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Abstract: The length of the standing long jump (SLJ) is widely recognized as an indicator of devel-
opmental motor competence or sports conditional performance. This work aims at defining a meth-
odology to allow athletes/coaches to easily measure it using the inertial measurement units embed-
ded on a smartphone. A sample group of 114 trained young participants was recruited and asked 
to perform the instrumented SLJ task. A set of features was identified based on biomechanical 
knowledge, then Lasso regression allowed the identification of a subset of predictors of the SLJ 
length that was used as input of different optimized machine learning architectures. Results ob-
tained from the use of the proposed configuration allow an estimate of the SLJ length with a Gauss-
ian Process Regression model with a RMSE of 0.122 m in the test phase, Kendall’s τ < 0.1. The pro-
posed models give homoscedastic results, meaning that the error of the models does not depend on 
the estimated quantity. This study proved the feasibility of using low-cost smartphone sensors to 
provide an automatic and objective estimate of SLJ performance in ecological settings. 
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1. Introduction 
The standing long jump (SLJ) is a sports-related movement that requires complex 

motor coordination of both upper and lower body segments. It is a task used to evaluate 
both children’s motor competence [1], upper and lower body muscular fitness [2,3], and 
lower limbs muscular strength in sports-related field. In this last domain, the SLJ is often 
part of athletic training since it represents an explosive type of motor task. As a recognized 
functional test, it allows the analysis of the coordinated development of lower-body forces 
in the horizontal direction as a proxy for sprint performance in runners [4,5], which is also 
crucial in team sports such as football [6] or rugby [7–9]. The SLJ test is also used for sev-
eral other aims: talent identification [7], prediction of player performance at different 
player positions [6], assessment of the efficacy of a training intervention [8,9], and anaer-
obic power prediction [10,11]. Its role as screening tool for athletes with increased injury 
risk was also investigated [12] together with its use to determine muscle imbalance [13]. 
Despite the wide potential for SLJ to evaluate performance, all these studies were limited 
to the meter-based assessment of the jumped distance as main parameter due to its simple 
and ecological evaluation. Only a few studies characterized the power expressed during 
the jump through direct measures with force platforms, having the aim of estimating an-
aerobic performance [10,11] or as biomechanical analyses to enhance the SLJ performance 
[14–18]. 
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Several instrumented biomechanical analyses of the SLJ were performed to gain in-
sight into motor behavior and coordination of both lower and upper body parts using force plates 
[14–16], optoelectronic motion capture [17,18], or inertial measurement units (IMUs) 
[1,19]. Of relevance is the analysis of the contribution of the arms to the motor behavior of 
the whole body, which determines an improvement in the jumped SLJ distance with re-
spect to jumping without moving the arms [20,21]. Models developed in 2D and 3D sug-
gest modeling the motion as planar when the interest is related only to lower body move-
ment, while a 3D model can be useful when upper body motion is included [18]. 

While force plates and optoelectronic motion capture are expensive and constrained 
to the laboratory environment, IMUs are less expensive and can be used in an open field, 
eventually supervised by a tester. However, their cost still does not allow a large-scale 
democratic application of on-the-field instrumented tests [22,23]. A low-cost alternative 
seems to be the use of a smartphone (SP), which natively embodies IMUs. If hand-held, 
an SP could allow a fast biomechanical analysis of the lower limb movement independent 
of the presence of external testers. Although such embedded sensors were not developed 
specifically for biomechanical analysis, and therefore do not necessarily satisfy some re-
quired specifications such as high sampling frequency or appropriate full-scale range, the 
broad use of SP devices constitutes a beneficial alternative and could allow an evaluation 
in both laboratory and open-field environments from a biomechanical point of view [23]. 

Distance estimation based on magneto-inertial measurement units (MIMUs) can cer-
tainly rely on laws of motion and biomechanical models, as completed for height of coun-
termovement jumps [24,25], but the poor quality of the available signals [23] has led to 
exploiting biomechanical features obtained from MIMUs as input to ad-hoc machine 
learning (ML) models in several sport applications [26–28]. Few ML approaches used SP 
data to assess jump-related variables only for the countermovement jump (CMJ): jump 
height [29], jump power [30,31], and fatigue [32]. To the best of our knowledge, only two 
studies contributed to developing ML approaches for SLJ: (i) the work of [16], which iden-
tified through Lasso regularization biomechanical variables measured with force plates as 
predictors for SLJ length; and (ii) the work of [2], which estimated the SLJ length using 
categorical and not categorical variables linked mainly to the anthropometric characteris-
tics of the jumpers as input of generalized regression neural networks. The former model 
can have a limited diffusion due to the use of force platforms, while the latter, using only 
the jumper anthropometric characteristics, cannot explain the biomechanical variability of 
the jumper when performing more than one SLJ. To the best of our knowledge, no at-
tempts have been performed exploiting either IMUs or SP-IMUs which could enable an 
ecological collection of informative biomechanical quantities both in laboratory and on-
field. 

The aim of this work is to use IMUs embedded in smartphones to estimate the SLJ 
length starting from non-categorical biomechanical features related to the jump technique 
and from the intrinsic anthropometric characteristics of the user. Biomechanical variables 
were selected based on two assumptions: (i) in the preparation phase, the SLJ is similar to 
the CMJ, presenting an eccentric and a concentric phase, thus sharing a similar behavior 
along the vertical acceleration; (ii) in the flight phase, the origin of the sensor coordinate 
system follows a parabolic trajectory. Six ML models dedicated to regression analysis 
were trained, optimized, and tested to this aim. 

2. Materials and Methods 
2.1. Experimental Setup 

One hundred fourteen healthy sports science students were recruited as participants 
(79M, 35F; mean ± SD: age = 21.4 ± 5.1 years; stature = 1.8 ± 0.1 m; mass = 70.9 ± 10.3 kg). 
Only physically active healthy young sport science students were included, while indi-
viduals who underwent either lower limb surgery or injury in the six months prior to the 
experimental session were excluded from the study. All participants signed an informed 
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consent prior to the experimental session. The study was approved by the local Internal 
Review Board. 

Participants were equipped with an SP held in their right hand, as in Figure 1 (Sam-
sung Galaxy S9+, Samsung Group, Seoul, South Korea; sampling frequency = 500 sam-
ples/s; full scale range: accelerometer = ±8 g; gyroscope = ±500 deg/s). All SP-IMU data 
were collected using the app Phyphox [33], which was remotely controlled through the 
laboratory PC. Sensor calibration tests were performed on the SP-IMU before each exper-
imental session, as detailed in the “Data Processing” section. Afterwards, each participant 
was instructed on how to properly perform a SLJ and then performed 3 trials following 
the instructions of the operator. Jumps were executed with the left hand on the hip and 
the right one near to the hip while holding the SP horizontally (Figure 1). Holding the 
arms still permits the keeping of the SP in a stable position near to the hip, which is crucial 
to segment the jump in the three listed phases: i) a static phase of a few seconds with the 
participant being with hands on the hips, feet in parallel stance position, and heels posi-
tioned at the zero of a meter tape; ii) the jumping trial triggered by a vocal command; iii) 
an after-landing second static phase. The jump was considered correct if the participant 
succeeded in maintaining the equilibrium after landing without realizing an additional 
step, keeping the feet in the parallel stance position and the arms still. The heel-to-heel 
distance, measured using the meter tape, was considered as the reference jump length to 
be estimated. 

 
Figure 1. Experimental setup. The participant is in the static phase before jumping, following 
akimbo style, and holding the SP in the right hand and kept fixed with the hip (small black ellipse). 
The tape meter (big black ellipse) is located with the zero (highlighted with a black sign and a white 
arrow) near to the right heel, corresponding to the initial position. 

2.2. Data Processing 
First, the SP-IMUs were calibrated before each experimental session for computing 

and eventually correcting their offset and cross-axis sensitivity according to [34]. Namely, 
the gyroscope static bias was obtained from a 60 s static trial with the SP still on a flat 
surface, subsequently removed from each successive jump measure. Concerning the ac-
celerometer, three ad hoc 60 s static acquisitions were performed; each consisted in align-
ing one of the three accelerometer axes with the gravity vector direction [34]. To allow for 
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a consistent gravity removal, acceleration measures were expressed into the global coor-
dinate system under the hypothesis that the smartphone was kept parallel to the plane of 
movement and therefore not requiring an accurate estimate of its yaw [24]. The vertical 
(aV) and anteroposterior (aAP) components were then considered for further computations. 

The preparation phase of the SLJ, similarly to the CMJ [35], can be subdivided in two 
phases: the eccentric and the concentric one. Further subphases were also considered in 
accordance with [16] (Figure 2): the unloading phase starts from the jump onset (t0) and 
arrives to the minimum of the vertical acceleration (tUL); the eccentric yielding phase is the 
time between the local minimum of the vertical acceleration and the minimum vertical 
velocity (tUB); the eccentric braking phase is defined as the time between the minimum 
vertical velocity and when that velocity crosses 0 (tBP); and concentric propulsive phase 
starts when the vertical velocity crosses 0 until take-off (tTO). 

 
Figure 2. Vertical acceleration and velocity with highlighted transition timings and phases: unload-
ing (between t0 and tUL), eccentric yielding (between tUL and tUB), eccentric braking (between tUL and 
tBP), and concentric propulsive phase (between tBP and tTO). Legend for time instants: t0 = jump onset; 
ta_min = minimum acceleration; ta_max = maximum acceleration; tv_min = minimum velocity; tP_min = min-
imum power; tP_max = maximum. 

The vertical velocity, vV, was computed through numerical integration of the corre-
sponding acceleration from the SLJ onset (t0) to take-off (tTO). The integration interval was 
kept to a minimum to limit the noise contribution due to integration drift. The delimiting 
time frames were computed as follows: the onset, t0, as the time sample occurring 30 ms 
prior the first one deviating by 8 times the standard deviation of the static phase, similarly 
to [36]; the take-off, tTO, as the first frame such that aV ≤ −g. All data processing was per-
formed using MATLAB R2022a (The MathWorks Inc., Natick, MA, USA). 

2.3. Feature Selection 
A total of F = 61 features, defined in Table 1, were extracted. Three were related to the 

anthropometric characteristics of the subject ((·)anthro subscript): stature, body mass, and 
age. Four features were calculated from the acquired acceleration signals under the as-
sumption that the trajectory of the origin of the sensor coordinate system during a SLJ can 
be approximated to a ballistic motion. Namely, the raw estimate of SLJ length (bjump), SLJ 
height (hjump), time of flight (tflight), and velocity angle at the take-off (α) were included. 
These values can be obtained from the vertical and antero-posterior velocities at take-off. 
Computing these velocity values requires only the identification of onset and take-off in-
stants and the computation of the velocity time history in this time interval. The remaining 
54 features were computed from either aV, aAP, or both, as they similarly contribute to the 
SLJ distance estimate. Namely, 42 jump-related variables (features from A to R and ν, cal-
culated twice where needed because they were evaluated for both V and AP 
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components—(·)V and (·)AP, respectively) were inspired by [37]; 6 (u, W, and z) enriched 
the biomechanical description of power-related variables as presented in [29]. The last six 
were time-frequency features obtained by processing aV and aAP via variational mode de-
composition (VMD) [38]; this technique subdivides the signal into N intrinsic mode func-
tions, each having a frequency spectrum centered around a central frequency. The number 
of intrinsic mode functions was set to 3, with the high- and mid-central frequencies (f1 
and f2, respectively) assumed to be potential descriptors of wobbling or involuntary arm 
swing artifacts and the low-central frequency (f3) associated with the jump itself [29]. 

Table 1. List of the selected features reported with their acronym (ID), measurement unit and brief 
description. V and AP subscripts are relative to vertical and anteroposterior components of veloc-
ity/acceleration. The superscript * is used when the features are extracted from both AP and V com-
ponents. Anthropometric features are reported with (·)anthro subscript. Capital letters are for time 
intervals, small letters for the other features. Features are grouped by type and ordered following 
the alphabet. Legend: a.u. = arbitrary units; instants of: t0 = jump onset; ta_min = minimum accelera-
tion; ta_max = maximum acceleration; tv_min = minimum velocity; tP_min = minimum power; tP_max = max-
imum power; tTO = jump take off, tUL = jump unloading, tBP = jump braking. 

 ID Feature Measurement  
Unit 

Description 

A
nt

hr
o hanthro Stature of the participant m - 

wanthro Body mass of the participant kg - 
yanthro Age of the participant y - 

Ba
lli

st
ic

 

α Velocity angle at take off deg α = arctg ൬ v୚(t୘୓)v୅୔(t୘୓)൰ 

bjump Ballistic SLJ length m b୨୳୫୮ = ൬2 v୚(t୘୓) ∗ v୅୔(t୘୓)g ൰ 

hjump Ballistic SLJ height m h୨୳୫୮ = (v୚(t୘୓))ଶ2 ∗ g  

tflight Ballistic time of flight s t୤୪୧୥୦୲ = 2 ∗ v୴(t୘୓)g  

Bi
om

ec
ha

ni
ca

l 

A V Unweighting phase duration s [t0, tUB] 
b * Minimum acceleration m/s2 aV(taV_min) 

C * Time from minimum to maximum 
acceleration s [ta*_min, ta*_max] 

Δa* 
Range between min-to-max acceleration in 

the time between t0 and tTO m/s2 Δa∗ = max൫a∗(t଴ ÷ t୘୓)൯ −min (a∗(t଴ ÷ t୘୓)) 

Δv * Range between min-to-max acceleration in 
the time between t0 and tTO 

m/s Δv∗ = max (v∗൫(t଴ ÷ t୘୓)൯ −min (v∗(t଴ ÷ t୘୓)) 

D * Main positive impulse time s Time duration of positive acceleration 
in a* signal in the time interval [t0, tTO] 

e * Maximum acceleration m/s2 aV(taV_max) 

F * 
Time from acceleration positive peak to the 

take off s [ta*_min, tTO] 

GV Ground contact duration s [t0, tTO] 

H * Time from minimum acceleration to the end 
of the eccentric braking phase 

s [tUL, tBP] i୚ Maximum positive slope of aV m/s2 i୚ =  max ቀୢ൫ୟ౒(୲)൯ୢ୲ ቁ t ∈ [t0, tBP] 

J * Time from the negative peak velocity to the 
end of the eccentric braking phase s [tv*_min, tBP] 

k * 
Acceleration at the end of the eccentric 

breaking phase m/s2 a*(tBP) 

l * Negative peak power W/kg P(tP*_max) 
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LAP 
Power peaks delta time found in the range 

[t0 ÷ tTO] s [tPAP_min, tPAP_max] 

M* Positive power duration in the V component s - 
n * Positive peak power W/kg P(tP*_min) 

Bi
om

ec
ha

ni
ca

l 

O * Time distance between positive peak power 
and take-off 

s [tP*_max, tTO] 

p * Mean slope between acceleration peaks a.u. p∗ = e∗ − b∗C∗  

q * Shape factor a.u. 

Ratio between the area under the curve 
from tUB to the last positive sample 

prior tTO (lasting D*) and the one of a 
rectangle of sides D* and e* 

QV Time duration between the eccentric braking 
phase and the take off 

s [tBP, tTO] 

r * Impulse ratio a.u. r∗ = b∗e∗ 

RAP 
Entire positive power duration in the AP 

component s - 

u * Mean concentric power W/kg Average value of P*(t), t ∈ [tBP, tTO] 
ν * Minimum negative velocity m/s v*(tv*_min) 
W * Power peaks delta time s [tP*_min, tP_max] 
z * Mean eccentric power W/kg Average value of P*(t), t ∈ [t0, tBP] 

Ti
m

e-
fr

eq
ue

nc
y 

f1 * High central frequency Hz Highest VMD central frequency, 
associated with wobbling and noise 

f2 * Middle central frequency Hz 
Middle VMD central frequency, 
associated with wobbling tissues 

f3 * Low central frequency Hz 
Lower VMD central frequency, 

associated with the jump proper 

2.4. Model Creation and Evaluation 
After data cleaning, 286 out of 342 jumps were available for the definition of the final dataset. 

The discarded jumps were affected by one of these two issues: lack of synchronization between 
signals coming from gyroscope and accelerometer or abnormal drift amplitude in the acceleration 
signal, eventually occurring in a single testing session with many participants due to SP overuse. 

The final dataset of 286 jumps was made available, each leading to a record including 
the abovementioned 61 features computed from aV and aAP, as well as the SLJ length, lmeter, 
taken from the meter tape and considered as the dependent variable. Once data were ar-
ranged for all the jumps, the dataset was separated into two subsets: 80% of the jumps 
(229 examples) was used as training set, and the remaining 20% (57 examples) was used 
as test set. This separation was entrusted to a randomization algorithm. Before training, 
z-score was used to normalize each feature of the training set [39]. The test set was nor-
malized with normalizing factors taken from the training set. Lasso regularization was 
used on the training set to perform a feature reduction in order to avoid possible multi-
collinearity among features [40], choosing α = 0.1 to set the regularization strength. The 
features that were excluded by such a shrinkage were not used to develop the ML models. 

The following regression models were trained using the MATLAB Regression 
Learner app (MATLAB and Statistics and Machine Learning Toolbox™ R2022a, The Math-
Works, Inc., Natick, MA, USA): linear regression (LR) and stepwise regression (SR); opti-
mized support vector machines (SVMs); optimized ensemble; optimized gaussian process 
regression (GPR) models; optimized neural networks (NNs). The optimized models were 
obtained using Bayesian optimization criterion [41] limiting the number of iterations to 
30. The models were trained using a 10-fold cross validation procedure to stress model 
generalizability. For each trained model, the root-mean-square error (RMSE), mean 
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squared error (MSE), mean absolute error (MAE), and R2 were computed for both training 
and test sets using the Regression Learner MATLAB app. The list of optimized hyperpa-
rameters using the Bayesian optimization method is reported in Table 2 for each selected 
architecture. 

Table 2. Type of selected models used for regression. The first column reports the architecture; the 
second reports the hyperparameter options for each architecture that can be personalized or opti-
mized in the Regression Learner app; the third reports the ranges of hyperparameters optimization 
(using the default values in MATLAB). 

Model Hyperparameter Hyperparameter 
Options/Ranges 

Linear regression (LR) - - 
Stepwise regression (SR) - - 

SVMs 

Function Gaussian, Quadratic, Cubic, 
Linear 

Epsilon [3.15 × 10−4, 31.50] 
Box Constraint [10−3, 103] 

Kernel Scale [10−3, 103] 

Ensemble 

Function Bag, LSBoost 
Minimum leaf size [1, 114] 
Number of learners [10, 500] 

Number of predictors to 
sample [1, 11] 

GPR 
Function 

Rational Quadratic, 
Exponential, Matern 5/2, 

Matern 3/2, Squared 
Exponential 

Sigma [10−4, 3.05] 
Basis Function Constant, Zero, Linear  

NNs 

Function Sigmoid, Tanh, ReLu, None 
Number of connected layers [1, 3] 

Layer size [1, 300] 
Lambda [4.36 × 10−8, 4.36 × 102] 

After training, the best model for each architecture (Table 3) was selected based on 
the minimum RMSE and used in the successive test phase. 

The best model across all architectures was identified and used on the training set to 
analyze how much each input variable influences the estimate and enriches model inter-
pretability. To this aim, permutation feature importance (PFI) analysis [42–44] was per-
formed on the training set. PFI is an iterative process based on the analysis of the model 
error, evaluated as mean squared error (MSE), in output from the model when one of the 
input variables is randomly permuted and the others are maintained as they are. This 
analysis is performed for each input variable and provides an index of their importance, 
computed as the ratio between the MSE obtained by the permutation of the i-th input 
variable (MSEi) and the MSE of the model without any permuted variables (MSE0). The 
higher the ratio, the higher the contribution of the i-th variable to the estimate, and vice 
versa. 

Table 3. List of the best models for each architecture selected considering the model with the lowest 
RMSE value (train test). Models are reported along with their functions and optimized hyperparam-
eters. Legend: * refers to a kernel function; § refers to an activation function. 
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Model Function Optimized 
Hyperparameters 

RMSE 
[m] 

MSE 
[m2] 

MAE 
[m] 

R2 

LR  - 0.18–0.17 0.03–0.03 0.14–0.14 0.67–0.63 
SR  - 0.19–0.17 0.04–0.03 0.15–0.14 0.60–0.62 

SVMs Gaussian * 
Box Constraint: 0.7205 

Epsilon: 0.07 0.18–0.18 0.03–0.03 0.14–0.14 0.66–0.59 

Ensemble - 

Learners: 70 
Minimum leaf size: 1 

Predictors to sample: 11 
Method: Bag 

0.16–0.15 0.03–0.02 0.13–0.12 0.73–0.72 

GPR 
Rational 

Quadratic 
* 

Sigma: 1.949 × 10−4 
Basis Function: Linear 

0.11–0.12 0.01–0.02 0.08–0.09 0.88–0.81 

NNs Sigmoid § 
Fully connected layers: 1 

Lambda: 0.0116 
Layer size: 1 

0.17–0.17 0.03–0.03 0.14–0.14 0.68–0.64 

2.5. Statistical Analysis 
The best model for each architecture was analyzed on the test data using Bland and 

Altman plots [45]. The upper limit (UL) and lower limit (LL) were calculated, respectively, 
as follows: UL = BIAS + 1.96*SD; LL = BIAS − 1.96*SD (BIAS = test value—model predicted 
value; SD = standard deviation of the previous differences). Moreover, confidence inter-
vals (CI) at 95% of BIAS, UL, and LL were calculated as the following [46]: t-value, number 
of samples in test set (n), and standard error for the BIAS (SEBIAS) used of CI calculations 
and were reported in Table 4. Confidence intervals, as well as the regression line of the 
averages vs. differences, characterized by the coefficient and intercept value and the asso-
ciated 𝑅஺஻ଶ , were reported in Bland and Altman plots. The Kendall’s τ coefficient [47] was 
calculated to verify the presence of data heteroscedasticity. 

Table 4. Metrics for each model: accuracy, precision, bias, UL, and LL of the difference are expressed 
in meters. Kendall’s tau coefficient (τ) is used to infer about data homoscedasticity (τ < 0.1). Samples 
(n); CI = confidence interval; t-value; SEBIAS= standardized error of the estimates are also presented.  

Parameter LR SR SVMs Ensemble GPR NNs 
Accuracy [m] 0.17 0.17 0.18 0.15 0.12 0.17 
Precision [m] 0.17 0.17 0.18 0.15 0.12 0.17 

Bias [m] −0.01 −0.03 −0.04 −0.02 0.01 −0.01 
CIBIAS (95%) [m] [−0.06, 0.03] [−0.07, 0.02] [−0.07, 0.02] [−0.06, 0.02] [−0.02, 0.04] [−0.06, 0.03] 

UL [m] 0.32 0.31 0.31 0.027 0.25 0.32 
CIUL (95%) [m] [0.25, 0.40] [0.23, 0.39] [0.23, 0.38] [0.19, 0.33] [0.19, 0.31] [0.24, 0.39] 

LL [m] −0.35 −0.36 −0.36 −0.31 −0.23 −0.34 

CILL (95%) [m] [−0.43, 
−0.27] 

[−0.44, 
−0.28] 

[−0.43, 
−0.23] 

[−0.38, 
−0.24] 

[−0.29, 
−0.17] 

[−0.42, 
−0.26] 

Kendall’s τ 0.06 0.021 0.02 0.08 0.06 0.06 
Samples (n) 57 57 57 57 57 57 

t-value 2.00 2.00 2.00 2.00 2.00 2.00 
SEBIAS (s/√n) 0.02 0.02 0.02 0.01 0.01 0.02 

Moreover, the models’ performances were evaluated using three metrics applied on 
the test set: (i) accuracy, obtained as the RMSE between the reference value and the esti-
mated one; (ii) precision, obtained as the standard deviation of the distance between the 
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reference and estimated values; iii) bias, obtained as the mean distance between the refer-
ence values and the estimated ones. 

3. Results 
The 286 jumps had a lmeter of 1.83 ± 0.30 m, ranging from 1.12 m to 2.60 m. 
After Lasso regularization, 11 out of 61 features were used to train the ML models. 

The best models obtained after Bayesian optimization for each architecture along with 
their optimized hyperparameters are reported in Table 3. 

The Bland and Altman plots relative to the models listed in Table 3 are reported in 
Figure 3. 

  

  

  
  

  

Figure 3. Bland–Altman plots of the test set for: (a) linear regression (LR) model; (b) stepwise re-
gression (SR) model; (c) SVM model; (d) ensemble model; (e) GPR model; (f) neural network (NN) 
model. For each model, the mean (BIAS), upper limit (UL), and lower limit (LL) of the difference are 
reported. Average and difference are computed in meters using the test set, where y = reference 
output of test data, lmeter, and yi = estimated output of the i-th trained model. In grey, confidence 
intervals are reported for BIAS, UL, and LL. The regression line is reported in black; the regression 
equation and the associated RBA2 are reported on the top of the plots. 
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The metrics of the best models together with the values of bias, UL, and LL of the 
Bland and Altman plots are reported in Table 4. 

Among the optimized models, the GPR model presented the best performances, with 
the highest R2 (0.81) as well as the best values for all the analyzed performance metrics. 
The model was homoscedastic (τ = 0.06). Referring to this model, in Figure 4, the list of 
key features is reported and sorted based on their importance as assessed by the PFI score. 

 
Figure 4. Results of PFI analysis performed on the variables used to train the best model (GPR). 

4. Discussion 
In this study, the SLJ distance was estimated investigating the use of low-cost IMUs, 

as available in current smartphones, in combination with different machine learning ar-
chitectures. The protocol proposed in this work is designed for an ecological setting and 
an unsupervised user administration: by extracting features only in the preparation phase 
and holding the smartphone with the hand at the hip level, robust estimates of the SLJ 
distance are allowed. 

The GPR model proved to be the most capable at describing the jumped distance 
variation in training (R2 = 0.88) and test set (R2 = 0.81), while presenting the best accuracy 
(12 cm, 6.6% of the jumped length) among all the trained architectures. This choice also 
grants better precision and bias (12 and 1 cm, respectively), as well as estimation errors 
independent from the magnitude of the jumped distance, as detailed in Table 4 and ob-
served in the relevant Bland–Altman plot. Ninety-six percent of the tested jumps had an 
absolute error below 15%, spanning from a minimum error (underestimation) of −18.5% 
to a maximum error (overestimation) of 17.0%. Given the error obtained, we could specu-
late that it is least problematic when performing an analysis where a high variability is 
expected such as in children’s motor development; however, it remains within the subjec-
tivity of the tester whether such error is considered acceptable or not in other applicative 
contexts. 

These results constitute an improvement with respect to the only available model for 
SLJ distance estimate [2], which presented an RMSE of 15.4 cm. This improvement can be 
attributed to the use of features related to the biomechanics of the jump which allows 
estimating the SLJ distance differently for each jump of the same person. Conversely, the 
model by Akay and co-authors is not able to capture intra-individual variations of the SLJ 
length since it only includes anthropometric variables and the sport branch as input vari-
ables. Moreover, the population sampled in [2] was younger (9 to 13 years old), limiting 
the length of the analyzed jump and the generalizability of the model to jumpers of similar 
age. 

Lasso regularization was used as a tool for removing multicollinear, redundant fea-
tures. Overall, 11 out of 61 features were selected for model training: 3 of them are related 
to the participants anthropometric characteristics, while the remaining ones come from 
both the AP and V components. This suggests that both directions contribute to the overall 
performance of the test. 
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For the proposed model and following the PFI analysis, the features that mostly affect 
the results if permutated (MSE ratio > 1, Figure 4) are the height and the body mass of the 
participant (hanthro and wanthro, respectively), the distance jumped estimated under the bal-
listic motion assumption (bjump), and the maximum acceleration in the antero-posterior 
direction (eAP). While on the one hand, the role of the anthropometric features in the esti-
mate of the SLJ length confirms Akay’s results [2], on the other hand, the presence of bjump 
confirms the important contribution to the estimate given by the ballistic motion hypoth-
esis [48]. Noteworthily, bjump cannot be considered alone for the SLJ length estimate (thus 
using only IMUs information without the use of ML approaches), as it leads to a MAE on 
the test set of about 0.57 m, underperforming the current results using the GPR model 
(0.09 m as in Table 3). Finally, the presence of eAP as a predictive feature confirms that the 
power production in the anterior–posterior direction is crucial in the SLJ distance, consist-
ently with the use of this measure as a test to assess power [7,10,11,49]. 

The results presented here should be evaluated within the following limitations: (i) 
the reported quality can be expected only when the proposed model is applied to jumps 
within the same range of those measured (1.12–2.60 m); (ii) the model applies to jumps 
performed with the hands at hip level, therefore limiting the analysis to the role of the 
lower limbs alone, and thus neglecting the theoretical positive contribution given by the 
upper limbs. Moreover, we anecdotally experienced that the prolonged use of the 
smartphone in the same session caused the random loss of signal. This problem may de-
pend on several SP factors whose investigation is outside the scope of this research, but 
are worth keeping in mind for in-the-field use of this research. 

Finally, regarding the strong point of this approach, we can highlight the following 
important aspects: (i) while the proposed method only provides the SLJ distance, the 
adoption of IMUs gives access to biomechanical features, thus offering the opportunity to 
analyse jumping technique of the athlete; (ii) the proposed integrated approach (IMU data 
+ machine learning) outperforms SLJ length estimates obtained using only IMUs; (iii) the 
proposed method is objective and ecologic as it could be fully applied in the sport field 
using only SPs in stand-alone modality, i.e., without the need to involve external testers, 
thus enabling self-monitoring applications. 

In the future, such insights could be derived through a dedicated app, allowing easy 
and widespread access to this information. Of particular interest would be predicting 
peak and average power as attempted for CMJ [30,50,51] and SLJ [11]. Specifically, this 
latter study used both SLJ distance and anthropometric variables as predictors of peak 
and average power. In this perspective, a future step could be to improve the models pro-
posed by Mann [11] with the integration of biomechanical features such as those included 
in the current study. The exploratory work by Harry, evaluating the potential contribution 
of variables derived from force plates to SLJ power production, could also set the stage for 
expanding the current work. 

5. Conclusions 
This study proved the feasibility of using low-cost smartphone sensors to provide an 

automatic and objective estimate of SLJ performance in ecological settings. This result was 
made possible by complementing smartphone-based measurement with state-of-the-art 
machine learning methods. Based on the massive use of jumping testing in team sports 
and the wide availability of smartphones, it is believed that such a democratic approach 
could represent an added value in players’ assessment, especially when working at the 
amateur level. 
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