figure 7b illustrates one
arbitrary EMG-contaminated EEG segment, whereas Figure 7c represents one random
sample of simultaneous EOG and EMG-contaminated EEG segments. The corresponding
ground truth EEG segments are also superimposed in Figure 7a–c.
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3. Experimental Setup

In pursuit of denoising EEG signals from physiological (EOG/EMG/concurrent EOG
and EMG) artifacts, the novel MultiResUNet3+ model, alongside four other 1D-CNN
models, was trained. The training involved feeding the neural networks normalized
contaminated EEG segments as input (generated using Equation (4)) while providing
corresponding normalized ground truth EEG segments as output. This process made it
easier for the DL-based model to create a nonlinear function that translated the noisy EEG
to its equivalent ground truth. The mean squared error (MSE) was employed as the loss
function to generate the nonlinear mapping function. The loss function was optimized
using the Adam optimizer with a learning rate of 0.0005. Eighty percent of the data was
used as the training set and the remaining 20% for the test set. Ten percent of the training
set data were used as the validation set. It is worth mentioning here that each EEG, EOG,
and EMG segment is only used once to produce the semi-synthetic dataset. Therefore, any
sort of data leaking between train, test, and validation sets is absent. All five networks were
trained, validated, and tested independently using the five-fold cross-validation technique
in the Google ColabPro environment using Python 3.10 framework to ensure robustness
and reliability in the evaluation process. In this work, the experimentation was done with a
twofold approach which is described below:

3.1. Experiment A

As mentioned earlier, there were in total 34,000 EOG-contaminated EEG segments hav-
ing ten integer SNR values ranging from −7 to +2 dB, where for each SNR value, 3400 EEG
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segments contaminated with ocular artifacts were generated. For EMG-contaminated EEG,
the total number of contaminated segments was 45,140. In contrast, for simultaneous EOG
and EMG corrupted EEG, this number was 34,000 for ten different SNR levels ranging
from −7 to +2 dB. For all these three types of artifacts, we trained each of the five 1D-CNN
models ten times, utilizing the corrupted and corresponding ground truth segments for ten
different SNR values. That is, for EOG corrupted EEG segments at SNR level −7 dB,
80% of 3400 segments (2720) were used for training the models, and the remaining
20% (680 segments) were utilized for testing. This same process was carried out sepa-
rately for nine other integer SNR levels (−6 to 2 dB).

Similarly, for ten different SNR levels, EMG-contaminated EEG segments, and si-
multaneous EOG and EMG-contaminated EEG segments, were utilized for training and
testing all five networks ten times separately. Employing a deep supervision technique as
described in [64], in this experiment, we computed three established performance metrics,
namely the correlation coefficient (CC) in the time domain, and temporal and spectral
relative root mean squared error (RRMSE). These metrics were particularly used to evaluate
the effectiveness of the five DL-based models in denoising contaminated EEG. The five-fold
cross-validation technique was employed, and the metrics mentioned earlier were com-
puted for each of the five folds to ensure robustness and reliability in the evaluation process.

3.2. Experiment B

In Experiment B, a comprehensive approach was taken to generate train and test sets
so that a more robust DL-based model could be trained that would perform well across
a wide range of SNR levels, which is crucial for real-world applications where the exact
SNR of the input signal may vary due to factors, such as electrode placement, the patient’s
movements, or equipment quality. For each of the 10 different SNR levels, 80% of the
EOG-contaminated EEG segments and their corresponding ground truth EEG segments
were extracted to produce a more extensive dataset (2720 pairs in each SNR level). After
merging these pairs, a training dataset of 27,200 pairs was created. The remaining 20% of
pairs from each of the ten distinct SNR levels were used to generate the test set (6800 pairs).
Unlike in Experiment A, where models were trained and evaluated for specific SNR level
segments, the models in Experiment B were trained using combined segments of all ten
distinct SNR levels. This improved model generalization, making them more resilient when
evaluated with noisy EEG segments with varying SNR levels. In essence, Experiment B
took a holistic approach to train DL models that could perform well across the noisy
EEG segments having a range of SNR levels, thereby increasing their utility in real-world
scenarios where the SNR of the input signal may not be precisely known. Following a
similar protocol, a total of 36,110 EMG-contaminated EEG segments and 27,200 pairs of
simultaneous EOG and EMG-contaminated EEG segments were generated separately to
form the train set, and the remaining 20% contaminated EEG segments were used as test set
(9030 pairs of EMG-contaminated EEG segments, and 6800 pairs of simultaneous EOG and
EMG contaminated EEG segments) for the segmentation models. The efficacy of the trained
models was quantitatively measured using five performance metrics, i.e., the percentage
reduction in artifacts in the time and frequency domain, temporal and spectral RRMSE,
and the average power ratio of each of the five different EEG bands (Alpha, Beta, Gamma,
Delta, Theta bands) to the whole band separately.

3.3. Performance Evaluation Metrics

The proper quantitative assessment of any DL model is paramount in determining its
ability to accomplish the intended task, in our case, effectively denoising EEG signals. In
this study, meticulous attention was devoted to selecting the most appropriate performance
parameters for an adept evaluation of the chosen segmentation models. The efficacy of
the five 1D-CNN models was quantitatively evaluated by calculating several temporal
and spectral performance metrics, such as the correlation coefficient (CC), the percentage
reduction in artifacts, and the relative root mean squared error (RRMSE). These metrics
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were critical in determining the best-performing models. The relevant equations for these
measures can be found in Equations (5)–(9), as collected from [50,65],

CCtemporal =
Cov(ẑ, x̂)√

Var(ẑ)Var(x̂)
(5)

η =

(
1 −

1 − CCtemporal(a f )

1 − CCtemporal(b f )

)
∗ 100 (6)

γ =

(
1 −

1 − CCspectral(a f )

1 − CCspectral(b f )

)
∗ 100 (7)

RRMSEtemporal =
RMS(ẑ − x̂)

RMS(x̂)
(8)

RRMSEspectral =
RMS(PSD(ẑ)− PSD(x̂))

RMS(PSD(x̂))
(9)

Here, the time domain correlation coefficient is represented by CCtemporal while co-
variance is denoted by Cov. The predicted EEG segments are represented by ẑ, whereas
x̂ denotes the normalized ground truth EEG segments. Variance is characterized by Var,
while η represents the temporal percentage reduction of EOG/EMG/simultaneous EOG
and EMG artifacts from the corrupted EEG, and γ represents the percentage reduction
of EOG, EMG, or simultaneous EOG and EMG artifacts from the corrupted EEG in the
frequency domain. Furthermore, the time domain correlation coefficient between the pre-
dicted and the ground truth EEG segments is denoted by CCtemporal(a f ), while CCtemporal(b f )
is used to represent the time domain correlation coefficient between contaminated and
ground truth EEG segments. Similarly, the frequency domain correlation coefficient be-
tween the predicted and the ground truth EEG segments is expressed by CCspectral(a f ),
whereas CCspectral(b f ) is used to represent the frequency domain correlation coefficient
between the contaminated and the ground truth EEG segments. RMS is the abbreviation
for root mean square, which can be computed using Equation (3), and finally, the PSD is
the power spectral density computed using the Periodogram method. The Periodogram
method involves calculating the Discrete FT (DFT) of the signal and then taking the square
of the absolute value of the DFT to obtain the power spectral density.

We have selected these performance metrics to evaluate the 1D-CNN-based segmenta-
tion models. The reasoning for choosing these metrics is summarized as follows:

The correlation coefficient in the time domain (CCtemporal) measures the degree of
similarity between two variables. A higher correlation coefficient between predicted and
ground truth EEG would indicate that the predicted EEG is more similar to the ground
truth EEG and vice-versa. Hence, calculating the correlation coefficient is a valuable tool
that quantitatively measures the model’s adeptness/inability in denoising.

The metric temporal percentage reduction in artifacts (η) measures the proportion of
EOG/EMG/simultaneous EOG and EMG artifacts removed from the noisy EEG signal in
the time domain. A higher temporal percentage reduction in artifacts indicates that more of
the artifact has been removed from the EEG signal, resulting in a clean and more accurate
EEG signal.

In contrast, the spectral percentage reduction in EOG/EMG/simultaneous EOG and
EMG artifacts (γ) measures the proportion of EOG/EMG artifacts removed from the EEG
signal in the frequency domain. A higher spectral percentage reduction indicates that
more of the artifact has been removed from the EEG signal across all frequency bands and
vice-versa.

The RRMSE measured in the time domain (RRMSEtemporal) can provide insights into
the temporal dynamics of the denoised EEG signals. A low temporal RRMSE value indicates
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that the predicted individual EEG segment closely approximates the corresponding ground
truth EEG segment.

The RRMSE measured in the frequency domain (RRMSEspectral) can help assess the
ability of the predictor model to capture important spectral features of the EEG signals in
the whole synthetic dataset, such as alpha, beta, gamma, delta, and theta bands. A low
spectral RRMSE value indicates that the predicted EEG signal accurately captures the
power distribution across different frequency bands. This is important for ensuring that
the predicted EEG signal is not biased towards or against any particular frequency band,
which could have unintended effects on subsequent analyses.

The average power ratio measures the power of a given frequency band against the
power of the EEG signal over the whole spectrum. It is computed by dividing the power
of a particular frequency band by the total power of the signal. In general, by calculating
the average power ratio for each frequency band separately, we can better understand the
distribution of power across the different frequency ranges, which is vital. Specifically,
while estimating average power ratios for ground truth and predicted denoised signal for
any frequency band, a closely matched numerical value would indicate that the signal is
predicted more accurately. In contrast, the power ratio of noisy and ground truth signals
should have far apart numerical values. For this reason, the performance of the 1D-CNN
models for five different frequency bands of EEG is also reported in this study. Specifically,
the five EEG frequency bands are delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), and gamma (30–80 Hz). The average power ratio of each of these bands to the
entire band (1–80 Hz) is calculated separately for each predicted, corresponding ground
truth, and contaminated EEG segment. The average power ratio was computed following
the Periodogram method [65].

4. Results

This section details the outcomes of Experiments A and B and analyses the
results concisely.

4.1. Experiment A Outcomes

For the quantitative performance evaluation of Experiment A, three performance
metrics are computed, namely (i) time domain correlation coefficient, (ii) temporal RRMSE,
and (iii) spectral RRMSE utilizing the ground truth EEG and the denoised EEG predicted
by all five models in three different denoising scenarios, i.e., for EOG-artifacts removal,
EMG-artifacts removal, and concurrent EOG and EMG artifacts removal from corrupted
EEG, separately.

In Tables 1–3, the numerical values of the three performance metrics (CCtemporal ,
RRMSEtemporal , and RRMSEspectral) are presented for the denoised EOG, EMG, and simul-
taneous EOG and EMG-contaminated EEG segments, respectively. On the other hand,
Figure 8 illustrates the evaluation of five different 1D-CNN models in the context of EOG-
contaminated EEG denoising. Specifically, the figure presents CCtemporal values obtained
across ten integer SNR levels, spanning from −7 to +2 dB. Additionally, Figure 8 also
displays the RRMSEtemporal and RRMSEspectral values plotted against the same ten SNR
levels. Similarly, Figures 9 and 10 illustrate the same performance metrics plotted against
ten different SNR levels computed for the predicted denoised EMG-contaminated EEG
segments and simultaneous EOG and EMG-contaminated EEG segments.
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Table 1. EOG-contaminated EEG segment denoising performance. The bold numeric values represent
the best performance.

Performance
Metric

SNR
(dB)

Model

FPN UNet MCGUNet LinkNet MultiResUNet3+
(Proposed)

CC
(Temporal)

−7 0.8074 0.8200 0.7913 0.8269 0.8636

−6 0.8320 0.8507 0.8308 0.8566 0.8865

−5 0.8522 0.8646 0.8459 0.8579 0.9032

−4 0.8695 0.8912 0.8506 0.8793 0.9152

−3 0.8819 0.8986 0.8597 0.8946 0.9329

−2 0.9004 0.9299 0.8617 0.9204 0.9347

−1 0.9136 0.9389 0.8710 0.9261 0.9437

0 0.9286 0.9420 0.8783 0.9388 0.9534

1 0.9322 0.9442 0.8844 0.9494 0.9633

2 0.9493 0.9554 0.8948 0.9537 0.9644

RRMSE
(Temporal)

−7 0.5903 0.5693 0.5733 0.5554 0.4694

−6 0.5567 0.5146 0.5378 0.5098 0.4279

−5 0.5184 0.4970 0.4982 0.5146 0.3954

−4 0.4939 0.4377 0.4942 0.4793 0.3728

−3 0.4739 0.4341 0.4768 0.4416 0.3193

−2 0.4357 0.3386 0.4785 0.3735 0.3232

−1 0.3949 0.3208 0.4698 0.3662 0.3021

0 0.3552 0.3134 0.4630 0.3256 0.2674

1 0.3501 0.3073 0.4584 0.2840 0.2413

2 0.2907 0.2666 0.4197 0.2744 0.2338

RRMSE
(Spectral)

−7 0.6219 0.5854 0.5066 0.5677 0.4419

−6 0.5827 0.5278 0.4807 0.5328 0.4234

−5 0.5601 0.5280 0.4372 0.5514 0.3948

−4 0.5471 0.4492 0.4048 0.5331 0.3827

−3 0.5164 0.4754 0.4022 0.4687 0.3219

−2 0.4902 0.3605 0.3992 0.3996 0.3382

−1 0.4354 0.3498 0.3849 0.4131 0.3224

0 0.3834 0.3471 0.3615 0.3621 0.2878

1 0.3897 0.3384 0.3584 0.3134 0.2707

2 0.3168 0.2992 0.3207 0.3080 0.2668
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It is apparent from Table 1 and Figure 8 that our proposed MultiResUNet3+ model
outperformed all remaining four 1D-segmentation models in terms of removing EOG
artifacts from noisy EEG segments. This superiority is consistently observed across all ten
different SNR levels. Specifically, the MultiResUNet3+ model achieved the highest CC val-
ues, indicating a higher correlation between the predicted and ground truth EEG segments.
Furthermore, the RRMSE values obtained from the MultiResUNet3+ model were the lowest
in both the temporal and spectral domains, again demonstrating its superior accuracy and
precision in removing EOG artifacts. Overall, these findings highlight the effectiveness
and robustness of the proposed MultiResUNet3+ model in reducing EOG artifacts from
EOG-contaminated EEG denoising, even under challenging conditions characterized by
low SNR levels.

As can be observed from Figure 9, the five 1D-CNN models displayed similar perfor-
mance in removing EMG artifacts from the EMG-contaminated EEG segments, as indicated
by the almost overlapping curves of all three-performance metrics. Given the difficulty
of determining the best-performing model solely based on Figure 9, Table 2 is included
to provide numerical values of CCtemporal , RRMSEtemporal , and RRMSEspectral . The tab-
ulated data highlight the inconsistent performance of the 1D-segmentation networks in
predicting EMG-artifacts-free EEG. Notably, the proposed MultiResUNet3+ and MCGUNet
demonstrated relatively superior performance compared to the other three models.
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Table 2. EMG-contaminated EEG segment denoising performance where the bold numeric values
represent the best performance.

Performance
Metric

SNR
(dB)

Model

FPN UNet MCGUNet LinkNet MultiResUNet3+
(Proposed)

CC
(Temporal)

−7 0.5779 0.5548 0.5862 0.5552 0.5897

−6 0.6425 0.6198 0.6533 0.6224 0.6463

−5 0.7013 0.6879 0.7095 0.6864 0.7056

−4 0.7545 0.7447 0.7561 0.7448 0.7589

−3 0.8015 0.7992 0.8035 0.7973 0.8039

−2 0.8438 0.8418 0.8410 0.8417 0.8447

−1 0.8785 0.8803 0.8793 0.8793 0.8826

0 0.91 0.9113 0.9088 0.9106 0.9092

1 0.9336 0.9345 0.9336 0.9343 0.9343

2 0.9517 0.9529 0.9519 0.9526 0.9536

RRMSE
(Temporal)

−7 0.8136 0.8266 0.8048 0.8263 0.8049

−6 0.7672 0.7813 0.7486 0.7792 0.7597

−5 0.7119 0.7215 0.6994 0.7249 0.7087

−4 0.6544 0.6654 0.6536 0.6643 0.6483

−3 0.5963 0.6003 0.5884 0.6008 0.5924

−2 0.5345 0.5378 0.5355 0.5387 0.5333

−1 0.4775 0.4738 0.4746 0.4741 0.4695

0 0.4130 0.4102 0.4151 0.4115 0.4158

1 0.3570 0.3548 0.3571 0.3566 0.3565

2 0.3055 0.3029 0.2968 0.3034 0.3058

RRMSE
(Spectral)

−7 0.7920 0.8127 0.7670 0.8157 0.7686

−6 0.7622 0.7540 0.7255 0.7581 0.7087

−5 0.6905 0.6857 0.6389 0.6716 0.6643

−4 0.5997 0.6180 0.5870 0.6162 0.5926

−3 0.5512 0.5404 0.5167 0.5508 0.5344

−2 0.4843 0.4836 0.4664 0.4825 0.4770

−1 0.4206 0.4208 0.4283 0.4246 0.4042

0 0.3685 0.3595 0.3552 0.3617 0.3615

1 0.3115 0.3054 0.2908 0.3064 0.2971

2 0.2544 0.2527 0.2361 0.2520 0.2479
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Figure 9. Estimated performance metrics (CC in time domain, RRMSE in time, and frequency domain
vs. SNR) of five DL models after removing EMG artifacts from EMG-contaminated EEG.

During the denoising of simultaneous EOG and EMG artifacts from corrupted EEG
segments, the greatest temporal correlation coefficient (a little above 0.95) is obtained from
MultiResUNet3+ for the segments having the lowest noise level (SNR level of +2 dB).
The smallest RRMSE in the time and frequency domain is also achieved by our proposed
MultiResUNet3+ model compared to the other four 1D-CNN models while estimating the
performance on test segments (refer to Table 3 and Figure 10).

Overall, for EOG/EMG/simultaneous EOG and EMG artifacts removal, the efficacy of
the deep learning (DL) models is observed to be enhanced in parallel with the increment of
the SNR, as anticipated. The increase of SNR level results in a proportional reduction in the
noise quotient (comprising EOG, EMG, and simultaneous EOG and EMG), thereby possibly
reducing the complexity of the nonlinear mapping function acquired by the DL-based
segmentation models for forecasting denoised EEG segments. Ultimately, this leads to an
improvement in the model’s performance in predicting noise-free EEG.
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Table 3. Simultaneous EOG and EMG-contaminated EEG segments denoising performance. The
bold numeric values represent the best performance.

Performance
Metric

SNR
(dB)

Model

FPN UNet MCGUNet LinkNet MultiResUNet3+
(Proposed)

CC
(Temporal)

−7 0.5771 0.5856 0.6630 0.5987 0.6152

−6 0.6370 0.6355 0.7113 0.6512 0.6582

−5 0.6932 0.7039 0.7449 0.7052 0.7188

−4 0.7507 0.7565 0.8009 0.7576 0.8191

−3 0.7982 0.8003 0.8388 0.8010 0.8245

−2 0.8423 0.8428 0.8819 0.8431 0.8580

−1 0.8757 0.8803 0.8832 0.8780 0.8934

0 0.9025 0.9084 0.9094 0.9098 0.9228

1 0.9308 0.9325 0.9100 0.9332 0.9411

2 0.9496 0.9504 0.9277 0.9506 0.9579

RRMSE
(Temporal)

−7 0.8198 0.8122 0.7235 0.7989 0.7830

−6 0.7758 0.7755 0.6873 0.7638 0.7446

−5 0.7247 0.7189 0.6479 0.7088 0.6883

−4 0.6706 0.6524 0.5688 0.6532 0.5440

−3 0.6108 0.6017 0.5222 0.5994 0.5675

−2 0.5438 0.5458 0.4476 0.5370 0.5108

−1 0.4871 0.4736 0.4526 0.4821 0.4480

0 0.4338 0.4207 0.4054 0.4143 0.3821

1 0.3664 0.3603 0.4183 0.3610 0.3375

2 0.3159 0.3118 0.3744 0.3107 0.2867

RRMSE
(Spectral)

−7 0.8202 0.7903 0.6894 0.7447 0.7017

−6 0.7842 0.7429 0.6364 0.7399 0.6587

−5 0.7222 0.7088 0.5690 0.6578 0.5879

−4 0.6812 0.5999 0.4865 0.5969 0.4401

−3 0.6136 0.5341 0.4545 0.5559 0.4768

−2 0.5216 0.5027 0.3698 0.4972 0.4188

−1 0.4701 0.4287 0.3625 0.4262 0.3577

0 0.3945 0.3763 0.3196 0.3576 0.2934

1 0.3289 0.3134 0.3374 0.3048 0.2542

2 0.2716 0.2635 0.2722 0.2622 0.2142
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domain vs. SNR) of five DL models after denoising simultaneous EOG and EMG-contaminated EEG.

4.2. Experiment B Outcomes

All five 1D-CNN models’ objective is to estimate artifacts-free EEG segments. To
determine the most effective 1D-segmentation model in reducing physiological artifacts
from corrupted EEG, five different performance metrics have been computed, namely
(i) Temporal percentage reduction in artifacts (η), (ii) spectral percentage reduction in
artifacts (γ), (iii) RRMSE in the time domain (RRMSEtemporal), (iv) RRMSE in the frequency
domain (RRMSEspectral), and (v) the average power ratio for five distinct EEG bands (Delta,
Theta, Alpha, Beta, Gamma) for ground truth, noisy, and predicted artifacts-free EEG
segments. Moreover, a sample corrupted, ground truth, and predicted clean EEG segment
plots are provided for visual or qualitative assessment.

Figure 11a depicts an EEG segment that has been contaminated with EOG artifacts,
while Figure 11b–f illustrates EOG artifact-free EEG segments (estimated clean EEG) for all
five models. Table 4 provides the average numerical values of the four performance metrics
(η, γ, RRMSEtemporal , and RRMSEspectral) by the five distinct models. In contrast, Table 5
illustrates the computed average power ratios for five separate EEG bands for ground truth,
noisy, and predicted EEG segments.
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From Table 4, our proposed MultiResUNet3+ performed best in reducing EOG arti-
facts from EOG-contaminated EEG segments in the temporal and spectral domains 
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Figure 11. (a) A sample EOG-corrupted EEG segment, EOG artifacts-free EEG segment predicted by
(b) FPN, (c) UNet, (d) MCGUNet, (e) LinkNet and (f) MultiResUNet3+ models plotted against the
ground truth EEG.

Table 4. Measured performance metrics after denoising EOG-contaminated EEG where the bold
numeric values represent the best performance.

Model η (%) γ (%) RRMSEtemporal ± STD RRMSEspectral ± STD

FPN 88.26 81.31 0.23141 ± 0.07250 0.25518 ± 0.08122

UNet 94.59 91.59 0.11342 ± 0.03825 0.12123 ± 0.04411

MCGUNet 73.28 70.39 0.43087 ± 0.08775 0.43669 ± 0.13015

LinkNet 94.40 91.30 0.12072 ± 0.04134 0.13229 ± 0.04826

MultiResUNet3+ (Proposed) 94.82 92.84 0.13190 ± 0.05364 0.13660 ± 0.05587

Table 5. Estimated power ratios of five distinct EEG frequency bands for the ground truth, noisy, and
predicted EOG-artifacts-free EEG segments. The bold numeric values represent the best performance.

Model/Method Delta Theta Alpha Beta Gamma

FPN 0.4147 0.5429 0.1278 0.0797 0.0208

UNet 0.4338 0.5297 0.1230 0.0761 0.0200

MCGUNet 0.3997 0.6057 0.1289 0.0543 0.0101

LinkNet 0.4320 0.5318 0.1234 0.0762 0.0199

MultiResUNet3+ (Proposed) 0.4337 0.5295 0.1233 0.0760 0.0197

EOG-contaminated EEG 0.8301 0.1639 0.0368 0.0244 0.0069

Ground Truth EEG 0.4459 0.5184 0.1206 0.0749 0.0195

From Table 4, our proposed MultiResUNet3+ performed best in reducing EOG artifacts
from EOG-contaminated EEG segments in the temporal and spectral domains (94.82% and
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92.84%, respectively). Although the UNet model produced the lowest RRMSEtemporal
(~0.11) and RRMSEspectral (~0.12), respectively, MultiResUNet3+ was also very close. UNet
produced the closest delta and alpha power ratio compared to the ground truth EEG. For
theta, beta, and gamma band power ratio, our proposed MultiResUNet3+ performed best
(refer to Table 5).

An example EMG-contaminated EEG segment is illustrated in Figure 12a, and to
provide a qualitative overview of the five denoising 1D-CNN models, Figure 12b–f shows
EMG artifacts-free EEG (predicted EEG) segments. Table 6 summarizes the four perfor-
mance metrics (η, γ, RRMSEtemporal , and RRMSEspectral) obtained for the predicted EMG
artifacts-free EEG segments by all the five 1D-CNN models separately, and Table 7 contains
the average power ratio calculated for five different EEG bands before and after the removal
of myogenic artifacts.
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Figure 12. (a) An example EMG-corrupted EEG segment, EMG artifacts-free EEG segment predicted
by (b) FPN, (c) UNet, (d) MCGUNet, (e) LinkNet, and (f) MultiResUNet3+ networks along with the
ground truth EEG.

Table 6. Measured performance metrics after denoising EMG-contaminated EEG. The bold numeric
values represent the best performance.

Model η (in %) γ (in %) RRMSEtemporal ± STD RRMSEspectral ± STD

FPN 85.06 75.96 0.31727 ± 0.11152 0.26395 ± 0.11695

UNet 89.59 80.61 0.22394 ± 0.07785 0.19231 ± 0.08107

MCGUNet 87.19 79.37 0.29214 ± 0.10520 0.23798 ± 0.10421

LinkNet 88.94 82.60 0.25091 ± 0.10112 0.19961 ± 0.10910

MultiResUNet3+ (Proposed) 89.33 83.21 0.23769 ± 0.08841 0.18931 ± 0.08931
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Table 7. Power ratios (estimated) of five distinct EEG frequency bands for the ground truth, noisy,
and predicted EMG-artifacts-free EEG. The bold numeric values represent the best performance.

Model/Method Delta Theta Alpha Beta Gamma

FPN 0.4500 0.5534 0.1115 0.0566 0.0125

UNet 0.4452 0.5452 0.1150 0.0612 0.0147

MCGUNet 0.4393 0.5436 0.1193 0.0648 0.0155

LinkNet 0.4480 0.5303 0.1195 0.0656 0.0162

MultiResUNet3+ (Proposed) 0.4453 0.5344 0.1178 0.0658 0.0165

EMG contaminated EEG 0.1333 0.1046 0.0622 0.2079 0.5514

Ground Truth EEG 0.4421 0.5163 0.1230 0.0756 0.0197

For EMG-corrupted EEG segments denoising, the proposed MultiResUNet3+ elim-
inated 83.21% of spectral EMG artifacts, whereas the UNet eliminated 89.59% of time
domain EMG artifacts from the corrupted EEG segments. In terms of η, UNet performed
best, and in terms of γ reduction, our proposed model performed best among all the models
(refer to Table 6). Again, UNet and MultiResUNet3+ produced the lowest RRMSEtemporal
(~0.22) and RRMSEspectral (~0.19) values, respectively, when evaluated with the other four
1D CNN networks. Moreover, when comparing the power ratios computed using the
MultiResUNet3+ model’s predicted segments with the ground truth EEG’s power ratios
among the delta, beta, and gamma bands, the MultiResUNet3+ model comes out on top.
For the theta and alpha band power ratio, LinkNet performed best (refer to Table 7).

In Figure 13a, an example segment of simultaneous EOG and EMG contaminated EEG
segment is presented, and in Figure 13b–f, the denoised EEG segment (simultaneous EOG
and EMG artifacts-free segment) along with the ground truth EEG is shown separately
for the five 1D-CNN models. The four performance metrics for the five 1D-CNN models’
predictions on the denoised simultaneous EOG and EMG-contaminated EEG segments
can be found in Table 8, whereas Table 9 provides the average power ratio between five
different EEG bands before and after removing simultaneous EOG and EMG artifacts.

As observed from Table 8, the proposed MultiResUNet3+, UNet, and LinkNet models
produced very close denoising performance for simultaneous EOG and EMG corrupted
EEG segments. Artifacts are reduced by 89.77% in the time domain and 83.39% in the
frequency domain when LinkNet and UNet models are used, respectively. When compared
among the five 1D-CNN networks, the LinkNet model yielded the lowest RRMSEtemporal
(~0.22) and RRMSEspectral (~0.18) values. Finally, when compared to the ground truth EEG,
the MultiResUNet3+ model excels in producing the nearest average power ratios for the
delta band. However, the LinkNet model performed best in the theta, beta, and gamma
band power ratio, whereas the FPN model showed superior performance in the alpha
band (Table 9).

Table 8. Measured performance metrics after denoising simultaneous EOG and EMG-contaminated
EEG. The bold numeric values represent the best performance.

Model η (in %) γ (in %) RRMSEtemporal ± STD RRMSEspectral ± STD

FPN 84.19 77.97 0.34448 ± 0.13849 0.27145 ± 0.15104

UNet 89.63 83.63 0.22991 ± 0.09619 0.18805 ± 0.10819

MCGUNet 87.03 80.31 0.29993 ± 0.10971 0.25156 ± 0.11219

LinkNet 89.77 83.39 0.22439 ± 0.09180 0.18340 ± 0.10208

MultiResUNet3+ (Proposed) 89.16 82.71 0.24891 ± 0.09445 0.20085 ± 0.09989
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Table 9. Estimated power ratios of five distinct EEG frequency bands for the ground truth, noisy,
and predicted simultaneous EOG and EMG-artifacts-free EEG segments. The bold numeric values
represent the best performance.

Model/Method Delta Theta Alpha Beta Gamma

FPN 0.4543 0.5332 0.1185 0.0647 0.0153

UNet 0.4537 0.5304 0.1178 0.0650 0.0158

MCGUNet 0.4543 0.5443 0.1141 0.0595 0.0143

LinkNet 0.4537 0.5288 0.1175 0.0659 0.0163

MultiResUNet3+ (Proposed) 0.4532 0.5416 0.1131 0.0608 0.0151

Simultaneous EOG-EMG contaminated EEG 0.1355 0.1046 0.0614 0.0196 0.5503

Ground Truth EEG 0.4458 0.5180 0.1208 0.0749 0.0196
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Figure 13. (a) An example simultaneous EOG and EMG-contaminated EEG segment. Simultaneous
EOG and EMG-artifacts-free EEG segments created by (b) FPN, (c) UNet, (d) MCGUNet, (e) LinkNet,
and (f) multiResUNet3+ networks along with the ground truth EEG.

5. Discussion

The limitations of traditional single-stage and two-stage signal processing-based
methods for denoising EEG signals, including low correlation coefficient, potential loss of
crucial neural information, poor performance in dynamic situations, etc., are mentioned in
the introduction section of this study. Although a few deep learning-based approaches have
been presented for EEG denoising to remedy these drawbacks, with notable performance
gains over signal processing-based methods, these DL-based approaches still have some
shortcomings, among which lackings in model robustness, reliability, and generalizability
are the key.

To address these limitations, five distinct DL models are utilized in this extensive
study, including the proposed novel MultiResUNet3+ and four additional 1D-CNN models
(FPN, UNet, MCGUNet, and LinkNet) to denoise EOG/EMG/simultaneous EOG and
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EMG artifacts from corrupted EEG. A publicly available dataset, namely EEGdenoiseNet, is
deemed suitable for this work, as it featured pre-processed, well-structured EEG segments,
including 4514 clean EEG segments, 3400 pure electrooculogram segments, and 5598 clean
electromyogram segments. We semi-synthetically generated a large set of noisy EEG
segments using linear mixing techniques where these clean EOG and EMG segments were
used as noisy signals and clean EEG segments as ground truth to train the DL-based
models. This process provided a broad range of signal types for the DL models to learn
from. Furthermore, due to linear mixing, ground truth EEG segments were also available to
provide a reliable reference for evaluating the performance of the models. To prevent any
data leaking issues between the train and test set, the clean EEG, EOG, and EMG segments
were used only once during the semi-synthetic data generation process.

Further, the quantitative measurement of five performance metrics (Experiment B) for
all the five deep learning networks (FPN, UNet, MCGUNet, LinkNet, and the proposed
novel MultiResUNet3+) showed that it is possible to denoise EEG signal artifacts using DL-
based techniques and has a great potential to eliminate multiple artifacts simultaneously
from EEG signals by using robust DL models. It should be added here that, for DL
networks, high-frequency artifacts, such as EMG artifacts and simultaneous EOG and EMG
artifacts, are more challenging to handle than low-frequency artifacts, such as EOG artifacts.
The F-principle of neural networks can be used to explain this occurrence [66], which
states that DL networks frequently learn low-frequency information at the beginning of
training and high-frequency information as training iterations rise. A similar phenomenon
is also observed in this study. From our extensive experiments, we have observed that
removing EOG artifacts (low-frequency noise) from corrupted EEG is less challenging than
denoising EMG-contaminated (high-frequency noise) EEG and simultaneous EOG and
EMG-contaminated (high-frequency noise) EEG. For instance, a higher temporal percentage
reduction in EOG artifacts (94.82%) is found than the temporal percentage reduction in
EMG artifacts (89.59%). Similarly, a higher spectral percentage reduction in EOG artifacts
(92.84%) is computed than in EMG artifacts (83.21%). Although simultaneous EOG and
EMG contamination in EEG is very unlikely in a real-life scenario and challenging to
remove reliably, our proposed MultiResUNet3+ provided a staggering performance—clear
evidence of the efficacy and superiority of our proposed model in denoising complex
artifacts as well.

Although the DL-based denoising approaches need a vast amount of ground truth
EEG data during the training phase, once the model is trained, it can be utilized reliably to
eradicate artifacts from unseen EEG signals corrupted with physiological artifacts. Another
benefit of DL models is the ability to handle complicated artifact mixes, such as nonlinear
and stationary ones. In contrast to the traditional signal processing approaches, which
typically linearly attenuate artifacts, DL models can directly learn the fundamental pattern
of neural activities from training data in the hidden space and then synthesize/predict
the clean EEG from corrupted EEG. Therefore, DL-based techniques perform better than
conventional methods in removing physiological noises from contaminated EEG.

It is indeed worth mentioning some constraints of this study. Even though the semi-
synthetic EEG dataset generated in this study includes a very high number of clean EEG,
EOG, and EMG segments, the lesser variability in EEG type and lack of diversity in artifacts
type is a matter of concern since EEG data can be recorded when the subject is at rest or
while doing various tasks. Moreover, artifacts in EEG recordings are not just limited to
ocular and myogenic. Motion artifacts, one of the inevitable sources of non-physiological
noise, become dominant while EEG data are captured via wearable sensors. Therefore, a
more diverse and dynamic dataset curation is necessary, which will help the DL-based
models to be more efficient in removing physiological and non-physiological artifacts from
corrupted EEG signals.
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6. Conclusions

The elimination of artifacts is a crucial aspect of EEG data analysis. In this paper, we
presented a novel 1D-CNN model, i.e., MultiResUNet3+ for EEG denoising, and demon-
strated its superiority over four other 1D-CNN models, namely FPN, UNet, MCGUNet,
and LinkNet. Apart from proposing a novel 1D-CNN model for denoising EEG reliably,
we also introduced a set of benchmark metrics to facilitate the quantitative evaluation
of DL-based EEG denoising models’ adeptness. The proposed MultiResUNet3+ model
reduced the EOG artifacts from EOG-corrupted EEG by 94.82% and 92.84% in the time
and frequency domains, respectively. Moreover, the nearest average power ratio for the
theta, beta, and gamma bands (0.5295, 0.076, 0.0197) compared with the ground truth
EEG (0.5184, 0.0749, 0.0195) while removing the EOG artifact was produced by MultiRe-
sUNet3+, meaning our proposed model is capable of denoising EEG in those bands most
accurately. For EMG artifacts removal from contaminated EEG, our proposed novel Mul-
tiResUNet3+ performed best by reducing 83.21% artifacts in the frequency domain and a
neck-to-neck 89.33% artifacts reduction in the time domain (the best is 89.59%, produced
by UNet). While denoising EMG-contaminated EEG segments, MultiResUNet3+ had
the lowest spectral RRMSE (0.1893) as well. Once EMG artifacts were removed from the
corrupted EEG segments, the proposed MultResUNet3+ provided the nearest average
power ratio in delta, beta, and gamma bands (0.4453, 0.0658, and 0.0165, respectively)
compared with the ground truth EEG (0.4421, 0.0756, and 0.0197, respectively). In denois-
ing, simultaneous EOG and EMG from corrupted EEG, three 1D-CNN models, namely
UNet, LinkNet, and novel MultiResUNet3+, performed neck-to-neck, which is evident
from the computed performance evaluation metrics. Overall, the results obtained from
the proposed MultiResUNet3+ clearly showed its robustness and reliability in denoising
physiological artifacts (EOG/EMG/simultaneous EOG and EMG) from corrupted EEG
signals. Our findings showed that DL techniques could potentially eliminate EOG/EMG
artifacts from EEG data even at high noise levels. Following a similar framework, the
proposed MultiResUNet3+ segmentation network may be used for multi-channel EEG
noise reduction by applying the proposed model to multi-channel EEG signals separately,
which should facilitate EEG-based BCI applications.
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