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Abstract: A PEEK button is developed to improve the tendon-to-bone compression area. In total,
18 goats were divided into 12-week, 4-week, and 0-week groups. All underwent bilateral detachment
of the infraspinatus tendon. In the 12-week group, 6 were fixed with a 0.8–1 mm-thick PEEK augment
(A-12, Augmented), and 6 were fixed with the double-row technique (DR-12). Overall, 6 infraspinatus
were fixed with PEEK augment (A-4) and without PEEK augment (DR-4) in the 4-week group.
The same condition was performed in the 0-week groups (A-0 and DR-0). Mechanical testing,
immunohistochemistry assessment, cell responses, tissue alternation, surgical impact, remodeling,
and the expression of type I, II, and III collagen of the native tendon-to-bone insertion and new
footprint areas were evaluated. The average maximum load in the A-12 group (393.75 (84.40) N)
was significantly larger than in the TOE-12 group (229.17 (43.94) N) (p < 0.001). Cell responses and
tissue alternations in the 4-week group were slight. The new footprint area of the A-4 group had
better fibrocartilage maturation and more type III collagen expression than in DR-4 group. This result
proved the novel device is safe and provides superior load-displacement to the double-row technique.
There is a trend toward better fibrocartilage maturation and more collagen III secretions in the PEEK
augmentation group.

Keywords: rotator cuff repair; augmentation; footprint compression; transosseous equivalent; double
row

1. Introduction

The success of rotator cuff repair depends on both intrinsic musculotendinous qualities
and the surgical technique [1–4]. Plenty of surgical techniques have been developed to
provide minimal gap formation, a high initial fixation strength, and the maintenance
of mechanical stability until tendon-to-bone healing, characterized by the presence of
fibrocartilage tissue connecting cuff structures to deeper layers of the bone [5–15]. However,
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scar tissue, instead of the native enthesis, is commonly deposited at the healing interface
and has been identified as a potential cause of the high failure rate of cuff repair because
of the weak mechanical properties and less mineralized fibrocartilage within. A good
compression against the rotator cuff footprint, while maximizing the biological factors
that allow ultimate tendon-to-bone healing, has been suggested to provide good cuff
healing [16–21]. In the present study, we developed a novel fixation method for rotator
cuff repair utilizing an ultra-thin polyetherketone (PEEK) button used to improve the area
and extent of tendon-to-bone compression, as PEEK material is oftentimes used in rotator
cuff repairs because it is biologically inert, radiolucent, and resistant to hydrolysis and
oxidation [22–27]. We hypothesized that this method is safe and would result in a superior
enthesis regeneration, characterized by greater fibrocartilage formation and improved
collagen fiber organization in an acute rotator cuff tear goat model. This PEEK button
augmentation would lead to higher biomechanical stiffness when compared with a simple
repair with sutures.

2. Materials and Methods
2.1. Study Design and Surgery Techniques

All animal work was conducted following a project license protocol accepted under
the Institutional Animal Care and Use Committee (IACUC). All authors adhered to and
included the ARRIVE checklist. A total of 18 male black goats of 40 kg (approximately
52 weeks of age) were divided into 3 groups: 12-week, 4-week, and 0-week (sacrificed
right after the surgery). All goats underwent bilateral detachment of the infraspinatus
tendon. In the 12-week group, there were 6 goats’ infraspinatus tendon fixed with a PEEK
augment for right shoulders (A-12, augment) and the double-row (DR) suture technique
from anchors for left shoulders (DR-12) without a PEEK augment. In the 4-week group,
infraspinatus tendons were fixed with suture anchors, and 1 PEEK augment for every right
shoulder of 6 goats (A-4). Another six left shoulders were fixed with two suture anchors
as DR configuration (DR-4). In the 0-week group, infraspinatus tendons were fixed with
suture anchors, and 1 PEEK augment for every right shoulder of 6 goats (A-0). Another six
left shoulders were fixed with two suture anchors (DR-0).

In the A-12 groups, one double-loaded suture anchor was inserted in the medial
row first. The sutures were then passed through the torn tendon and the holes of the
PEEK augment. After knot tying, four stitches were pulled laterally and fixed into greater
tuberosity, with one knotless anchor as the lateral row fixation. The same procedure was
carried out in the A-4 and A-0 groups. In the DR-12 group, the same fashion of anchor
placement was performed without the PEEK augment, mimicking the commonly used
DR technique [28]. In the DR-4 and DR-0 groups, the infraspinatus tendons were repaired
with two double-loaded suture anchors in a double-row manner and knotted at the medial
and lateral edges of the tendon footprint. All suture configurations are demonstrated in
Figure 1. The A-12, A-4, and A-0 groups served as experiment groups, while DR-12, DR-4,
and DR-0 served as control groups.
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2.2. Implant Design

The PEEK augment (Figure 2a) is designed to yield a global compressive load on
the footprint of the cuff. It is 0.8–1 mm thick and highly elastic to fit humerus geometry
well. The medial concave is designed to minimize the strangulation of the blood circula-
tion around the musculotendinous junction of the cuff. The lateral concave of the PEEK
augment avoids the impingement of greater tuberosity during shoulder abduction. The
compression force on the medial side decreases when the stitches through eyelets are
pulled laterally for lateral-row fixation because of the see-saw effect (Figure 2b), which
decreases circulation compromise. Anterior and posterior bended fins were designed to
provide compression force onto the rotator cable (Figure 2c). The PEEK augment provides
more evenly distributed compression force on the rotator cuff footprint according to the
fine element analysis (Figure 2d,e). We used a 5.5 mm Healix Peek anchor (DePuy Mitek,
Raynham, MA, USA) for the medial row and a 4.75 mm PEEK SwiveLock suture anchor
(Arthrex, Naples, FL, USA) for the lateral row fixation. Horizontal mattress sutures were
tied using five alternating half-hitch knots to reproduce arthroscopic knot configurations.
This represented the commonly used double-row suture-bridge technique popularized in
clinical practice and provided the expected fixation strength.
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pulled perpendicular to the sagittal plane of the fixture, as shown in Figure 3c. 

Figure 2. (a) Perspective view of the PEEK augment. (b) See-saw effect. When the sutures are pulled
laterally (right), more compressive force is applied on the lateral side and loosened at the medial part
of the PEEK augment, preventing circulation compromise. (c) In the A-4 group, the PEEK augment
was applied onto the rotator cuff. Bilateral fins (arrows) yielded compressive force onto the rotator
cable and fit local anatomic structures well. (d,e) The pressure is dispersed averagely underneath the
PEEK button, while the sutures used during rotator cuff repairs are thin and the stress concentration
lies in the suture-tendon area. The PEEK material sustains the shear force of the sutures, converting
them into a compression force and providing a homogeneous pressure distribution, which could
further benefit the tendon healing proved in our animal study.
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2.3. Biomechanical Testing

The mechanical experiment was performed as Liu et al. proposed [29]. The HT-2402EC
material testing machine was employed in the study. The test equipment characteristics’
definitions are listed in Table 1.

Table 1. Material testing machine characteristics.

Model Capacity Speed Accuracy Load Accuracy Capacity

HT-2402EC 500 Kgf ±1% 0.01% 0.005~500 mm/min

In the 12-week and 0-week groups, the humerus was fixed in the embedding fixture
(Figure 3a,b). The infraspinatus muscle was erected 90 degrees from the humerus and
pulled perpendicular to the sagittal plane of the fixture, as shown in Figure 3c.
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The proximal humerus was removed to survey the fibrocartilage growth onto the 

footprint of the repaired infraspinatus following mechanical testing. Each sample was pre-
served in 10% neutral buffered formalin (NBF) at room temperature. After 48 to 72 h of 
NBF fixation, the samples were trimmed and processed for decalcification, followed by 
wax infiltration. Each sample was fixed with 10% formal saline and underwent decalcifi-
cation in EDTA, ascending graded alcohol dehydration, and defatting in chloroform and 
was then embedded in paraffin. Multiple 4 mm-thick slides were cut in the coronal plane 

Figure 3. (a) The soft tissues on the bone were removed. (b,c) The infraspinatus muscle specimen
was fixed and erected 90 degrees from the humerus during the biomechanical testing.

The test machine provided a continuous pulling force at a 75 mm/min rate until failure
of the infraspinatus muscle (Figure 4a–c). The experiment stopped until the tensile force
decreased to 0. Damage to the test specimen was assessed after each test and photographed.
The maximum pull force (N) and load displacement (mm) during the study were recorded.
In the 0-week group, the specimens were harvested right after the surgery, and the same
experimental setup was applied.
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2.4. Immunohistochemistry (IHC) Assessment

The proximal humerus was removed to survey the fibrocartilage growth onto the
footprint of the repaired infraspinatus following mechanical testing. Each sample was
preserved in 10% neutral buffered formalin (NBF) at room temperature. After 48 to 72 h of
NBF fixation, the samples were trimmed and processed for decalcification, followed by wax
infiltration. Each sample was fixed with 10% formal saline and underwent decalcification
in EDTA, ascending graded alcohol dehydration, and defatting in chloroform and was then
embedded in paraffin. Multiple 4 mm-thick slides were cut in the coronal plane through the
humerus, enthesis, and infraspinatus musculotendinous unit before staining with hema-
toxylin and eosin and Masson’s trichrome stain [30], followed by pathologist examination.
Two blinded observers evaluated all sections using a BH-2 light microscope (Olympus).

2.5. The Safety Assessment of Cell Response after Surgical Repairs

The first area of interest (AOI) was targeted on the tendon-to-bone insertion regarding
cell response with implanted materials, evaluated with the histopathological standard
through an H&E stain. The scoring system is listed in Table 2.

Table 2. Scoring system of cell response after surgical repair.

Cell Type/Response
Score

0 1 2 3 4

Polymorphonuclear cells 0

1–5/phf a 5–10/phf
Heavy infiltrate

Packed
Lymphocytes 0

Plasma cells 0

Macrophages 0

Giant cells 0 1–2/phf 3–5/phf Sheets

Necrosis 0 Minimal Mild Moderate Severe
a phf = per high-powered (400×) field.

2.6. The Safety Assessment of Tissue Alternation after Surgical Repairs

The 2nd AOI was focused on the adherent tissue around the implanted PEEK augment
around the tendon-to-bone insertion. The histopathology evaluation format for implant
material scoring through section was applied via H&E stain and Masson’s trichrome stain.
The scoring system is listed in Table 3.

Table 3. Scoring system of tissue alternation.

Response
Score

0 1 2 3 4

Neovascularization 0
Minimal capillary
proliferation, focal,

1–3 buds

Groups of
4–7 capillaries with

supporting
fibroblastic structures

Broad band of
capillaries with

supporting structures

Extensive band with
supporting

fibroblastic structures

Fibrosis 0 Narrow band Moderately thick band Thick band Extensive band

Fatty infiltrate 0
Minimal amount of fat

associated
with fibrosis

Several layers of fat
and fibrosis

Elongated and broad
accumulation of fat

cells about the
implant site

Extensive fat
completely

surrounding
the implant

2.7. Overall Rating of Surgical Impact toward Rotator Cuff

The 3rd AOI was focused on the surgical impact toward the rotator cuff. An overall
rating of test samples was given using a rating range of 0 to 15, as shown in Table 4.
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Table 4. Scoring system of the overall rating of the surgical impact.

Rating Score

Minimal or no reaction (0.0 up to 2.9)
Slight reaction (3.0 up to 8.9)

Moderate reaction (9.0 up to 15.0)
Severe reaction (>15)

2.8. The Remodeling of Native Tendon-to-Bone Insertion and New Footprints Area

The 4th AOI was concentrated on the native tendon-bone and new footprint area
interface that underwent the surgical approach and regeneration. The maturation of
the enthesis was assessed according to a semi-quantitative scoring system developed by
Ide et al. [31], as shown in Table 5.

Table 5. Semi-quantitative scoring system of the enthesis maturation.

Grading C I F T Definition

1 + The insertion had continuity without fibrous tissue
or bone ingrowth

2 + + The insertion had continuity with fibrous tissue
ingrowth, but no fibrocartilage cells

3 + + + The insertion had continuity with fibrous tissue
ingrowth and fibrocartilage cells, but no tidemark

4 + + + + The insertion had continuity with fibrous tissue
ingrowth, fibrocartilage cells, and a tidemark

C: Continuity, I: Ingrowth, F: Fibrocartilage, T: Tidemark, +: Positive.

2.9. The Expression of Type I, II, III Collagen in New Footprint Area

The 5th and 6th AOI aimed at collagen deposition and proteoglycan contents alterna-
tion in the new/old footprint area along the fibrocartilage zone; the segments were divided
into bone, cartilage, and tendon parts for observations between the A-4 and DR-4 groups.

2.10. Statistical Analysis

The recorded data for fibrocartilage maturation scores were calculated by the Mann–
Whitney U test and the Fisher exact test through two-tailed hypothesis between the A-4 and
DR-4 groups. The observed result for the IHC stain was analyzed by the Fisher exact test
through identical hypotheses among three groups. The difference of load displacement was
determined by one-way ANOVA. The differences of p < 0.05 were considered significant
via software configuration (GraphPad Prism version 9.0.1 for MacOS, GraphPad Software
GraphPad Software Inc., La Jolla, CA, USA).

3. Results

All animals survived during the study without infection. Limping was noted for the
first 3 to 5 postoperative days, but a normal gait pattern returned afterward.

3.1. Macroscopic Findings

At the time of euthanasia, continuity between the repaired tendon and bone was
observed in all A-12 and DR-12 groups. No anchor was pulled out. In A-4 and DR-4
groups, all specimens were cut at the infraspinatus muscle part at the final timepoint. The
specimens in the A-4 group showed the well-developed fibrotic appearance of the enthesis,
as shown in Figure 5a. An atrophic and retracted native cuff tendon and newly formed
enthesis, lying laterally between the augment and knotless anchor, were observed and are
shown in Figure 5b. A new enthesis of DR-4 specimens was also observed, but was thinner
(3.5 mm, Figure 5c) than that of the A-4 group (7.5 mm) in gross appearance.
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Figure 5. Macroscopic findings of the repaired tendon and bone. (a) The specimen before dissection.
A well-developed fibrotic appearance was observed in the A-4 group. (b) The specimen of the A-4
group after dissection. Retracted native tendon (Native) and well-developed, thicker (7.5 mm) new
entheses (New) are observed. (c) New enthesis of specimen in DR-4 group has thinner (3.5 mm)
appearance than that in A-4 group.

3.2. Biomechanical Testing

The load-displacement curve of the study is shown in Figure 6. The graph shows
that the force decreased after pulling to the maximum load, until infraspinatus muscle
failure occurred (when the tensile force achieved 0). The pull-out strength of each group is
shown in Table 6. The average maximum load in the A-12 group (393.75 (84.40) N) was
significantly larger than that of the DR-12 group (229.17 (43.94) N) (p < 0.001). There was no
significant difference in the maximum load in the A-0 group and DR-0 group (maximum
load, 102.98 (23.14) N, and 94.32 (29.32) N, p = 0.291). All specimens in the A-12 and DR-12
groups had tears at the muscular part of the infraspinatus, while all specimens in the A-0
and DR-0 groups had a tear at the enthesis. No suture breakage or anchor pull-out was
observed. This result implied that the PEEK augment significantly improved the tendon
healing quality and provided superior load displacement in the A-12 group compared to
the DR-12 group at a 12-week time interval, which was not observed at time zero (A-0 and
DR-0 groups).
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A-12 and DR-12 is observed (*** p < 0.001, one-way ANOVA for independent samples).
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Table 6. Maximal load of separate specimens in the biomechanical test. A: Augmented; DR: Double-row.

Group (n = 6) Average Maximal Load (N)

A-12 393.75 (84.40) *

DR-12 229.17 (43.94)

A-0 102.98 (23.14)

DR-0 94.32 (29.32)
* p < 0.001 when compared to DR-12 group.

3.3. Histologic Findings

In the safety assessment of cell response and tissue alternation after surgical repair,
the tendon-to-bone insertion of the A-4 group showed a slight inflammatory reaction
compared to that of the DR-4 group. The score of the cell response and tissue alternation
of the A-4 group was 99 (average, 16.5). Those of the DR-4 group were 72 (average, 12).
The difference between the average cell response and tissue alternation score was 4.5,
classified as a slight reaction. The details are listed in Figure 7 and Table 7. The PEEK
augment seemed to induce a more sub-acute to sub-chronic inflammatory response, such
as fibrin deposition and cell apoptosis. Therefore, the PEEK augment might arouse higher
irritation than stitches alone. The low- and high-power fields section of both the A-4 and
DR-4 groups is shown is Figure 8.
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Figure 8. Low- and high-power fields section of both A-4 and DR-4 groups. (a,b) 40× and 200× of
A-4 group under H&E stain and Masson’s trichrome stain (c,d) showed more sub-acute to sub-chronic
inflammatory response, such as fibrin deposition and cell apoptosis, than DR-4 group. (e,f) H&E
stain and (g,h) Masson’s trichrome stain of DR-4 group.
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Table 7. Cell response and tissue alternation in tendon-to-bone insertion site with and without PEEK
augment. A: Augmented; DR: Double-row.

Group A-4 (n = 6) DR-4 (n = 6)

Score

Average
99/6 = 16.5 72/6 = 12.0

Difference between A-4 & DR-4: 16.5 − 12 = 4.5, Slight reaction

The native footprint area had similar fibrocartilage formation in both the A-4 and
DR-4 groups (Enthesis maturation grade ≥ 3, A-4: 3/6, 50%; DR-4: 1/6, 16.7%; p = 0.545).
The cartilage cells’ integrity was absent to sporadic, distributed in the native footprint part.
However, the new footprint area of the A-4 group had better fibrocartilage maturation
(Enthesis maturation grade ≥ 3, 5 of 6, 83.3%) than that of the DR-4 group (3 of 6, 50%).
Though there was a trend that the A-4 group had a better fibrocartilage maturation score
than the DR-4 group did, no statistical significance was achieved. The result of tissue
remodeling is shown in Table 8.

Table 8. Result of tissue remodeling. A: Augmented; DR: Double-row.

Group A-4 DR-4
Sample quantity 6 6

Enthesis maturation grade Native footprint part p-value

Grade ≥ 3 3/6 (50.0%) 1/6 (16.7%) 0.545

Median (Min:Max) 2.5 (2:3) 2 (2:3) 0.545

New footprint part

Grade ≥ 3 5/6 (83.3%) 3/6 (50.0%) 0.545

Median (Min:Max) 3 (2:3) 2.5 (2:3) 0.242

In the IHC stain within the native footprint area, both the A-4 and DR-4 groups revealed
an identical tendency among collagen I/II/III on tendon, cartilage, and bone (Table 9).

Table 9. IHC stain from native footprint part. A: Augmented; DR: Double-row.

Group A-4 DR-4
Sample quantity 6 6

Native footprint part, bone
Collagen I (+) 0/6 0/6
Collagen II (+) 0/6 2/6
Collagen III (+) 0/6 0/6

Native footprint part, cartilage
Collagen I (+) 1/5 1/3
Collagen II (+) 5/5 3/3
Collagen III (+) 5/5 3/3

Native footprint part, tendon
Collagen I (+) 0/6 0/6
Collagen II (+) 2/6 1/6
Collagen III (+) 2/6 2/6

Within the new footprint area of the A-4 group, type III collagen was widely found
in the tendon (4 out of 6) and cartilage (3 out of 3). Type I collagen was positive in the
cartilage of only one specimen in the A-4 group (Table 10). The H&E stain and IHC stain in
the new footprints area of the A-4 group and DR-4 groups are shown in Figure 9.
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Table 10. IHC stain from new footprint part. A: Augmented; DR: Double-row.

Group A-4 DR-4
Sample quantity 6 6

New footprint part, bone
Collagen I (+) 0/6 0/6
Collagen II (+) 1/6 3/6
Collagen III (+) 0/6 0/6

New footprint part, cartilage
Collagen I (+) 1/3 0/1
Collagen II (+) 3/3 1/1
Collagen III (+) 3/3 1/1

New footprint part, tendon
Collagen I (+) 0/6 0/6
Collagen II (+) 1/6 0/6
Collagen III (+) 4/6 0/6
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Figure 9. H&E stain and IHC stain results in new footprints area of A-4 group (a–c) and DR-4
group (d–f). The dashed border represents the interface between osseous region and soft tissue.
Fibrocartilage maturation is obvious in new enthesis area, with positive Collagen II and Collagen III
secretion in A-4 group, but not in DR-4 group. (a) The fibrocartilage maturation score was Grade 3,
where fibrous tissue ingrowth and fibrocartilage cells (arrow) were obvious in new enthesis. (b) Posi-
tive collagen II signal in fibrocartilage cells (arrow). (c) Positive collagen III signal in fibrocartilage
cells (arrow). (d) The fibrocartilage maturation score was Grade 2 in DR-4 group. (e) Negative
collagen II signal in fibrocartilage cells. (f) Negative collagen III signal in fibrocartilage cells.

Since collagen III acts as a major extracellular matrix element prior to tendon regenera-
tion and maturation [32], the IHC results in the current investigation implied that the PEEK
augment accelerated the healing process. Better fibrocartilage growth with more collagen
III secretion was observed in the new footprint of the A-4 group than in the DR-4 group.

In summary, the PEEK augment provided homogeneous pressure distribution on
the cuff footprint, contributing to better fibrocartilage growth, with more collagen III
secretions in the new footprint of the A-4 group than in the DR-4 group. At 12 weeks, the
PEEK augment group (A-12) had an improved tendon healing quality and superior load
displacement compared to the DR-12 group.

4. Discussion

In our study, the safety and effectiveness of the PEEK augment were evaluated. From
the result of the A-12 and DR-12 groups, the biomechanical stiffness of the A-12 group
was significantly higher than that of the DR group for 71.8%. In the A-4 group, better
fibrocartilage maturation and more positive type III collagen in tendon and bone was
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observed than in the DR-4 group. This implies the PEEK augment provides benefits for
enthesis healing via its biomechanical characteristics.

Double-row repair provides better footprint compression than single-row repair
does [28]. In our study, the PEEK augment is even more beneficial than the double-row
repair when comparing the early histology result between the A-4 and DR-4 groups. Slight
inflammation was observed in the A-4 group, which implies the PEEK augment has a
limited adverse effect on the cuff tendon surface. Though not statistically significant, the
fibrocartilage maturation score at the enthesis was better in the A-4 group than in the DR-4
group. An IHC stain revealed positive type III collagen only in the cartilage and tendon in
the A-4 group, which suggested the augment may provide a better environment for the
healing of a rotator cuff tendon than DR repair does.

Whether in the A-4 or the DR-4 group, new enthesis was formed at the area lateral
to the native footprint. Fibrocartilage maturation was also less obvious within the native
cuff tendon and its tendon-to-bone interface than in the new enthesis. Most surgeons
apply biologic materials at the native cuff footprint rather than the lateral part. However,
Thon et al. had a similar concept to our study. They applied a bioinductive collagen patch
to the most lateral part of a repaired cuff tendon in large or massive cuff tear patients,
secured with PEEK bone staples. The result showed a relatively higher healing rate at the
2-year follow-up. They suggested that in addition to the collagen matrix implant possibly
promoting blood flow and tissue healing, its biomechanical benefit to the area lateral to
the native cuff tendon should also be considered [33]. Thon et al. then claimed in a review
article that the use of the Regeneten ( Smith & Nephew, Andover, MA, USA) implant on
top of the repaired cuff showed improved patient-reported outcomes and success when
compared to isolated cuff repair without Regeneten augmentation [34].

However, the mechanism of why the PEEK augment yielded better healing potential
remained unclear in this study. A study from Cole et al. [35] found there was a decrease in
re-tear rates from a single-row repair to a double-row repair to transosseous-equivalent
repairs. In the current study, we compared the effects of sutures and the PEEK augment on
cuff healing and implied that the PEEK augment provided better enthesis healing, which
might be because of the more even compression force provided by the PEEK augment
design. The PEEK augment can transform the tensile force of the sutures into compression
force, which forms a cyclic “actuator-like” compressive load, stimulating fibrocartilage
transformation, as healing of the rotator cuff tendon requires biomechanical fixation that
provides adequate strength, stability, and compression against the rotator cuff footprint,
while maximizing the biologic factors that allow ultimate tendon-to-bone healing [16].

In biomechanical tests of the A-0 and DR-0 groups, the results showed no significant
difference between the two groups. There are several studies comparing knotted or knot-
less medial row constructs with conflicting results. In our study, there were no marked
differences in failure modes between the A-0 and DR-0 groups. On the medial aspect of
the whole construct, the knots were on top of the PEEK augment rather than the bursal
side cuff surface, where stress concentration was impeded. When the sutures are pulled
laterally, the see-saw effect prevents medial side strangulation and failure, which is evident
in the suture bridge fixation technique that leads to a 45% reduction in blood flow when
compared with only medial row fixation [36].

There are limitations regarding this study. First, the delivery of the patch and biologic
material with sutures under arthroscopic rotator cuff repair remains a technical challenge
and requires longer surgical time. Further study should focus on how to apply the PEEK
augment along with rotator cuff repair arthroscopically in a relatively easy and efficient
way. The second limitation of this study is the small case number. Only six shoulders were
included in each group, which might result in the insignificance of the maturation score
between the A-4 and DR-4 groups, despite the trend. Further study with a larger number
in each group and more groups with a longer period of follow-up might also be helpful to
elucidate the role of the PEEK augment in facilitating rotator cuff healing.
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5. Conclusions

In the present study, we proved the safety and effectiveness of the ultra-thin PEEK
button augment used during open rotator cuff repair in a goat model. This provides a
superior load-displacement property compared to the conventional DR technique. Though
not significantly different, there is a trend toward better fibrocartilage maturation and more
collagen III secretion in the PEEK augmentation group than in the conventional DR repair
group. The PEEK augment could be further applied to increase footprint compression and
avoid medial-row blood supply strangulation during rotator cuff repair.
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