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Abstract: Even with over 80% of the population being vaccinated against COVID-19, the disease
continues to claim victims. Therefore, it is crucial to have a secure Computer-Aided Diagnostic system
that can assist in identifying COVID-19 and determining the necessary level of care. This is especially
important in the Intensive Care Unit to monitor disease progression or regression in the fight against
this epidemic. To accomplish this, we merged public datasets from the literature to train lung and
lesion segmentation models with five different distributions. We then trained eight CNN models
for COVID-19 and Common-Acquired Pneumonia classification. If the examination was classified
as COVID-19, we quantified the lesions and assessed the severity of the full CT scan. To validate
the system, we used Resnetxt101 Unet++ and Mobilenet Unet for lung and lesion segmentation,
respectively, achieving accuracy of 98.05%, F1-score of 98.70%, precision of 98.7%, recall of 98.7%, and
specificity of 96.05%. This was accomplished in just 19.70 s per full CT scan, with external validation
on the SPGC dataset. Finally, when classifying these detected lesions, we used Densenet201 and
achieved accuracy of 90.47%, F1-score of 93.85%, precision of 88.42%, recall of 100.0%, and specificity
of 65.07%. The results demonstrate that our pipeline can correctly detect and segment lesions due
to COVID-19 and Common-Acquired Pneumonia in CT scans. It can differentiate these two classes
from normal exams, indicating that our system is efficient and effective in identifying the disease and
assessing the severity of the condition.

Keywords: COVID-19; Computer-Aided Diagnostic; CNN; segmentation; classification; medical
image; CT scan; external validation

1. Introduction

Even with more than 80% of the population being wholly vaccinated against COVID-19,
the disease still claims victims [1]. Moreover, the COVID-19 pandemic has caused several
global economic, social, environmental, and healthcare impacts [2,3]. Computer-Aided
Diagnostic (CAD) systems, which use machine learning methods to aid in the diagnostic
process, can assist doctors in pinpointing specific areas of concern in medical images.
These identified regions can then be used to detect illnesses and provide numerical data.
Physicians can analyze these data to assess the progression or regression of the disease [4].
Thus, having a CAD system that can securely assist physicians in identifying SARS-CoV-2
and determining both the level of care required and whether the disease is progressing or
digressing, particularly in the Intensive Care Unit (ICU), is crucial in the fight against this
epidemic [5].

Computed Tomography (CT) scans of the chest can effectively diagnose individuals
suspected of having SARS-CoV-2, as pneumonia is a frequently observed symptom of
COVID-19 [6]. In CT analysis, the main characteristics present in patients with COVID-19
are ground-glass opacity (88.0%), bilateral involvement (87.5%), peripheral distribution
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(76.0%), and multilobar involvement (78.8%) [7]. Ground-glass opacity, seen on CT images
as increased density in lung tissue, can be caused by various factors, including partial filling
of the alveoli, increased blood flow, or a combination of both. While it is a common finding
in CT scans of individuals diagnosed with COVID-19, it is not exclusive to the virus. Other
conditions, such as influenza, cytomegalovirus, Common-Acquired Pneumonia (CAP), and
pulmonary edema, can also cause it. Therefore, solely relying on detecting and segmenting
ground-glass opacity is not a sufficient method for diagnosing COVID-19 [8].

Therefore, this paper aims to provide a ready-to-use pipeline that segments ground-
glass opacity and consolidation lesions on full CT scans, classifies exams with COVID-19
or Common-Acquired Pneumonia, and quantifies the severity of lesions on full COVID-19
CT scans. The following research questions are then stated:

RQ1. Is there a difference in results of state-of-the-art models for lung and lesion segmentation?
This question aims to statistically analyze the results obtained with our architectures
to validate their relevance.

RQ2. Can lesion segmentation architectures detect COVID-19 and CAP in an external
validation dataset?
Many machine learning architectures are biased to the dataset distribution they are
trained on and do not achieve satisfactory results when externally tested on a dataset
with a different distribution.

RQ3. Is a single slice from a full CT scan sufficient for differentiating COVID-19 and CAP?
Our pipeline aims to quickly and efficiently provide a diagnosis suggestion as to
whether a CT scan is from a patient with COVID-19, CAP, or neither. Thus, we
explore the possibility of reducing the classification processing time from a 3D CT
scan to a 2D image slice.

RQ4. Is it possible to determine COVID-19 severity only by quantifying segmented lesions?
As COVID-19 has a range of severity levels and each severity level might need
a different treatment, healthcare professionals must have quantitative data on
lung involvement.

Thus, the main contributions of this work are listed below:

• A complete pipeline for segmenting lungs and lesions, detecting COVID-19 and CAP,
and calculating COVID-19 severity;

• An extensive segmentation architecture statistical analysis on a combination of datasets
with healthy patients, COVID-19 patients, and patients affected by other diseases for
lung and lesion detection;

• A cross-dataset approach, aiming at better model generalization using an external
validation dataset.

This work is organized as follows: Section 2 provides a revision of related works in the
literature. In Section 3, we describe our applied methodology. The results and discussion
are presented in Section 4. Finally, the conclusions of this work are detailed in Section 5.

2. Related Works

Because of the rapid manifestations of COVID-19 and the significant number of disease
cases, many Artificial Intelligence (AI) studies have been conducted to aid medical diagnosis
with medical data in the areas of disease classification, and lung and lesion segmentation.
We selected novel works published in journals of relevant impact that presented similarity
to our work in materials, such as datasets and architectures, or scope and methodology.

Natural Language Processing models can efficiently extract information from clinical
reports, providing a comprehensive view of a patient’s symptoms and medical history.
NLP models can be helpful in scenarios where radiographic images are unavailable or
difficult to obtain. Moreover, NLP models can be trained on relatively small datasets,
which may be beneficial when data availability is limited. On the other hand, image
analysis with CNNs can provide more direct and accurate information about the presence
of COVID-19 in radiographic images. CNNs have shown great promise in accurately
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detecting COVID-19 in chest X-rays and CT scans. However, CNNs require large datasets
to be trained effectively, and interpreting the results may not always be straightforward.

Some authors applied NLP methods to extract text information from medical reports to
identify evidence of COVID-19 [9] by analyzing symptoms such as fever, cough, headache,
fatigue, dyspnea, and others in 359,938 patients with laboratory tests positive for SARS-
CoV-2. Others performed text classification based on radiology or CT scan reports [10,11]
to classify COVID-19 and non-COVID-19 patients.

The use of machine learning in COVID-19 detection with X-ray imaging has been
explored in scientific research. Many papers have proposed using algorithms, such as
traditional machine learning, Convolutional Neural Networks (CNNs), and transfer learn-
ing, to analyze X-rays to detect the disease. These studies have shown promising results,
demonstrating the potential of machine learning in aiding clinicians in their screening
process and improving the speed and accuracy of COVID-19 diagnosis.

Some works have proposed different methods to detect COVID-19 using X-ray images.
For example, while Ohata et al. [12] and Basha et al. [13] used machine learning methods
for feature extraction and classification, Hu et al. [14] employed transfer learning and pre-
trained models. Despite the promising results obtained by these studies, some limitations
could still be addressed. For example, the studies employed relatively small datasets, which
may limit their generalizability. Nonetheless, all three papers are limited by the resolution
of the X-ray images, which can affect detection accuracy.

Machine learning has also been used to detect COVID-19 in CT images. This approach
is considered more sensitive than traditional methods such as X-rays and PCR, as CT
scans provide high-resolution images more suited to analysis using machine learning
algorithms [6,15]. Furthermore, using machine learning in CT images also aids human
interpretation, which can be prone to errors and subjectivity. Hence, combining machine
learning to assist in COVID-19 diagnosis with CT images is a promising development in
the fight against the pandemic.

Overall, previous papers demonstrated the potential of deep learning models for
detecting and classifying COVID-19 using CT scans. They used different architectures, pre-
processing techniques, and datasets to achieve their results, showing promising results in
distinguishing COVID-19 from healthy or CAP patients. Some developed new architectures,
such as AH-Net, ReCOV-101, and COVNet [16–18], while others used transfer learning
techniques [19,20]. However, these studies also had limitations, as they only classified CT
scans, or even single slices, in classes such as normal and COVID-19; normal, COVID-19,
and CAP; COVID-19 and non-COVID-19; and normal and COVID-19 severity. They
lacked the usage of an external validation dataset. In addition, some used explainability
algorithms to interpret the classifications made by the models [16,18], which are still
unreliable according to doctors [21,22], and none returned quantitative values.

Several papers proposed deep learning techniques to segment and classify COVID-19
pneumonia lesions in CT scans. Zhang et al. [23] adapted 3D ResNet-18 to segment lesions.
Amyar et al. [24] developed a Multi-Task Learning (MTL) architecture based on COVID-19
classification, lesion segmentation, and image reconstruction. Qiblawey et al. [25] used
encoder–decoder CNNs, UNet, and FPN to segment the lungs and COVID-19 lesions,
achieving high COVID-19 detection performance. Wang et al. [26] proposed a noise-robust
Dice loss function and a self-ensembling framework for COVID-19 lesion segmentation.
Finally, Zhou et al. [27] used a CT scan simulator for COVID-19 and a deep learning
algorithm to segment and quantify the infection regions.

These works mainly segmented lesions and classified exams as COVID-19 or nor-
mal, providing more quantitative results than classification models and explainability
algorithms. However, if CAP exams were provided to their models, these exams were
wrongfully classified as COVID-19 [25–27]. Amyar et al. conducted lesion segmentation
and classification but did not validate their methods on an external dataset [24].

Zhang et al. [23] segmented the whole CT scan for both lungs and lesions and then
forwarded the full CT scan to a 3D ResNet, a 3D network that takes longer to train and
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evaluate than our 2D approach, which selects one slice from the full CT scan to classify.
Moreover, they did not make their full dataset publicly available, which makes validation
and comparison difficult.

Diagnosis involves identifying a disease or condition based on signs, symptoms,
and diagnostic tests, while prognosis involves predicting the likely course of a disease or
condition and its possible outcomes. In various medical applications, deep learning models
have been used in diagnosis and prognosis tasks. Some works focused on developing
deep learning models for accurate disease diagnosis [12–14,16,18,24,26]. In contrast, other
works focused on predicting the prognosis of a disease [17,23,25,27], such as estimating
the likelihood of survival or disease progression. Finally, some papers combined both
diagnosis and prognosis tasks. Our work aims to do both, i.e., diagnosing the disease as
COVID-19 or CAP, and if the disease is classified as COVID-19, giving the prognosis of the
severity of the disease. While deep learning models have shown promise in both diagnosis
and prognosis tasks, it is essential to recognize the limitations of these models and use
them in conjunction with other clinical information and expertise [28,29].

A brief comparison between CT scan-related papers and this work can be found in
Table 1. We highlight that we made a complete pipeline for segmenting lesions, detecting
disease, and then classifying the full CT scan as COVID-19 or CAP in an external dataset
using only public data.

Table 1. Related works.

Work Seg. Classification Datasets External
Validation? Metrics

Harmon et al. [16] AH-Net Densenet121-
based Private X

Accuracy,
sensitivity, and

specificity

Varan et al. [17] Threshold and
region growing

ResNet50,
ResNet101,

DenseNet169, and
DenseNet201

MosMedData X Accuracy

Li et al. [18] U-net Resnet50-based Private X
Sensibility,

specificity, and
AUC

Hasan et al. [19]
Threshold and
morphological

operations

Proposed
classification: 3D

CNN-based
MosMedData X AUC

Abdel-Basset
et al. [20] U-net-based EfficientNet-B7-

based COVID-CT-MD X
Accuracy, DSC

(F1), Jaccard index,
and AUC

Zhang et al. [23] U-net, DRUNET,
FCN, and SegNet

3D
ResNet-18-based

Accuracy and,
AUROC

Amyar et al. [24] Encoder–decoder-
based

Alexnet, VGG-16,
VGG-19, ResNet50,

DenseNet169,
InceptionV3,

Inception-ResNet
v2, and

Efficient-Net

COVID-CT-MD,
HBCC, and

MedSeg
X

Accuracy, DSC,
sensibility,

specificity, and
AUC

Qiblawey et al. [25] ED-CNNs, UNet,
and FPN

Lesion
segmentation and

threshold

COVID-CT,
CTDATA (Kaggle),
and MosMedData

DSC, IoU,
sensitivity, and

specificity
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Table 1. Cont.

Work Seg. Classification Datasets External
Validation? Metrics

Wang et al. [26] Encoder–decoder-
based X Private X DSC, RVE, and

HD95

Zhou et al. [27] Proposed X Harbin and private X DSC and recall

This work
Resnext101 Unet++
and MobilenetV2

Unet
Densenet201

Coronacases,
Kaggle, Medical
Segmentation,
MosMedData,

COVIDxCT, and
SPGC

Accuracy, F1
(DSC), HD,

precision, recall,
and specificity

3. Materials and Methods

This section provides a description of the workflow of this work. We first merged
public datasets from the literature to train lung and lesion segmentation models with
different distributions. Then, we trained classification CNN models on a subset of the
COVIDxCT dataset, containing only COVID-19 and CAP classes. Finally, if the exam was
classified as COVID-19, we quantified the lesions and evaluated the severity of the exam
using MosMedData. We applied our entire pipeline to the SPGC dataset, dividing it into
normal and lesion exams and secondly into COVID-19 and Common-Acquired Pneumonia
lesions. The workflow flowchart can be seen in Figure 1.

Diagnosis Suggestion

Diagnosis Suggestion

Severity Suggestion
Diagnosis Suggestion

Diagnosis Suggestion

COVID-19
CAP

Lung/Lesion
Segmentation

MobilenetV2 FPN

Resnet50 FPN

Densenet201 FPN

Resnext201 FPN

MobilenetV2 Unet

Resnet50 Unet

Densenet201 Unet

Resnext201 Unet

MobilenetV2 Unet++

Resnet50 Unet++

Densenet201 Unet++

Resnext201 Unet++

MobilenetV2 MAnet

Resnet50 MAnet

Densenet201 MAnet

Resnext201 MAnet

(n, 224, 224, 3)

(n, 224, 224, 1)

CT-1: Mild
CT-2: Moderate
CT-3: Severe
CT-4: Critical

Full
CT

Scan

(n, 224, 224, 3)

Lung and Lesion Segmentation Architectures

Data
Augmentation

HorizontalFlip

ShiftScaleRotate

HorizontalFlip

RandomBrightness
Contrast

COVID-19 or
CAP

Classification

MobilenetV2

Resnet50

Densenet201

Resnext101

Squeezenet

Efficientnet

Shufflenet

Ghostnet

(1, 224, 224, 3)

Slice
with

biggest
Lesion

Final physician diagnosis

No COVID-19
nor CAP

If no Lesion detected

No COVID-19
nor CAP

If no Lesion detected

If Lesion detected COVID-19
CAP

COVID-19 or CAP
Classification Model

(1, 224, 224, 3)

(1, 224, 224, 3) (1, 224, 224, 1)

(1, 224, 224, 3)

External Validation

Training

Figure 1. Fluxogram of proposed pipeline employed in this work.

As CT scans can have n different numbers of slices, we applied our segmentation
models to all slices. First, the exam was classified as normal if no lesion was detected on
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the slices. Next, the exam was classified as "with lesions" if lesions were detected. Then, the
slice with the biggest lesion area was used to classify the whole exam as COVID-19 or CAP.

3.1. Datasets

We employed a combination of three public datasets for the lung segmentation task,
resulting in a total of 3677 images from chest CT scans and their corresponding lung
masks [30–32]. For the lesion segmentation task, we utilized a combination of four public
datasets, yielding 6493 images from chest CT scans and their lesion masks [30–33]. Both
tasks employed 10-fold cross-validation, with a 80%–20% split for training and testing, re-
spectively, and 10% of the training data were allocated for validation. To ensure consistency,
we transformed all images from the DICOM or NIFTI format into PNG in the Hounsfield
unit range of 0–255 using a window of −500 and a width of 750.

For the classification task, we utilized the COVIDxCT dataset, which included
294,552 images from COVID-19-positive cases and 62,966 images from Common-Acquired
Pneumonia cases for training; in total, 8147 and 8008, respectively, were used for validation;
and 7965 and 7894, respectively, were used for testing. As the COVIDxCT dataset already
provides a set train/validation/test split, we did not use k-fold cross-validation to conduct
a comparison with benchmarks [34].

MosMedData provides 50 COVID-19-positive CT scans with lesion segmentation
golden standard. We randomly selected 50 COVID-19-negative exams to add 100 MosMed-
Data exams to our training set. Then, we used the remaining 1010 exams to validate our
lesion quantification and disease severity step. MosMedData has an average of 42 slices per
exam. COVID-19 scans are divided into four classes: CT-1 to CT-4, with increasing severity,
and CT-0, the COVID-19-negative class. Samples are distributed as follows: CT-0—254;
CT-1—684; CT-2—125; CT-3—45; CT-4—2 [33].

Finally, we employed the SPGC dataset for external validation to answer RQ3; the
dataset includes 307 full CT scans, where 76 are of normal patients, 60 are of Common-
Acquired Pneumonia patients, and 171 are of COVID-19 patients. Each exam has an average
of 150 slices [35]. Table 2 summarizes all datasets used in this work and the task they were
used for.

Table 2. Datasets used for each task.

Database Task No. of COVID-19
Exams

No. of CAP
Exams

No. of
Non-COVID-19,
Non-CAP Exams

No. of Total
Images

Coronacases Lung segmentation 10 0 0 2581

Kaggle Lung/lesion
segmentation 0 0 n/a 267

Medical Seg. Lung segmentation 9 0 0 829

Coronacases Lesion
segmentation 10 0 0 2156

Medical Seg Lesion
segmentation 9 0 0 713

Mosmed Seg Lesion
segmentation 50 0 50 3357

Mosmed Seg Validation 806 0 50 42,224

COVIDxCT Image
classification 3731 932 0 353,536

SPGC External validation 171 60 71 46,024

3.2. Data Augmentation

To expand the generalization capabilities of our models and produce more images
with lesions, on our training sets, we used data augmentation methods such as randomly
flipping the image horizontally; randomly translating, scaling, and rotating the image;
randomly shifting values for each channel of the input RGB image; and randomly changing
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the brightness and contrast of the image [36]. Table 3 shows a summary of the techniques
and parameters.

Table 3. Data augmentation techniques and parameters.

Method Task Parameters

HorizontalFlip Lung/lesion segmentation p1 = 0.5

ShiftScaleRotate Lung/lesion segmentation
Shift limit = 0.05, scale

limit = 0.1, rotate limit = 15,
and p = 0.5

RGBShift Lung segmentation
r shift limit = 25, g shift

limit = 25, b shift limit = 25,
and p = 0.5

RandomBrightnessContrast Lung/lesion segmentation Brightness limit = 0.3, contrast
limit = 0.3, and p = 0.5

1 p is the probability of applying the method to the image.

3.3. Grid Search

As lesion segmentation is a more complex task than lung segmentation, we used
grid search for 200 runs to optimize our hyperparameters and obtain better results with
each architecture [37]. Table 4 shows a summary of the optimized hyperparameters and
their parameters.

Table 4. Grid search parameters.

Hyperparameters Task Parameters

Batch size Lesion segmentation (8, 16, 32, 64)
Epochs Lesion segmentation (25, 50, 75)

Learning rate Lesion segmentation (0.001, 0.0001, 0.00001)

Encoder Lesion segmentation (mobilenet, resnet50,
densenet201, resnext101)

Decoder Lesion segmentation (FPN, Unet, Unet++, MAnet)
Patience Lesion segmentation (5, 10, 15)

Loss Lesion segmentation (Lovasz, Dice, Tversky)
Tversky beta Lesion segmentation (0.3, 0.4, 0.6, 0.7, 0.8, 0.9)

Optimizer Lesion segmentation (Adam, RMSprop)

3.4. Segmentation Models

We utilized well-known, state-of-the-art, and novel encoders and decoders to analyze
various structures for lung and lesion segmentation [38]. We tested sixteen combinations
of encoders and decoders, combining methods with different sizes and techniques as
displayed in Table 5. The encoders utilized in this evaluation were MobilenetV2, Resnet50,
Densenet201, and Resnext101 [39–42]. The decoders used were Unet, FPN, Unet++, and
MAnet [43–46].

The chosen loss function for lung segmentation was Lovasz, and the learning rate was
set to 0.001 with Adam optimization. The batch size was 64, and the maximum number
of epochs was 50. For lesion segmentation, we optimized each hyperparameter for the
F1-score metric with grid search, and the values are presented in Table 5.

Tversky loss is a loss function that is commonly used in machine learning for binary
classification problems where the classes may not be balanced, such as our lesion segmen-
tation task. It is a generalization of the Dice loss. It is the only loss from the selected ones
with the possibility of defining a β-value choice to tune the desired trade-off between false
positives and false negatives [47].
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Table 5. Lesion segmentation-optimized hyperparameters.

Architecture Batch Size Epochs Loss Beta LR Optimizer Patience

MobilenetV2
FPN 16 75 Dice n/a 0.0001 Adam 15

Resnet50
FPN 64 50 Dice n/a 0.0001 RMSprop 15

Densenet201
FPN 16 75 Dice n/a 0.0001 RMSprop 15

Resnext101
FPN 64 75 Tversky 0.9 0.001 Adam 10

MobilenetV2
Unet 64 50 Tversky 0.3 0.001 Adam 15

Resnet50
Unet 64 50 Tversky 0.7 0.0001 RMSprop 10

Densenet201
Unet 32 75 Tversky 0.3 0.00001 Adam 15

Resnext101
Unet 64 75 Lovasz n/a 0.0001 Adam 10

MobilenetV2
Unet++ 32 50 Dice n/a 0.0001 Adam 15

Resnet50
Unet++ 32 75 Lovasz n/a 0.00001 RMSprop 10

Densenet201
Unet++ 32 75 Tversky 0.3 0.00001 Adam 15

Resnext101
Unet++ 16 50 Lovasz n/a 0.0001 Adam 15

MobilenetV2
MAnet 32 25 Tversky 0.7 0.0001 RMSprop 5

Resnet50
MAnet 64 50 Lovasz n/a 0.00001 RMSprop 5

Densenet201
MAnet 32 75 Dice n/a 0.00001 RMSprop 15

Resnext101
MAnet 16 75 Lovasz n/a 0.0001 Adam 15

3.5. Lesion Quantification

MosMedData does not provide a quantified computed approach for severity analysis;
expert physicians qualitatively evaluate COVID-19 severity. First, we calculated the area of
the left and right lungs and lesions to approximate the severity analysis. Then, we divided
the area of the lesions by the area of the lung in which they were to obtain the percentage
of parenchymal involvement for each lung. Finally, to answer RQ2, we used thresholds
of 0 < x ≤ 25, 25 < x ≤ 50, 50 < x ≤ 75, and x > 75, where x is the percentage of
parenchymal involvement for a lung.

3.6. Classification Models

We tested eight state-of-the-art models to answer RQ4, including MobilenetV2, Resnet50,
Densenet201, Resnext101, Squeezenet, Efficientnet, Shufflenet, and Ghostnet, all pre-trained
on ImageNet. The loss function utilized was cross-entropy; the learning rate was set at
0.0001; and Adam optimization was used. The batch size was 64; the maximum number of
training epochs was 20; and patience was 5 epochs.

3.7. Evaluation Metrics

Segmentation models were evaluated using accuracy, F1-score (DSC score), Hausdorff
Distance (HD), and training and testing time. Classification models were evaluated using
accuracy, F1-score, precision, recall, specificity, and confusion matrix.

For the segmentation tasks, true positive refers to correctly segmented lesion pixels;
true negative, to correctly segmented background pixels; false positive, to background
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pixels wrongfully classified as lesion pixels; and false negative, to lesion pixels wrongfully
classified as background pixels.

For the classification tasks, true positive refers to correctly classified exams with
lesions; true negative, to correctly classified exams without lesions; false positive, to exams
without lesions wrongfully classified as “with lesions”; and false negative, to exams with
lesions wrongfully classified as “without lesions”.

Acc =
TP + TN

TP + TN + FP + FN
(1)

Higher accuracy mainly indicates better performance. However, accuracy is not
always the best metric to evaluate a model, mainly because we are dealing with imbalanced
data, and misclassifications have different consequences. For example, it is worse to classify
a COVID-19 exam as a non-COVID-19 exam than the other way around.

F1 = DSC =
2TP

2TP + FP + FN
(2)

F1-score, on the other hand, is a metric that considers both precision, where high
precision indicates that the model accurately identifies positive cases,

P =
TP

TP + FP
(3)

and recall, where high recall indicates that the model accurately identifies most positive
cases, even if it also misclassifies some negative cases as positive,

R =
TP

TP+FN
(4)

F1-score is the harmonic mean of precision and recall and provides a balance between
the two metrics. In cases where the data are imbalanced, F1-score can provide a more
informative evaluation of the model’s performance, because it penalizes models that only
predict the majority class. Therefore, as our goal is to identify COVID-19-positive cases
with high precision, F1-score may be a more appropriate metric than accuracy.

Specificity refers to the ability of a model to correctly identify the negative cases, i.e.,
those that do not have COVID-19. High specificity indicates that the model can accurately
identify people who do not have the virus, which is essential to avoid false positives.

S =
TN

TN+FP
(5)

It is important to note that a model with low specificity but high recall identifies many
true-positive cases but also has many false positives. Finally, segmentation models were
also evaluated using Hausdorff Distance (HD):

d(X ,Y) = sup

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
. (6)

Hausdorff Distance is a metric on the space of compact, non-empty sets. The Hausdorff
metric between two sets, X and Y , is defined as the maximum of two values: the Hausdorff
Distance from X to Y and the Hausdorff Distance from Y to X . The Hausdorff metric is
commonly used in computer vision, image processing, and pattern recognition. It compares
the similarity of shapes, images, or other data types. In this work, X and Y are the
segmented images returned by our architectures and the ground-truth images, respectively.

3.8. Statistical Tests

We used boxplots for visualizing and comparing the distributions of numerical data.
They provide a quick summary of the data’s central tendency, spread, and skewness and
can be particularly useful for identifying outliers and skewness in the data.
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To better understand the significance of our results, meaningfully analyze the best
models, and answer RQ1, we used the following steps for statistical analysis:

1. All columns were checked with the Shapiro–Wilk test for normality.
2. If all columns were normal, we used Bartlett’s test for homogeneity; otherwise, we

used Levene’s test.
3. If all populations were normal and homoscedastic, we used repeated measures

ANOVA with Tukey’s HSD as post hoc test.
4. If at least one population was not normal or the populations were heteroscedastic, we

used Friedman’s test with the Nemenyi post hoc test.

We used the Shapiro–Wilk test to test the normality assumption [48]. Then, we applied
the Bartlett’s or Levene’s test, depending on the Shapiro–Wilk’s results.

Bartlett’s test is a homogeneity test of variances to determine if the variances of the
metrics of the architectures are equal. It tests the null hypothesis that the variances of all
groups are similar [49].

Levene’s test assesses the assumption of equal variances before conducting a test to
compare the means of the metrics of the architectures. It provides a way to determine if the
variances of the groups (each group is a 10-fold result for a metric) are equal, which is an
essential assumption for the ANOVA test [50].

We conducted the repeated measures ANOVA test to determine if there was a signif-
icant difference in the means of the metrics of the architectures. The repeated measures
ANOVA test calculates a statistic and provides a p-value, which can be used to determine
if the differences among the group means are significant [51].

We performed Friedman’s non-parametric test to determine if there was a significant
difference among the metrics of the architectures. It tests the null hypothesis that the
population medians of all groups are equal. The Nemenyi post hoc test is a multiple
comparison test that we used to identify which groups were significantly different from
each other after a significant result of Friedman’s test [52,53].

Tukey’s HSD test is a multiple comparison test used to compare all possible pairs
of means in the set of metrics of the architectures. We used Tukey’s HSD test to identify
which specific pairs of metrics were significantly different from each other, considering
the multiple comparisons. We utilized Bartlett’s test to assess the assumption of equal
variances before conducting Tukey’s HSD test. If Bartlett’s test shows that the variances
are equal, then Tukey’s HSD test can be used to compare the means of the metrics of the
architectures [54].

3.9. Development Environment

For the development of this work, we utilized several cutting-edge tools and tech-
nologies to ensure the best possible outcome. We employed PyTorch, Pytorch Lightning,
Segmentation Models Pytorch (SMP), Autorank, Pytorch GradCAM [55], and WandB. Our
hardware setup included an NVIDIA GeForce RTX 3060 12 GB graphics card and a 12th
Gen Intel Core i7-12700KF x 20 processor, along with 64 GB of memory.

4. Results and Discussion

This section presents the results concerning the methodology employed for lung and
lesion segmentation, and COVID-19 and CAP classification in CT exams. We compared
state-of-the-art models using accuracy, precision, recall, F1-score, specificity, Hausdorff
Distance, and processing time.

4.1. Lung Segmentation

The first task was to segment the lungs from the background on raw CT slices to
remove unnecessary artifacts for COVID-19 and CAP detection. We summarize the results
of this step in Table 6.
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Table 6. Lung segmentation results.

Architecture Acc (%) F1 (DSC) (%) HD

MobilenetV2 FPN 99.55 ± 0.05 97.9 ± 0.16 4.4 ± 0.1
Resnet50 FPN 99.62 ± 0.04 98.25 ± 0.15 4.19 ± 0.15

Densenet201 FPN 99.61 ± 0.06 98.21 ± 0.2 4.2 ± 0.14
Resnext101 FPN 99.63 ± 0.06 98.29 ± 0.2 4.18 ± 0.12

MobilenetV2 Unet 99.63 ± 0.08 98.29 ± 0.31 4.1 ± 0.21
Resnet50 Unet 99.7 ± 0.05 98.59 ± 0.17 3.92 ± 0.15

Densenet201 Unet 99.69 ± 0.06 98.56 ± 0.21 3.96 ± 0.17
Resnext101 Unet 99.7 ± 0.05 98.61 ± 0.17 3.92 ± 0.15

MobilenetV2 Unet++ 99.67 ± 0.05 98.46 ± 0.2 4.0 ± 0.12
Resnet50 Unet++ 99.69 ± 0.05 98.58 ± 0.18 3.95 ± 0.14

Densenet201 Unet++ 99.7 ± 0.05 98.63 ± 0.19 3.93 ± 0.18
Resnext101 Unet++ 99.71 ± 0.05 98.64 ± 0.19 3.9 ± 0.16
MobilenetV2 MAnet 99.66 ± 0.05 98.41 ± 0.17 4.01 ± 0.12

Resnet50 MAnet 99.68 ± 0.05 98.51 ± 0.18 3.99 ± 0.14
Densenet201 MAnet 99.66 ± 0.05 98.42 ± 0.17 4.03 ± 0.13
Resnext101 MAnet 99.69 ± 0.05 98.54 ± 0.17 3.96 ± 0.14

In general, all architectures presented excellent results regarding accuracy, F1-score
(DSC), and Hausdorff Distance. Resnext101 Unet++ outperformed the other architectures
in all metrics, achieving 99.71 ± 0.05%, 98.64 ± 0.19%, and 3.9 ± 0.16 in accuracy, F1-score
(DSC), and Hausdorff Distance, respectively. However, all architectures presented a similar
performance in the three metrics. In the following sections, we analyze the significance of
our results with statistical tests, aiming to confirm their relevance.

Figure 2 illustrates the segmentation metric boxplots applied for lung segmentation:
accuracy, F1-score (DSC), and Hausdorff Distance.

Concerning the accuracy metric, we can see, by considering the y-axis, that all algo-
rithms performed similarly, as accuracy varied from 0.9945 to 0.9975. First, however, we
remark on some important aspects when comparing our segmentation architectures. For
instance, Resnet50 Unet, Densenet201 Unet, Resnext101 Unet, Densenet201 Unet++, and
Resnext101 Unet++ presented the best accuracy medians (Figure 2a), lying higher than
other algorithm boxes. Moreover, the interquartile ranges of these algorithms were smaller
than those of the others, indicating that the accuracy values were less dispersed with a left-
skewed distribution. On the other hand, MobilenetV2 FPN presented the lowest accuracy
with more dispersed data and a soft left-skewed distribution. The remaining algorithms
presented competitive accuracy results but with dispersed and skewed values. In addition,
only MobilenetV2 FPN, MobilenetV2 Unet++, Resnet50 Unet++, and MobilenetV2 MAnet
had no outliers.

In general, the F1-score behavior was similar. For example, Resnet50 Unet, Densenet201
Unet, Resnext101 Unet, Densenet201 Unet++, and Resnext101 Unet++ again presented
the best median values (Figure 2b), with a left-skewed distribution. However, Resnet101
Unet++ had a more dispersed data distribution.

The architectures had more dispersed data for the Hausdorff metric (Figure 2c). For
example, Resnext101 Unet++ had the lowest median, with a right-skewed distribution, and
MobilenetV2 FPN presented the highest Hausdorff median.

Because one accuracy population was not normal (Densenet201 Unet), we applied
Friedman’s test with the Nemenyi post hoc test to analyze whether the distributions of the
accuracy results differed. We present the test results in Figure 3a. Differences are significant
if the distance between the mean ranks is greater than the Critical Distance (CD).
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a)

b)

c)

Figure 2. Boxplots of segmentation metrics applied in this work. (a) Accuracy, (b) F1-score (DSC),
and (c) Hausdorff Distance.

We failed to reject the null hypothesis that the population was normal for all F1-score
populations. Therefore, we assumed that all F1-score populations were normal. We applied
Bartlett’s test for homogeneity and failed to reject the null hypothesis that the data were
homoscedastic. Thus, we assumed that our data were homoscedastic. Because we had
more than two populations and all populations were normal and homoscedastic, we used
repeated measures ANOVA as an omnibus test to determine any significant differences
among the mean values of the populations. As the results of the ANOVA test were
significant, we used Tukey’s HSD post hoc test to infer which differences were significant.
Populations were significantly different if their confidence intervals were not overlapping;
see Figure 3.
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b)

a)

c)

Figure 3. Statistical test results of our metrics for the lung segmentation task. (a) Accuracy, (b) F1-score
(DSC), and (c) Hausdorff Distance.

None of the architectures significantly differed in accuracy, as they had a mean rank
distance smaller than the Critical Distance for at least one other evaluated architecture
(Figure 3a). Nonetheless, the architecture that had the most different accuracy from the
others was MobilenetV2 FPN.

Most confidence maps overlapped (Figure 3b), except for MobilenetV2 FPN, the
fastest architecture in training and testing (Figure 4). When selecting an architecture, we
can choose MobilenetV2 FPN for a fast architecture with a slight loss in F1-score. On the
other hand, let us suppose that we decide on an architecture with higher F1-score. In that
case, we can choose any other architecture, because F1-score differences are insignificant.
Thus, the best choice would be Resnet50 Unet++, the second fastest architecture, which, as
shown by the test, did not significantly differ in F1-score from other slower architectures.

The Hausdorff Distance results were generally similar (Figure 3c). Again, MobilenetV2
FPN had the most significant difference, while other architectures had no significant
difference in Hausdorff Distance.
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The fastest model for training and testing was MobilenetV2 FPN, and the slowest
one was Resnext101 Unet++. However, even if the shortest training time (513.5 s) was
more than ten times faster than the longest training time (5304.3 s), the fastest testing time
was 1.9 s, and the slowest testing time was 8.5 for evaluating 3677 images, or averages of
0.51× 10−3 and 2.3× 10−3 s per image, respectively. As complexity increased, other models
followed linear training and testing time growth. We present this behavior in Figure 4.

Figure 4. Training and testing time for lung segmentation.

4.2. Lesion Segmentation

The second task was to segment lesions inside the lungs from the previously seg-
mented CT slices for COVID-19 and CAP detection. We summarize the results of this step
in Table 7.

All architectures presented excellent results regarding accuracy, F1-score (DSC), and
Hausdorff Distance. Densenet201 Unet, Resnet50 Unet++, and Resnext101 Unet++ outper-
formed the other architectures in accuracy, achieving 99.87± 0.01%. Densenet201 Unet++
obtained the highest F1-score (DSC) among all architectures, achieving 85.16± 1.13%. How-
ever, all architectures presented a similar performance in the three metrics. In the following
sections, we analyze the significance of our results with statistical tests, aiming to confirm
their relevance. However, MobilenetV2 FPN, the fastest architecture, obtained the smallest
HD of 2.86± 0.12.

The accuracy results were high because most of the ground-truth image was composed
of black pixels, with only a small percentage of the image being white lesion pixels. When
we calculated the accuracy of our models, these black pixels increased all accuracy results,
reducing the metric credibility.
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Table 7. Lesion segmentation results.

Architecture Acc (%) F1 (DSC) (%) HD

MobilenetV2 FPN 99.85 ± 0.01 82.95 ± 1.45 2.86 ± 0.12
Resnet50 FPN 99.86 ± 0.01 83.84 ± 1.13 4.0 ± 0.2

Densenet201 FPN 99.86 ± 0.01 83.47 ± 1.01 2.87 ± 0.1
Resnext101 FPN 99.84 ± 0.02 82.17 ± 1.71 4.28 ± 0.25

MobilenetV2 Unet 99.86 ± 0.01 82.59 ± 1.32 4.1 ± 0.21
Resnet50 Unet 99.87 ± 0.02 84.55 ± 1.32 4.06 ± 0.26

Densenet201 Unet 99.87 ± 0.01 84.8 ± 1.1 3.88 ± 0.22
Resnext101 Unet 99.85 ± 0.02 82.75 ± 2.1 4.21 ± 0.2

MobilenetV2 Unet++ 99.87 ± 0.02 84.51 ± 1.08 3.95 ± 0.26
Resnet50 Unet++ 99.87 ± 0.01 84.41 ± 1.32 3.48 ± 0.12

Densenet201 Unet++ 99.87 ± 0.01 85.16 ± 1.13 3.4 ± 0.13
Resnext101 Unet++ 99.86 ± 0.01 83.72 ± 1.26 2.87 ± 0.14
MobilenetV2 MAnet 99.83 ± 0.02 80.9 ± 1.34 3.77 ± 0.13

Resnet50 MAnet 99.85 ± 0.01 82.37 ± 1.14 4.11 ± 0.27
Densenet201 MAnet 99.86 ± 0.01 83.81 ± 1.01 3.52 ± 0.19
Resnext101 MAnet 99.86 ± 0.01 83.18 ± 1.16 2.86 ± 0.13

Figure 5 illustrates the segmentation metric boxplots applied for lesion segmentation:
accuracy, F1-score (DSC), and Hausdorff Distance.

Concerning the accuracy metric, we can see, by considering the y-axis, that all algo-
rithms performed very similarly, as accuracy varied from 0.9980 to 0.9990. First, however,
we remark on some important aspects when comparing our segmentation architectures in
terms of this metric. For instance, Resnet50 Unet, Densenet201 Unet, Densenet201 Unet++,
and Resnext101 Unet++ presented higher accuracy medians (Figure 5a). Moreover, the
interquartile ranges of these algorithms were smaller than those of the others, indicating
that the accuracy values were less dispersed with a left-skewed distribution.

On the other hand, MobilenetV2 MAnet presented the lowest accuracy, with more
dispersed data and a soft left-skewed distribution. The remaining algorithms presented
competitive accuracy results but with more dispersed and skewed values. In addition, only
Densenet201 FPN, Resnext101 Unet, Resnet50Unet++, Densenet 201 Unet++, Resnext101
Unet++, and Densenet201 MAnet had no discrepant values.

Concerning F1-score, the Unet decoders ( Resnet 50 Unet, Densenet201 Unet, Mo-
bilenetV2 Unet++, Resnet50 Unet++, and Densenet201 Unet++) presented higher median
values with lower dispersion (Figure 5b). On the other hand, Resnext101 Unet had a more
dispersed data distribution. Moreover, only the Resnet50 Unet, Resnext101 Unet++, and
Resnet50 MAnet architectures presented discrepant values.

In general, the architectures had less dispersed data for the Hausdorff metric (Figure 5c).
For example, Resnext101 Unet++ had the lowest median, with a right-skewed distribution,
and MobilenetV2 FPN, Densenet201 FPN, Resnext101 Unet++, and Resnext101 MAnet
presented the lowest Hausdorff median.

We failed to reject the null hypothesis that the population was normal for all accuracy
populations. Therefore, we assumed that all accuracy populations were normal. We applied
Bartlett’s test for homogeneity and failed to reject the null hypothesis that the data were
homoscedastic. Thus, we assumed that our data were homoscedastic. Because we had
more than two populations and all populations were normal and homoscedastic, we used
repeated measures ANOVA as an omnibus test to determine any significant differences
among the mean values of the populations. As the results from the ANOVA test were
significant, we used Tukey’s HSD post hoc test to infer which differences were significant.
Populations were significantly different if their confidence intervals were not overlapping;
see Figure 6a.
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a)

b)

c)

Figure 5. Boxplots of segmentation metrics applied in this work for lesion segmentation. (a) Accuracy,
(b) F1-score(DSC), and (c) Hausdorff Distance.

Because one F1-score and one HD population were not normal (Resnext101 Unet++),
we applied Friedman’s test with the Nemenyi post hoc test to analyze if there was a
difference among the distributions of the accuracy results. We present the test results in
Figure 6b,c. Differences were significant if the distance between the mean ranks was greater
than the Critical Distance (CD).



Bioengineering 2023, 10, 529 17 of 29

a)

b) c)

Figure 6. Statistical test results of our metrics for the lesion segmentation task. (a) Accuracy, (b) F1-
score, and (c) Hausdorff Distance.

Most confidence maps overlapped (Figure 6a), except for MobilenetV2 MAnet, which
mainly overlapped with Resnext101 FPN and Resnet50 MAnet. Resnext101 FPN and
Resnet50 MAnet had similar results in all metrics and similar training and testing times.
However, MobilenetV2 MAnet was faster for training and testing, with a small decrease
in accuracy (Figure 4). Thus, when selecting an architecture, we can choose MobilenetV2
MAnet for a fast architecture with a slight loss in accuracy. On the other hand, let us
suppose that we decide on an architecture with higher accuracy. In that case, we can choose
any other architecture, because F1-score differences are insignificant. Thus, the best choice
would be Resnet50 Unet++ again, the second fastest architecture, which, as shown by the
test, did not significantly differ in F1-score from other slower architectures.

None of the architectures significantly differed from the others in F1-score, as they
had a mean rank distance smaller than the Critical Distance for at least one other evaluated
architecture (Figure 6b). Nonetheless, the architecture that had the most different F1-score
from the others was MobilenetV2 MAnet.
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In general, the Hausdorff Distance results were similar (Figure 6c). MobilenetV2 FPN,
Resnext101 Unet++, and Resnext101 MAnet had the most significant difference, while other
architectures had no significant difference in Hausdorff Distance.

The fastest model for training was MobilenetV2 MAnet, and for testing, it was Mo-
bilenetV2 FPN. However, MobilenetV2 MAnet converged faster, needing only 25 epochs.
The slowest ones for training were Densenet201 Unet++ and Resnext101 Unet++, and the
slowest for testing was Resnext101 Unet++. However, even if the fastest training time
(573.0 s) was more than thirty times faster than the slowest training time (19,164.5 s), the
fastest testing time was 2.8 s, and the slowest testing time was 12.6 s for evaluating 6493 im-
ages, or averages of 0.43× 10−3 and 1.9× 10−3 s per image, respectively. As complexity
increased, other models followed linear training and testing time growth. We present this
behavior in Figure 7.

Figure 7. Training and testing time for lesion segmentation.

Finally, we answer RQ1, as we have shown that all architectures mainly had similar
results in lung and lesion segmentation, without statistical differences in metrics, and
achieved competitive results. The main differences were in training and testing time. Mo-
bilenetV2 FPN was the fastest for lung segmentation training and testing; MobilenetV2 FPN,
for lesion segmentation training; and MobilenetV2 MAnet, for lesion segmentation testing.

4.3. Lesion Detection

We first applied our architectures to the other 1010 full CT scans of MosMedData to
validate our pipeline in a 3D scenario to detect and segment all lesions in an exam and then
classify the exam as “with lesion”, if any lesion was found, or “without lesion”, otherwise.
The results are summarized in Table 8.

All architectures had similar and competitive results on MosMedData. Mobilenet Unet
had the highest accuracy, F1-score, and recall, with 94.36%, 96.5%, and 97.39%, respectively.
However, it only achieved the specificity of 82.35%. Densenet201 MAnet obtained the
highest precision and specificity, with 97.23% and 90.2%, respectively. However, it achieved
lower accuracy, 87.82%, and recall, 87.22%.
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These metrics indicate that Mobilenet Unet had the smallest number of false negatives
(21 exams or 2.60%) but a higher number of false positives (36 exams or 17.65%). Therefore,
as missing a positive exam over a negative is more critical, Mobilenet Unet might be an
efficient option to detect COVID-19 on MosMedData.

Table 8. COVID-19 lesion detection external validation on MosMedData.

Architecture Acc (%) F1 (%) Prec (%) Rec (%) Spec (%) Time per Exam
(s)

MobilenetV2
FPN 91.88 94.94 94.36 95.53 77.45 12.69

Resnet50 FPN 90.40 94.0 93.71 94.29 75.0 12.42
Densenet201

FPN 90.89 94.43 92.20 96.77 67.65 15.05

Resnext101
FPN 91.39 94.68 93.37 96.03 73.04 14.68

MobilenetV2
Unet 94.36 96.5 95.62 97.39 82.35 12.88

Resnet50 Unet 92.48 95.31 94.84 95.78 79.41 12.79
Densenet201

Unet 90.40 94.08 92.56 95.66 69.61 13.61

Resnext101
Unet 91.09 94.55 92.32 96.9 68.14 12.54

MobilenetV2
Unet++ 92.18 95.05 95.95 94.17 84.31 12.44

Resnet50
Unet++ 90.40 93.87 95.62 92.18 83.33 13.03

Densenet201
Unet++ 91.78 94.94 93.40 96.53 73.04 12.98

Resnext101
Unet++ 91.88 94.99 93.61 96.40 74.02 14.94

MobilenetV2
MAnet 90.99 94.38 93.97 94.79 75.98 14.05

Resnet50
MAnet 87.92 92.49 91.81 93.18 67.16 14.34

Densenet201
MAnet 87.82 91.96 97.23 87.22 90.2 17.43

Resnext101
MAnet 91.88 94.94 94.47 95.41 77.94 16.87

Then, to evaluate our architectures’ robustness, we performed external validation
on the SPGC dataset, which was not on the training/validation/test sets, thus having a
different distribution from our original images. Furthermore, the SPGC dataset has CAP
exams, which were added to the “with lesion” class. Table 9 presents the results of all
architectures evaluated in this work.

All architectures had similar and competitive results in the external validation on
the SPGC dataset. Mobilenet Unet had the highest accuracy and F1-score, with 98.05%
and 98.7%, respectively. Thus, we answer RQ2, as Mobilenet Unet detected exams with
COVID-19 and CAP lesions and exams without lesions.

Mobilenet Unet is an intermediate architecture with a small encoder of only 3.4 mil-
lion parameters and a decoder of 32 million parameters. Its size might have aided it
in learning the task without overfitting samples with the same distribution from train-
ing/validation/test sets.

It is worth mentioning that external validation plays a vital role when comparing
CNNs, because it simulates real-world situations, allowing us to choose the architecture
that best generalizes for new samples.
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Table 9. Lesion detection external validation on the SPGC dataset.

Architecture Acc (%) F1 (%) Prec (%) Rec (%) Spec (%) Time per Exam
(s)

MobilenetV2
FPN 97.39 98.28 97.85 98.70 93.42 19.03

Resnet50 FPN 95.11 96.82 95.0 98.7 84.21 19.49
Densenet201

FPN 96.42 97.64 96.61 98.70 89.47 21.71

Resnext101
FPN 97.39 98.28 97.85 98.70 93.42 21.45

MobilenetV2
Unet 98.05 98.70 98.7 98.7 96.05 19.70

Resnet50 Unet 97.39 98.28 97.45 99.13 92.11 21.45
Densenet201

Unet 94.79 96.61 94.61 98.70 82.89 21.71

Resnext101
Unet 91.53 94.63 90.51 99.13 68.42 22.72

MobilenetV2
Unet++ 97.72 98.47 99.12 97.84 97.37 19.22

Resnet50
Unet++ 95.77 97.12 99.55 94.81 98.68 23.01

Densenet201
Unet++ 97.39 98.28 97.45 99.13 92.11 23.29

Resnext101
Unet++ 94.79 96.61 94.61 98.70 82.89 23.29

MobilenetV2
MAnet 95.11 96.82 95.0 98.70 84.21 20.26

Resnet50
MAnet 96.42 97.58 99.11 96.10 97.37 22.93

Densenet201
MAnet 94.14 96.22 93.47 99.13 78.95 25.33

Resnext101
MAnet 95.44 97.03 95.02 99.13 84.21 21.45

4.4. COVID-19 and CAP Classification

We trained eight deep learning models on COVIDxCT to differentiate between COVID-
19 and CAP CT slices. This classification distinguishes previously segmented lesions due
to these two diseases, as our segmentation models cannot distinguish between COVID-19
and CAP lesions. We present our results in Table 10.

Table 10. COVID-19 and CAP classification results on COVIDxCT.

Architecture Acc (%) F1 (%) Prec (%) Rec (%) Spec (%)

Mobilenet 95.85 95.91 94.12 97.78 93.94
Resnet50 95.79 95.90 93.09 98.88 92.73

Densenet201 96.43 96.48 94.66 98.37 94.50
Resnext101 96.79 96.84 94.71 99.07 94.52
Squeezenet 94.84 95.00 91.75 98.49 91.22
Efficientnet 96.18 96.20 95.36 97.04 95.32
Shufflenet 95.69 95.78 93.35 98.35 93.05
Ghostnet 96.18 96.28 93.42 99.32 93.06

Our results of classifying CT slices as COVID-19 or CAP on COVIDxCT using eight
different deep learning models are competitive. All the models achieved high accuracy,
F1-score, precision, recall, and specificity. Among the models, Resnext101 achieved the
highest overall performance, with accuracy of 96.79%, F1-score of 96.84%, precision of
94.71%, recall of 99.07%, and specificity of 94.52%. The performance of the other models is
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also noteworthy, with accuracy ranging from 94.84% to 96.79%. Finally, it is worth pointing
out that the models’ specificity varied considerably, ranging from 91.22% to 95.32%.

Then, we externally validated these eight deep learning models on the slices with
the most extensive lesions detected on the SPGC dataset, which can be lesions caused by
COVID-19 or CAP. Finally, we summarize the results in Table 11.

Table 11. COVID-19 and CAP classification external validation on the SPGC dataset.

Architecture Acc (%) F1 (%) Prec (%) Rec (%) Spec (%)

Mobilenet 87.44 91.87 86.77 97.61 60.31
Resnet50 86.58 91.50 84.77 99.40 52.38

Densenet201 90.47 93.85 88.42 100.0 65.07
Resnext101 88.31 92.43 87.30 98.21 61.90
Squeezenet 86.14 91.20 84.69 98.80 52.38
Efficientnet 89.17 93.03 87.43 99.40 61.90
Shufflenet 87.87 92.26 86.08 99.40 57.14
Ghostnet 88.74 92.73 87.36 98.80 61.90

These results indicate that the eight deep learning models we evaluated have promis-
ing potential for distinguishing COVID-19 from CAP using CT images. Overall, Densenet201
achieved the best performance with the highest accuracy, F1-score, and specificity. However,
it is worth noting that the relatively low specificity for CAP means that the models may
be more prone to false negatives in this class. This is an important consideration, as the
accurate detection of Common-Acquired Pneumonia is also critical to the appropriate treat-
ment and management of patients. It is important to note that these results were obtained
by externally validating the models on a single slice from each CT scan from the SPGC
dataset. Because the SPGC dataset has a smaller sample size than the COVIDxCT dataset
used for model training, further evaluation on larger and more diverse datasets is needed
to fully assess the generalizability and robustness of the models. Furthermore, to use these
two-dimensional deep learning models and gain processing time, the three-dimensionality
of the SPGC dataset CT scans was discarded, which also caused a loss of information.

By merging the segmentation, detection, and classification tasks, we obtained the con-
fusion matrix in Figure 8. For lung segmentation, we applied Resnext101 Unet++; for lesion
segmentation, we applied MobilenetV2 Unet; and for COVID-19 or CAP classification,
we used Densenet201. These architectures were selected according to their overall results,
mainly focusing on a low false-negative rate.

The confusion matrix shows that the classifier performed well in the COVID-19 class,
with a high number of true positives (168) and a low number of false positives (3). However,
there were some misclassifications, as 35% of CAP exams were classified as COVID-19.
These results suggest that our classification models could not differentiate between the
two classes or that there was insufficient information on the CT slice to differentiate
between them.

Then, we used GradCAMPlusPlus [56] to analyze the interpretability of our models
with Densenet201. In Figure 9, we can see that the red spots, which highlight the most
critical areas of the image for classification, mainly coincide with our segmentation results
obtained with MobilenetV2 Unet.

The segmentation of COVID-19 or CAP lesions provides more information than the
results of GradCAMPlusPlus, as it is possible to calculate the lesion area for each slice or full
CT scan lesion volume. Furthermore, the GradCAMPlusPlus heatmap in Figure 9a might
suggest that lesions only occurred in the left lung, while the segmentation showed lesions
in both lungs. However, neither of the two methods could determine which specifications
of the lesion were used by the CNNs to classify an image as COVID-19 or CAP. Thus,
further interpretability is necessary, and RQ3 is answered.
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Figure 8. Final results using MobilenetV2 Unet for lesion detection and Densenet201 for COVID-19
or CAP classification.

b)

c)

a)

Figure 9. Comparison between the interpretability of the XAI method with Densenet201 and the
segmentation method with MobilenetV2 Unet. (a) Correctly classified COVID-19-positive slice.
(b) Correctly classified CAP-positive slice. (c) CAP-positive slice wrongfully classified as COVID-19.
XAI is presented as heatmaps, with red representing the most important region of the image for
classification and blue the least important.
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4.5. COVID-19 Severity

In order to provide numerical data about the segmented COVID-19 lesions, we cal-
culated the severity of the disease based on the compromised area of the lungs. Then,
we applied this methodology to MosMedData and compared the results. A summary is
presented in Table 12.

Table 12. COVID-19 severity on MosMedData.

Architecture Acc (%) F1 (%) Prec (%) Rec (%)

MobilenetV2
FPN 69.9 69.95 70.27 69.9

Resnet50 FPN 71.98 70.77 70.52 71.98
Densenet201

FPN 67.13 67.81 69.07 67.13

Resnext101 FPN 69.5 69.68 70.27 69.5
MobilenetV2

Unet 75.05 73.26 72.67 75.05

Resnet50 Unet 72.67 71.08 70.25 72.67
Densenet201

Unet 66.93 67.49 68.42 66.93

Resnext101 Unet 69.41 69.07 69.58 69.41
MobilenetV2

Unet++ 72.97 71.09 70.3 72.97

Resnet50 Unet++ 69.21 68.7 68.79 69.21
Densenet201

Unet++ 72.18 70.86 70.83 72.18

Resnext101
Unet++ 70.89 70.4 70.44 70.89

MobilenetV2
MAnet 70.89 70.25 70.29 70.89

Resnet50 MAnet 66.93 66.26 65.99 66.93
Densenet201

MAnet 66.44 66.12 67.28 66.44

Resnext101
MAnet 71.09 70.58 70.47 71.09

Again, Mobilenet Unet obtained the highest results, with accuracy of 75.05%, F1-score
of 73.26%, precision of 72.67%, and recall of 75.05%. Even if the metrics were not as high
as for binary classification (“without lesion” or “with lesion”), Figure 10 shows, for four
architectures (Resnet50 FPN, Mobilenet FPN, Mobilenet Unet, and Densenet MAnet), that
our pipeline correctly segmented most lesions presented on the CT scans. The lower metrics
obtained might have been due to the qualitative analysis made when labeling MosMedData,
which we could not replicate with quantitative values.

We present the images where each model found the most extensive lesion area for that
specific exam. The experiment found that all architectures could locate lesions in the same
lung areas, indicating consistent performance. However, some architectures were unable
to accurately identify certain lesion areas. Specifically, the MobilenetV2 FPN architecture
failed to locate a small lesion in the right lung in the presented image (Figure 10a), while
the other three architectures correctly identified it. These findings suggest that while all
architectures performed similarly overall, there were still differences in their ability to
accurately identify certain lesion areas, highlighting the importance of selecting the most
suitable architecture for a specific task. These difficulties in detecting certain lesion areas
could have worsened the results presented in the confusion matrices in Table 13.



Bioengineering 2023, 10, 529 24 of 29

a) Original Image

b)

c)

d)

MobilenetV2 FPN Resnet50 FPN MobilenetV2 Unet Densenet201 MAnet

Figure 10. Segmentation results of Resnet50 FPN, Mobilenet FPN, Mobilenet Unet, and Densenet
MAnet on MosMedData. Lung segmentation is represented by red contours, and lesion segmentation
is represented by green contours. (a) Image from an exam of class 1. (b) Image from an exam of class
2. (c) Image from an exam of class 3. (d) Image from an exam of class 4.

Table 13. Confusion matrix results of Resnet50 FPN, Mobilenet FPN, Mobilenet Unet, and Densenet
MAnet on MosMedData.

True Class Classified as MobilenetV2 FPN Resnet50 FPN MobilenetV2
Unet

Densenet201
MAnet

CT-0

CT-0 158 (77%) 153 (70%) 168 (82%) 184 (90%)
CT-1 46 (23%) 50 (25%) 36 (18%) 20 (10%)
CT-2 0 1 0 0
CT-3 0 0 0 0
CT-4 0 0 0 0

CT-1

CT-0 35 (6%) 45 (7%) 21 (3%) 100 (16%)
CT-1 506 (80%) 534 (84%) 559 (88%) 452 (71%)
CT-2 59 (9%) 37 (6%) 36 (6%) 52 (52%)
CT-3 14 (2%) 5 (1%) 8 (1%) 12 (2%)
CT-4 20 (3%) 13 (2%) 10 (2%) 18 (3%)

CT-2

CT-0 1 (1%) 1 (1%) 0 2 (1%)
CT-1 80 (63%) 82 (65%) 94 (74%) 83 (66%)
CT-2 34 (28%) 35 (28%) 26 (21%) 25 (20%)
CT-3 8 (6%) 5 (4%) 4 (3%) 10 (8%)
CT-4 3 (2%) 3 (2%) 2 (2%) 6 (5%)

CT-3

CT-0 0 0 0 1 (2%)
CT-1 21 (48%) 18 (41%) 22 (50%) 18 (41%)
CT-2 9 (20%) 15 (34%) 13 (30%) 10 (23%)
CT-3 7 (16%) 3 (7%) 4 (9%) 9 (20%)
CT-4 7 (16%) 8 (18%) 5 (11%) 6 (14%)
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Table 13. Cont.

True Class Classified as MobilenetV2 FPN Resnet50 FPN MobilenetV2
Unet

Densenet201
MAnet

CT-4

CT-0 0 0 0 0
CT-1 0 0 0 0
CT-2 0 0 1 (50%) 1 (50%)
CT-3 1 (50%) 0 0 0
CT-4 1 (50%) 2 (100%) 1 (50%) 1 (50%)

Despite the success of our models in differentiating COVID-19 from non-COVID-19
cases (as shown in Table 8), we still observed a high degree of error when it came to
distinguishing between different severity classes of COVID-19 on MosMedData. This error
may have been due to several factors, such as the incorrect segmentation of lesions on CT
scans by our models or the lack of quantified evaluation on MosMedData, as specialists
qualitatively evaluated severity. This may have affected our results even when lesions were
correctly segmented, thus answering RQ4.

According to our results, Resnet50 FPN was the fastest architecture on MosMedData,
while Densenet201 MAnet was the slowest one. Specifically, the average time taken by
Resnet50 FPN to segment lesions from all slices of MosMedData was 12.42 s. On the other
hand, Resnext101 Unet++ took 17.43 s to segment lesions. Regarding the SPGC dataset, the
fastest architecture was Mobilenet FPN, and the average time taken to segment lesions was
12.42 s. On the other hand, Densenet MAnet was the slowest, and the average time taken
to segment lesions was 25.33 s. However, despite the speed difference, both models are
viable for real-life usage. This means that the highlighted models can be effectively used
in clinical settings, where speed and accuracy are essential and computational resources
might be limited. The choice of model will depend on the user’s specific needs, such as the
available computational resources.

4.6. Limitations

The first limitation of our work is that the high cost of CT scans and high exposure
to ionizing radiation limits their widespread adoption in hospitals. This issue contributes
to the reduced public data for training, and real-life testing and usage. Machine learning
models identify patterns based on the data that they are trained on. Therefore, a machine
learning model is biased when the data are biased. To partially address this issue, we
conducted external validation on a new dataset obtained from the literature. However,
since there are only a limited number of publicly available datasets, ensuring the model’s
generalizability remains challenging.

Another limitation of this work is that all the architectures evaluated in this study
were based on 2D images, whereas CT scans provide 3D information. Although using 2D
images simplifies the computational complexity and reduces the training time required
by the models, it may not fully capture the complexity of and variations in 3D structures.
Consequently, the accuracy of the models in predicting and diagnosing various medical
conditions using a 2D approach may be lower than that with a 3D approach. Another
limitation of this study is that only analyzing the CT scan of a patient may not be suf-
ficient for a diagnosis. CT scans provide useful information about the body’s internal
structures, but they do not provide information about the patient’s symptoms or medical
history. Therefore, integrating CT scan analysis with clinical data processed using natural
language models could improve the accuracy of the diagnosis. By combining image and
language models, physicians can make more informed decisions and provide better patient
treatment options.

While our approach showed encouraging results, other CT scan factors that may
contribute to the differentiation between CAP and COVID-19 might not be captured when
separately analyzing only 2D slices. Moreover, it is known that there is a significant overlap
in the imaging features of COVID-19 and other respiratory diseases, which makes differen-
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tiation challenging even with the use of advanced imaging techniques. Therefore, future
studies using a more comprehensive approach that includes 3D imaging and clinical data
may be necessary to improve the accuracy of COVID-19 diagnosis and further differentiate
it from CAP.

Despite these limitations, the findings of this study provide valuable insights into
the potential applications of deep learning and computer vision techniques in medical
image analysis. Future studies can build upon these findings and further explore using
3D imaging and language models to improve medical diagnosis and treatment accuracy
and efficiency.

5. Conclusions

In this work, we propose a deep learning-based approach to lung and lesion detection
and segmentation, and COVID-19 and CAP classification using full CT scans. The results
show that our pipeline correctly detected and segmented lesions due to COVID-19 and
CAP in CT scans, differentiating these two classes from normal exams. In the classification
task, we achieved competitive results in terms of accuracy, precision, recall, F1-score, and
specificity on the COVIDxCT dataset. However, our metrics dropped when we performed
external validation using the SPGC dataset, but they were still competitive. Our analysis
obtained accuracy of 99.71 ± 0.05%, DSC score of 98.64 ± 0.19%, and HD of 3.9 ± 0.16% in
lung segmentation with Resnext101 Unet++. In lesion segmentation, Densenet201 Unet++
achieved accuracy of 99.87 ± 0.01%, DSC score of 85.16 ± 1.13%, and HD of 3.4 ± 0.13%.
When externally validating lesion detection on the SPGC dataset, using Resnetxt101 Unet++
for lung segmentation and Mobilenet Unet for lesion segmentation, we achieved accuracy
of 98.05%, F1-score of 98.70%, precision of 98.7%, recall of 98.7%, and specificity of 96.05%,
only needing 19.70 s per full CT scan. Finally, when classifying these detected lesions,
Densenet201 reached accuracy of 90.47%, F1-score of 93.85%, precision of 88.42%, recall of
100.0%, and specificity of 65.07%.

Our pipeline can work as a CAD system to support healthcare professionals in mon-
itoring disease progression over time, particularly in remote locations. It can be used in
junction with portable CT scanners to reach populations in remote areas and integrate our
pipeline with telemedicine for remote monitoring.

Nevertheless, this work did not exhaust the possibilities of researching COVID-19 and
CAP detection, segmentation, and classification. In future works, one might evaluate the
trade-off between processing time and accuracy using 3D segmentation and classification
architectures. In addition, clinical data can be used to aid in differentiating COVID-19 and
CAP CT exams. Another possible approach to improving disease detection is to increase
monitored data. For instance, Natural Language Processing models can extract clinical
data from patient records. It could yield valuable information to be incorporated into the
CAD system as significant features. This combination of patient information could enhance
the classification of the two diseases.
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