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Abstract: Marker-based Optical Motion Capture (OMC) systems and associated musculoskeletal
(MSK) modelling predictions offer non-invasively obtainable insights into muscle and joint loading at
an in vivo level, aiding clinical decision-making. However, an OMC system is lab-based, expensive,
and requires a line of sight. Inertial Motion Capture (IMC) techniques are widely-used alternatives,
which are portable, user-friendly, and relatively low-cost, although with lesser accuracy. Irrespective
of the choice of motion capture technique, one typically uses an MSK model to obtain the kinematic
and kinetic outputs, which is a computationally expensive tool increasingly well approximated by
machine learning (ML) methods. Here, an ML approach is presented that maps experimentally
recorded IMC input data to the human upper-extremity MSK model outputs computed from (‘gold
standard’) OMC input data. Essentially, this proof-of-concept study aims to predict higher-quality
MSK outputs from the much easier-to-obtain IMC data. We use OMC and IMC data simultaneously
collected for the same subjects to train different ML architectures that predict OMC-driven MSK
outputs from IMC measurements. In particular, we employed various neural network (NN) archi-
tectures, such as Feed-Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs)
(vanilla, Long Short-Term Memory, and Gated Recurrent Unit) and a comprehensive search for the
best-fit model in the hyperparameters space in both subject-exposed (SE) as well as subject-naive (SN)
settings. We observed a comparable performance for both FFNN and RNN models, which have a
high degree of agreement (ravg,SE,FFNN = 0.90±0.19, ravg,SE,RNN = 0.89±0.17, ravg,SN,FFNN = 0.84±0.23,
and ravg,SN,RNN = 0.78±0.23) with the desired OMC-driven MSK estimates for held-out test data. The
findings demonstrate that mapping IMC inputs to OMC-driven MSK outputs using ML models could
be instrumental in transitioning MSK modelling from ‘lab to field’.

Keywords: feed-forward neural network; gated recurrent unit; inertial motion capture; linear model;
long short-term memory; machine learning; musculoskeletal modelling; optical motion capture;
recurrent neural network; upper extremity

1. Introduction

Three-dimensional (3D) motion analysis helps numerically describe joint and segmen-
tal kinematics. It also serves to establish non-disabled and identify pathological movement
patterns [1,2]. In recent decades, in silico musculoskeletal (MSK) models have offered
the ability to non-invasively estimate in vivo information to facilitate objective, clinical
decision-making to some extent [3,4]. In particular, the prediction of intersegmental/joint
and muscle loading has proven immensely valuable in improving our understanding
of the MSK system [3]. However, traditional MSK models can prove to be computa-
tionally expensive and typically require comprehensive input motion capture (mocap)
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data [3,5]. Besides, creating, scaling, and setting up MSK models for individual subjects
and trials can be onerous and quite time-intensive. Furthermore, licenses for commercial
MSK modelling software can be prohibitively expensive, and some of the open-source
packages might be restrictive regarding features and/or applications. The routine use
of this technique is limited in clinical settings due to implementation challenges and
computational complexity [3,5,6].

A plethora of commercial and research mocap systems have been developed to fa-
cilitate the capture of 3D human movement data accurately and repeatably [7] that can
subsequently help describe the MSK function. Nonetheless, each mocap system is accom-
panied by its pros and cons [2,7]. Anglin and Wyss [2] noted that stereophotogrammetric
(or optoelectronic) techniques with passive (retro-reflective) markers seem to be especially
suited for upper-extremity motion analysis [8] since they have high accuracy, are non-
invasive, and typically do not affect task execution. Nevertheless, the primary drawbacks
of (marker-based) Optical Motion Capture (OMC) systems include marker occlusion (i.e.,
line-of-sight requirement), high cost, being lab-based, etc. Conversely, Inertial Motion
Capture (IMC) equipment is cost-effective, user-friendly, portable, and delivers full-body
measurement abilities in the subject’s ecological setting or ‘field condition’. However,
IMC systems might not be as accurate as OMC systems, which are widely regarded as
the ‘gold standard’ for non-invasive mocap. Regardless, this ‘field ready’ option of IMC
systems can be immensely valuable in low-resource settings and outdoor or real-world
applications (such as sports and ergonomics). Wearable inertial sensors have evolved
rapidly and are routinely used in different areas of clinical human movement analysis,
e.g., gait analysis [9], instrumented clinical tests, stabilometry, daily-life activity moni-
toring, upper-extremity mobility assessment, and tremor assessment [10]. Such sensors
have rapidly transitioned from use in constrained, lab-based practice to unsupervised and
applied settings [11].

There is an increasing demand to democratise and shift objective MSK model-led
investigations from ‘lab to field’ [12–15]. OMC data have been traditionally used to drive
inverse-dynamics-based MSK models [16,17]; however, recent works have used IMC input
for MSK models [18–23]. Notwithstanding, upper-extremity biomechanics research has
lagged more than that involving the lower extremity [1,2,24] due to several barriers such as
a lack of consensus on a standardised protocol, functional tasks, model complexity, tracking
method, marker protocol, and performance metrics. Thus, it is imperative to undertake
better modelling of upper-extremity biomechanics as they are integral to many activities of
daily living.

Machine learning (ML) has received considerable attention in human motion analysis,
especially in the last decade [13–15,25–27]. In particular, using supervised ML models to
circumvent biomechanical models that are computationally expensive has become common-
place. Numerous studies have reported ML applications for generating in vivo insights (e.g.,
joint and muscle loading) from either OMC or IMC inputs [28–38] or markerless methods [27].
Among ML approaches, deep learning models, including Convolutional Neural Networks
(CNN) and, increasingly, Recurrent Neural Networks (RNN), have become popular in lower-
extremity biomechanical analyses [26]. Such ML techniques have multiple benefits over their
MSK model-based counterparts—(i) although the ML model’s initial training is considerably
time-intensive, making predictions corresponding to new data is computationally efficient,
facilitating real-time applications; and (ii) they do not require the large amounts of data
required for MSK models and help provide population-level insights [32].

Our previous work [30] estimated upper-extremity MSK model information solely
from IMC input data. This study uses ML methods to map IMC input data to OMC-driven
MSK outputs. It serves two purposes: (i) bypasses the dependency on the computationally
expensive MSK model during the prediction phase; and, (ii) more importantly, obviates the
requirement for an OMC system in the prediction phase but still estimates ‘OMC-quality’
MSK outputs, which are more accurate than IMC-derived MSK outputs because of IMC
systems’ higher susceptibility to soft tissue artefacts [7,18–20]. It allows the prediction of
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(non-invasive) gold-standard OMC-quality MSK outputs for mobile/ambulatory appli-
cations (e.g., sports, ergonomics, recreational activities) or in low-resource settings using
highly portable IMC systems. A similar study for the lower extremity has used simulated
IMU inputs [39]. This work differs in using actual IMC inputs, which were synchronously
collected with the OMC inputs, giving greater reliability in predicting OMC quality outputs
and in its application to the upper extremity. As in that study, we have realised our objective
using an ML approach. In particular, we used Feed-Forward Neural Networks (FFNN) and
RNN to model the human upper-extremity motion analysis. RNNs are, in general, better
than FFNNs for modelling time-series data, and in this work, we have explored the popular
RNN cells (vanilla, Long Short-Term Memory [LSTM], and Gated Recurrent Unit [GRU])
in RNNs and bidirectional RNNs, in which the input time-series is processed in both
forward and backward directions. It is important to note that such a model creation was
only possible because of the unique dataset acquired for [20], where the upper-extremity
motion for five non-disabled subjects was synchronously captured using both IMC and
OMC systems. To the best of our knowledge, this is the first study (across upper and lower
extremities) that uses the comparatively lower-quality (but highly portable) IMC data to
estimate kinematic and kinetic variables on par with the gold-standard OMC-driven MSK
outputs. Such an approach will be instrumental in bringing the technology from ‘lab to
field’ where OMC-driven approaches are infeasible.

Finally, along with an entirely novel approach to map IMC inputs to OMC-driven
MSK outputs, this study also addresses several other research gaps in this field. For
instance, most research in this field lacks rigorous hyperparameter tuning when training ML
architectures (highlighted in [25,30]) which is crucial for generalisable models. Moreover,
we trained the selected ML models for two different settings—(i) subject-naive (all the trials
from a subject are strictly either in test or training data), and (ii) subject-exposed (at least
one trial from each subject is used in the training of the model). The subject-naive setting
is the true check for the generalisability of ML models, which is often ignored. Moreover,
from the motion analysis point of view, this study focuses on modelling the human upper
extremity, a relatively under-studied but essential domain.

2. Materials and Methods
2.1. Data

Here, we have utilised the anonymised dataset from a previous study [20], approved
by relevant Research Ethics Committees (Reference numbers: 16/SC/0051 and 14/LO/1975).
This research involved five non-disabled adult male volunteers (Age = 22.80 ± 0.84 years;
Weight = 66.25 ± 9.72 kg; Height = 1.75 ± 0.07 m; Body Mass Index (BMI) = 21.79 ± 3.49 kg/m2).

Each subject was instructed to perform three trials of the ‘Reach-to-Grasp’ task (in
the Forward direction) at a self-chosen pace. A custom-built apparatus (Supplementary
Figure S1) was used to accommodate the anthropometric requirements of different subjects
and enable task execution while seated [40,41].

Synchronised experimental data capture corresponding to task execution involved a
16-camera ViconTM T40S Series System (Vicon Motion Systems, Oxford, UK) for OMC data
(sampled at 100 Hz) and a Full-body Xsens MVN Awinda Station (Xsens Technologies B. V.,
Enschede, The Netherlands) with 17 wireless IMU sensors for the IMC data (sampled at
60 Hz). Hence, we down-sampled the OMC-driven MSK outputs using cubic interpolation
to match IMC input data’s sampling frequency (∼60 Hz). Passive retro-reflective markers
(ø 9.5 mm) were placed on the participant’s skin using a double-sided hypoallergenic tape
using the Plug-in Gait marker set [42]. Each IMU transmits data wirelessly to a master
receiver in real-time and contains a gyroscope, magnetometer, 3D accelerometer, barometer,
and thermometer [43]. Specifically, the IMU data from the gyroscope, magnetometer, and
3D accelerometer were used as inputs in the ML models. IMU sensors’ placement on the
participants’ body segments and their setup, as well as calibration, was performed as per
the Xsens MVN User Manual’s recommended protocol [44]. Data capture was synchronised
between the two systems wherein the Xsens IMC system triggered the Vicon OMC system
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following the guidelines of Xsens with a specific trigger at the start and stop recording
time [45]. Marker and sensor placement, as well as data capture for all subjects, were
performed by the same tester (VHN) to remove inter-tester variability error.

OMC data was processed using Vicon NexusTM v.2.5 software [46] to clean and label
the marker trajectories for MSK model inputs. The processed marker trajectories were
exported in Coordinate 3D (.C3D) file format [47]. Meanwhile, Xsens MVN Analyze
v.2018.0.0 software (Xsens Technologies B. V., Enschede, The Netherlands) [48] was em-
ployed for capturing the IMC data and exporting it as BioVision Hierarchy (.BVH) files
for MSK model inputs where a stick-figure model was originally reconstructed. MSK
modelling of the upper extremity was undertaken using AnyBodyTM Modeling System
(AnyBodyTM Technology A/S, Aalborg, Denmark) separately for each of the mocap in-
puts as well as subject-specific anthropometric dimensions for scaling following these
sources [18,41,49]. The ‘Inertial MoCap model’ and ‘Simple Full-Body model’ in the Any-
Body Managed Model Repository (AMMR) v.2.1.1 (AnyBodyTM Technology A/S, Aalborg,
Denmark) were adapted separately to compute the respective kinetic variables (i.e., joint
moments, joint reaction forces, and muscle forces) and kinematic variables (i.e., joint angles)
of interest.

Demographic and anthropometric characteristics (e.g., age, height, weight, gender)
affect the amplitude of kinetic and kinematic outcome variables in clinical movement
analysis, and if not corrected, individual disparities can act as confounding factors [50,51].
Therefore, the kinetic variables were normalised and reported per best practices in the
field [50,51], which were also adopted and detailed in our earlier related study [30]. Besides,
the joint angles sign convention is based on a related work [41].

Prior to data collection, each subject was provided with comprehensive instructions
in addition to a few practice trials. Furthermore, the IMC mocap system underwent an
initial calibration sequence that required volunteers to assume a neutral posture known
as the ‘N-pose’ and take some steps forward and backwards to return to their original
position. Next, participants performed a ‘Static’ trial by standing in a stationary neutral
or anatomical position in the centre of the capture volume for the OMC system. After
these steps, the Reach-to-Grasp task (three trials) with the subject’s dominant hand was
performed. The experimental data captured from the IMC system and the OMC-data-
driven MSK model estimations (i.e., kinematic and kinetic parameters) were employed for
training the proposed ML models.

2.2. Supervised Learning

We developed ML models to obtain OMC-driven MSK outputs from IMC inputs for
the human upper extremity as depicted in Figure 1. The IMC experimental data (refer
Section 2.1 for details on input features) comprise 15 trials (obtained from five subjects with
three trials of Reach-to-Grasp task each) with 483 input features [44]. Whereas OMC-driven
MSK model output categories comprise time-series data of ten joint angles, four muscle
forces, four muscle activations, twelve joint reaction forces, and ten joint moments. A
different ML model is trained for each output category while using IMC experimental data
as input. Prior to model training, the following feature transformations are applied, which
are similar to those in our previous article [30]:

1. The time feature, normalised between zero and one, indicates the proportion of total
time taken to complete the task at the subject’s chosen pace.

2. Muscles are typically discretised into numerous muscle bundles in MSK models. MSK
model outputs for muscle activations and muscle forces comprise features for the
four considered superficial muscle groups, i.e., (a) Biceps Brachii, (b) Pectoralis major
(Clavicle part), (c) Brachioradialis, and (d) Deltoid (Medial) [49]. The ‘maximum
envelope’ of the tendon forces of specified bundles forming a certain muscle was
calculated for further analysis. Muscle activation measures the force in a selected
muscle relative to its strength.
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3. We have used many-to-one RNN architecture, which uses multiple previous inputs
for an output; therefore, we transformed the time-series data into a sub-time-series of
t frames by sliding across the original time-series in a step of one. Thus, the input of
the RNN is t × 483, where t was taken as 10.

Musculoskeletal modelling with

Marker-based input ('Gold Standard')

Musculoskeletal modelling with Inertial-sensor-based input

Synchronised

motion capture

Multibody Kinematics

Optimisation

Inverse

Dynamics

Comparison of respective

estimated Kinematics and

Kinetic variables

Marker

positions
Joint

angles

Xsens MVN

Analyze

Virtual marker

placement

on stick figure

Virtual marker

placement

on MSK model

Kinematic

analysis

Inverse dynamic

analysis

ML model

IMC

input

  Joint loading

Muscle loading

training

Figure 1. The machine learning (ML) pipeline used for musculoskeletal (MSK) modelling, which
combines marker-based data (or Optical Motion Capture) and inertial-sensor-based data (or Inertial
Motion Capture). The image has been adapted from [18,20,49].

To show the added utility of applying complex ML techniques, we first attempt a linear
model to see if it provides satisfactory metrics. We use Pearson’s correlation coefficient (r)
and Normalised root-mean-squared error (NRMSE) metrics to compare the effectiveness of
our models. For subject-exposed (SE) models, linear models achieved ‘moderate’ to ‘strong’
performance in terms of r. For subject-naive (SN) models, linear models perform moderately
in terms of r; however, the NRMSE is large for SN models (as listed in Supplementary
Table S1 and discussed in Sections 3 and 4). Thus, more complex ML models are necessary.
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Two neural network architectures were employed with normalised MSE as the cost
function: (i) FFNN, depicted in Figure 2 shows a typical schematic diagram and (ii) RNN,
depicted in Figure 3, shows a schematic architecture (containing at least one RNN cell)
along with choices of RNN cells, including vanilla, LSTM, and GRU in both unidirectional
and bidirectional (which processes the input time-series in both forward and backward
directions) sense [52–54]. Here, it is worth noting that we have treated these choices in
RNN cells as hyperparameters.

Figure 2. Typical Feed-forward Neural Network (FFNN) with O output nodes, I input nodes, and N
hidden layers with k nodes/neurons each.

Figure 3. (a) Typical deep Recurrent Neural Network (RNN) architecture containing n RNN cells and
a final dense layer [52–54]. The schematics of various RNN cells considered include: (b) vanilla RNN
cell, (c) Long Short-Term Memory (LSTM) cell, and (d) Gated Recurrent Unit (GRU) cell. Note: Xt is
the input at any time t, Ct is the cell state, and ht is the hidden state. Further note that the default
activation function in RNN cells is tanh, while for recurrent steps in LSTM and GRU cells, the default
recurrent activation function is sigmoid (sig).

The validation accuracy was then used to tune FFNN and RNN hyperparameters
through an exhaustive grid search in the space with 43,740 and 23,328 choices that include
hyperparameters such as the number of nodes, weight initialization, batch-size, optimizer,
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hidden layers, activation function, learning rate, epoch, RNN cells, and dropout proba-
bility, as listed in Tables 1 and 2 along with the optimal hyperparameters. The current
hyperparameter exploration for FFNNs is informed by our previous related work [30].

Table 1. Hyperparameters choices explored (43,740) for Feed-Forward Neural Network (FFNN) in
subject-exposed and subject-naive settings and the optimal hyperparameters found for each MSK
output category.

Output Weight Optimizer Batch-Size Epoch Activation Number of Hidden Learning Dropout
Initialization Function Nodes Layers Rate Probability

Hyperparameters explored
He normal, RMSProp, 64, 50, ReLU, 200 to 1800 2, 4, 6, 0.001, 0, 0.2

Random normal, SGD, 256, 100, sigmoid, with increments 8, 10 0.005
Xavier normal Adam 1028 200 tanh of 200

Optimal hyperparameters

Subject-exposed settings
Muscle forces Random normal SGD 64 50 ReLU 400 8 0.005 0.0

Muscle activations Xavier normal Adam 256 100 ReLU 1000 6 0.005 0.0
Joint angles Random normal Adam 256 200 ReLU 200 2 0.001 0.0

Joint reaction forces Xavier normal Adam 256 100 ReLU 200 8 0.005 0.0
Joint moments Xavier normal Adam 64 50 sigmoid 1400 2 0.001 0.2

Subject-naive settings
Muscle forces Xavier normal SGD 64 200 ReLU 1200 8 0.005 0.2

Muscle activations Random normal Adam 256 200 ReLU 1200 6 0.001 0.2
Joint angles Random normal Adam 256 100 ReLU 800 4 0.005 0.0

Joint reaction forces Random normal Adam 256 50 ReLU 800 8 0.001 0.0
Joint moments Xavier normal Adam 64 50 sigmoid 1800 2 0.001 0.2

Table 2. Hyperparameters choices explored (23,328) for the Recurrent Neural Network (RNN) in
subject-exposed and subject-naive settings and the optimal hyperparameters found for each MSK
output category. In the RNN cell category, ‘B’ stands for Bidirectional cell (which processes the input
time series in both forward and backward directions), LSTM is a Long Short-Term Memory cell, and
GRU is a Gated Recurrent Unit cell.

Output RNN Cell Optimizer Batch-Size Epoch Activation Number of RNN Dropout Learning
Function Nodes Layers Probability Rate

Hyperparameters explored for RNN
Vanilla, LSTM, Adam, 64, 50, ReLU, 128, 1, 2, 0.1, 0.2 0.001,
GRU, B-Vanilla, SGD, 128, 100, sigmoid, 256, 3, 4 0.005
B-LSTM, B-GRU RMSProp 256 200 tanh 512

Optimal hyperparameters

Subject-exposed settings
Muscle forces LSTM RMSprop 64 100 tanh 256 1 0.1 0.001

Muscle activations LSTM RMSprop 64 50 sigmoid 128 3 0.1 0.001
Joint angles B-LSTM Adam 256 200 sigmoid 256 1 0.2 0.001

Joint reaction forces LSTM RMSprop 128 50 sigmoid 128 2 0.1 0.001
Joint moments B-LSTM RMSprop 64 100 sigmoid 256 1 0.1 0.001

Subject-naive settings
Muscle forces GRU Adam 256 100 ReLU 512 3 0.2 0.001

Muscle activations LSTM RMSprop 128 100 tanh 512 2 0.1 0.001
Joint angles B-LSTM Adam 64 50 tanh 256 1 0.2 0.001

Joint reaction forces LSTM Adam 64 50 ReLU 128 4 0.1 0.001
Joint moments GRU Adam 128 100 sigmoid 256 2 0.2 0.005

2.3. Validation and Train–Test Split

Two approaches are commonly used to benchmark ML architectures that approximate
MSK models: subject-exposed (SE) and subject-naive (SN) [55]. In the SE setting, all subjects’
trials are combined and then divided into a training and test set, guaranteeing every subject
within the test set is represented by at least one trial within the training data. An ML model
trained through this method displays superior performance compared to the SN setting,
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where subjects are exclusively in either test or training data. However, the downside of the
SE model is that it is subject-specific and has poor generalisation capabilities [36].

In the train–test split for the SE case, two trials were randomly chosen as the held-
out test set and the rest of the trials as the training set. We employed cross-validation
to optimise the hyperparameters by randomly dividing the remaining 13 trials into two
sets—the training set comprising 11 trials and the validation set containing two trials. In
the SN scenario, one subject was chosen as the test subject randomly, and the others were
treated as training data. Following this, cross-validation was conducted by randomly
taking one subject in the validation set and the rest of the subjects in the training set.

2.4. Error Metrics

NRMSE (i.e., RMSE scaled by the standard deviation of the target variable) was used
as the primary error metric as in [30,36], where the ground truth is the corresponding OMC-
driven MSK output. Since RMSE (and thus NRMSE) is sensitive to outliers, we furthermore
used Pearson’s correlation coefficients (r) between the outputs of the ML model and the
MSK model as a secondary error metric.

3. Results

Figure 4 summarises mean r and NRMSE values (along with corresponding standard
deviation) for each kinematic and kinetic output category (where the mean and standard
deviation are reported over all output features in a particular category) for linear, FFNN,
and RNN models with numerical data reported in the Supplementary Table S1. The linear
model served reasonably well for SE settings (NRMSEavg = 0.65±0.40 and ravg = 0.80±0.21);
however, compared to our previous work [30] mapping the IMC inputs (considered in this
study) to the corresponding IMC-driven MSK outputs, the performance of the linear model
has considerably reduced. In contrast, the performance of linear models for SN settings is
considerably poor, particularly in terms of NRMSEavg = 1.78±1.46, while the trends in the
MSK outputs are reasonably captured with ravg = 0.71±0.37.

Performing a rigorous hyperparameter search is essential to achieving good model fit
and generalisability. In Tables 1 and 2, we have listed the various hyperparameter choices
(43,740 and 23,328 combinations) considered for FFNN and RNN models, respectively. Four-
fold cross-validation was performed for each hyperparameter choice, and the model with
the best validation accuracy was selected. The best-performing model (as listed as optimal
hyperparameters in Tables 1 and 2) was then re-trained on the training and validation data,
with the final metrics reported for a held-out test dataset. We obtained the best performance
for the FFNN architectures containing multiple hidden layers (greater than four in most
cases) and wide layers containing up to 1800 nodes with the network initialised using either
Xavier or Random normal initialization and parameters trained using the ReLU activation
function (on hidden layers), Adam optimizer, dropout regularization, and a learning rate
of 0.001 or 0.005. In the case of RNN models, we have treated various choices in RNN cells
as hyperparameters with the observation that LSTM and B-LSTM cells perform the best
for most cases, with Adam or RMSprop as the optimal optimizer. Interestingly, the best-fit
RNN models are simpler than FFNN, with shallower and narrower networks containing
only 1 or 2 RNN layers and 128 or 256 nodes in each layer. The same observation can be
made based on the number of NN parameters reported in Supplementary Figure S2, where
best-fit RNN models have fewer parameters than the best-fit FFNN models. Also, the
best-fit SN models contain more parameters than the SE models for the same MSK model
output category.

The two NN models consistently outperformed the linear model in terms of both ravg
and NRMSEavg, with notable improvements in SN settings. The FFNN and RNN models’
performance is comparable, with one model performing better for certain MSK outputs, as
shown in Figure 4. The best-fit FFNN models have shown a high correspondence with the
OMC-driven MSK outputs in both SE (ravg = 0.90±0.19 and NRMSEavg = 0.33±0.18) and
SN settings (ravg = 0.84±0.23 and NRMSEavg = 0.85±0.79) with comparable statistics for
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RNN models with ravg,SE = 0.89±0.17, NRMSEavg,SE = 0.36±0.19, ravg,SN = 0.78±0.23 and
NRMSEavg,SN = 0.87±0.77). As can be expected, the SE models performed better than the
SN models consistently across various ML model choices.
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Figure 4. Average NRMSE values (NRMSEavg) and average Pearson’s correlation coefficient (ravg) for
Linear Model (LM), Feed-Forward Neural Network (FFNN), and Recurrent Neural Network (RNN)
predictions compared against the Musculoskeletal model outputs. The FFNN and RNN models
consistently outperform the linear model. For a given output category, averaging is done over all
output features and test trials (with the corresponding standard deviation shown as an error bar).
See Supplementary Tables S1 and S2 for corresponding numerical data.

To further aid in the interpretation of results, Figures 5 and 6 (along with Supplemen-
tary Figures S4–S6) show the correspondence between the NN-predicted outputs and the
actual OMC-driven MSK outputs for the held-out test trial data. Most plots show excellent
r (>0.85) with notable exceptions, particularly for SN settings, in the case of Elbow Mediolat-
eral, Elbow Anteroposterior, Wrist Anteroposterior, and Trunk Mediolateral (joint reaction
forces) and Trunk Flexion/Extension and Trunk Internal/External rotation (joint moments).
For further information, we have tabulated all output features with maximum, minimum,
and inter-quartile ranges for ravg and NRMSEavg in Supplementary Table S2. Moreover,
in Supplementary Table S3, we have tabulated an RMSEavg (with units) that gives an
absolute error in the MSK output predictions. Note that the interpretation of RMSE values
comes with the caveat that different features cannot be compared directly due to their
different scales.
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Figure 5. Comparing Feed-Forward Neural Network (FFNN) and Recurrent Neural Network (RNN)
joint angles predictions (in degrees) with the corresponding outputs from the musculoskeletal (MSK)
model. The comparison is shown for one trial in the held-out test data in Subject-exposed (left) and
Subject-naive (right) settings. Note: Performance of FFNN and RNN are comparable (see Figure 4);
in this figure, we report r and NRMSE values only for FFNN.
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Figure 6. Comparing Feed-Forward Neural Network (FFNN) and Recurrent Neural Network (RNN)
joint reaction forces predictions (in % Body Weight) with the corresponding outputs from the mus-
culoskeletal (MSK) model. The comparison is shown for one trial in the held-out test data in
Subject-exposed (left) and Subject-naive (right) settings. Note: Performance of FFNN and RNN are
comparable (see Figure 4); in this figure, we report r and NRMSE values only for FFNN.
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4. Discussion

Here, ML methods are introduced to estimate OMC-driven MSK model outputs from
experimental input data captured synchronously from a full-body IMC system. This helps
bypass a computationally demanding MSK model and obtain the corresponding OMC-
driven MSK outputs (non-invasive ‘gold standard’) while not needing the laborious and
laboratory-bound OMC setup. The IMC system offers remarkable user-friendliness, high-
quality data with nearly real-time delivery, and a relatively quick setup process. Compared
to OMC systems, this method saves the time and effort to skillfully palpate bony landmarks
to place markers and to handle the arduous task of markers’ post-processing or dealing
with missing data.

We considered both subject-naive (SN) and subject-exposed (SE) scenarios—considering
both are important [25], as the choice affects generalisability, and thus, model
accuracy [36,55]. While SE models tend to perform better, they are not as generalisable
to unseen subjects as SN models. SE models can incorporate subject-specific tendencies
to better predict kinematic and kinetic variables corresponding to them. Various archi-
tectures were used, ranging from a simple linear model to deep NNs. While the linear
model was adequate for SE, as expected, it could not reproduce results well in the SN case.
Subsequently, we considered more complex architectures, such as FFNNs and RNNs. As
opposed to our previous work [30], the discrepancies in metrics between linear models and
both FFNN and RNN models are substantial, even for SE setting, which might be attributed
to the presumably greater complexity in mapping OMC-driven MSK model output to IMC
input in contrast to mapping IMC-driven MSK model output to the same IMC input. This
is also corroborated by the observation that the FFNN models implemented in this study
are more complicated (Table 1), generally requiring more hidden layers and neurons than a
similar previous study [30].

In general, we obtained excellent correspondence in both FFNN and RNN predic-
tions with the ground truth, i.e., OMC-driven MSK output in both SE and SN scenarios
(Figure 4 and Supplementary Tables S1–S3), with some notable exceptions, in particular,
for SN settings. Some of these issues could be attributed to the lack of adequate training
data (we have N = 5), which we hope to address in future work by adding subjects and
considering synthetic data augmentation using biomechanical models [37,56]. Note that
the held-out trials were randomly selected for SE and SN settings from data with both
inter- and intra-subject variability. This variability can be visualised in MSK outputs. For
example, refer to Supplementary Figure S3 for joint reaction forces estimated by the MSK
model. Despite this variability and small sample size (N = 5), the FFNN and RNN models
show a high degree of agreement and low NRMSE values. The predictions could be further
improved with a much larger sample size. Furthermore, the performance of FFNN and
RNN models are comparable in this study despite the number of parameters in FFNN mod-
els being significantly greater than the corresponding RNN models (refer to Supplementary
Figure S2). Such RNN architectures capturing the underlying MSK function using lesser
model parameters can be trained easily. It would be worth exploring their performance for
a much larger sample size.

Previously, FFNN was shown to predict IMC-driven MSK model outputs with high
accuracy using IMC data [30]. The performance of linear models and FFNNs is relatively
modest in the present study compared to that in Sharma et al. [30]. Notably, both OMC and
IMC mocap systems are prone to soft tissue artefacts [7,57] and instrumental errors [58]
differently, which often leads to differences in pose estimation accuracy between the mea-
surement systems (e.g., tracking long-axis rotations like shoulder internal/external rotation
or elbow pronation/supination). In particular, IMC systems are more susceptible to soft
tissue artefacts (i.e., the requirement of at least three passive markers placed on bony
landmarks of a segment in an OMC system versus at least one IMU placed in the middle
of the body segment in an IMC system). Soft tissue artefacts are typically task-dependent
and joint-dependent and vary based on the joint’s degree of freedom [59]. Besides, the
two motion tracking systems captured at different sampling frequencies might also have
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introduced complexity while mapping the considered IMC inputs and OMC-driven MSK
outputs in the ML pipeline. However, the influence caused by these aspects needs to be scru-
tinised in future studies. Hence, the ML models’ performance in this study (versus our prior
study [30]) needs to be interpreted within this context.

As a result of the experiment being conducted in a laboratory environment, good
model performance does not necessarily imply ecological validity in terms of replication in
a real-world context. Though the experiment task is a constrained, goal-oriented, cyclical
Reach-to-Grasp task that is ubiquitous in everyday life [49], inferences from models trained
on this task may not necessarily generalise to other settings. While a study [55] involv-
ing ML models on the lower extremity has shown generalisability across age and body
morphologies (and thus gait); this may not be the case for the upper extremity because
of a larger range of motion, higher degrees of freedom, and the three-dimensional nature
of tasks [1,2]. The applicability of our model for what-if analyses involving the task with
different object weights or differently shaped objects and other upper-extremity motions
are yet to be explored.

So far, we have focused on this study’s utility in (i) bypassing the computationally
expensive MSK model, and (ii) obtaining gold-standard OMC-driven MSK outputs from
IMC inputs. However, more recent alternative methods such as inverse dynamics, inverse
kinematics, and static optimisation can perform real-time data processing, thus alleviating
one of the main issues with using MSK models, especially in field situations. While these
are valuable alternatives to the MSK model, these approaches can only obtain real-time
predictions by sacrificing accuracy and simplifying the model. For example, taking tendon
compliance into account is essential in research that relies on the muscle–tendon interaction
or stored elastic energy in tendons (e.g., in running) [60], and helps achieve human-like
motion [61,62]. Such aspects are ignored in ‘real-time’ inverse dynamics. To achieve real-
time performance, simplified models are numerically solved up to a small number of
iterations, which decreases accuracy. Predictions improve if the models are allowed to
run longer, such as in offline scenarios [63–65]. Thus these alternative methods cannot
be generalised easily and encode assumptions about certain movements that make them
limited. In contrast, ML models are flexible while offering accuracy and speed. The trade-
off between speed and accuracy in modern non-ML-based alternatives to MSK models is
an interesting question that we hope to return to in future work.

Our work relies on MSK models, and thus, it inherits some of the underlying limi-
tations, such as not considering soft-tissue artefacts. While MSK models are a standard
method to obtain kinematics and kinetics from motion capture, work is ongoing [3,60,66,67]
in MSK model verification & validation (V&V). V&V aims to address the limitations of
the MSK model in terms of accuracy concerning higher fidelity sources, such as bone-pin
marker measurements [68], which minimise the impact of soft-tissue artefacts. Direct
measurements [69,70], in general, and in vivo joint reaction forces [71–73] using endopros-
thesis have been used to validate the MSK model. Any future improvements in the MSK
model from such V&V efforts will consequently be reflected in ML models trained on MSK
model outputs.

This work can be used as a starting point toward implementing a ‘lab-to-field’ ap-
proach by combining ML modelling with easily obtainable IMC data. This can be used for
translational research that uses MSK model outputs on IMC data obtained in real-world
settings, such as supermarkets and manual material handling [21,22,74–76], as a training
corpus for an ensemble of ML models which can be used to facilitate clinical diagnosis
rapidly. In addition to IMC data, recent work on markerless systems [77], such as two-
dimensional recordings [35], to obtain mocap quality data provides another source of
training data while being used without specialised equipment.

5. Study Limitations

Our study’s key limitation is the small sample size of N = 5; nevertheless, the
methodological framework introduced in this proof-of-concept study shows that it is
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possible to get ‘OMC-quality’ MSK model estimations reasonably from comparatively
lower-quality IMC measurements and paves the way for more elaborate studies going
forward. Many studies in this field have considered up to N = 10 subjects [25].

In the scaled cadaver-based MSK model in the AnyBody Modeling System [16], the
segment masses were deduced from the anthropometric data by Winter [78] and the subjects’
respective heights and weights. However, this approach might not be suitable for all body
types, e.g., elderly or bariatric populations. It is acknowledged that the current sample
population is fairly homogeneous; motion capture and MSK modelling for people with a
higher BMI and/or body fat composition might be more susceptible to soft tissue artefacts.
For instance, BMI has been found to affect upper-extremity kinematics in non-disabled
subjects [79]. Hence, future studies should explore motion capture involving subjects with
a wide range of BMI or body morphologies [80].

The magnitude of soft tissue artefacts for any movement is influenced by an indi-
vidual’s anthropometric characteristics, such as, marker location, activity performed, and
the instrumented segment [57,81]. Soft tissue artefacts are usually task-dependent and
joint-dependent as well as vary based on the joint’s degree of freedom [59]. In particular,
MSK model estimates are considerably affected by soft tissue artefacts [82] and body seg-
ment inertial parameters [83]. Furthermore, skin-to-skin contact may also influence results
(e.g., contact between the upper arm and forearm during elbow flexion movement). Thus,
measurements of obese subjects may require special consideration for these effects [84].
In summary, these are inherent limitations/legacy issues of current mocap systems and
MSK models that affect their outputs, thereby affecting the ML predictions trained on them.
Therefore, future studies should involve a larger and more heterogeneous sample size and
training dataset to help with improved predictions and a more generalisable model.

Finally, even though our approach to mapping highly portable IMC inputs to (non-
invasive gold-standard) OMC input-driven MSK outputs shows immense potential, the
training of such ML models is limited to synchronised IMC and OMC data capture.

6. Recommended Future Work

We see relevant future work proceeding broadly along three lines of inquiry. We can
incorporate our ML pipelines (presented here and earlier [30]) in relevant open-source
tools [85,86] with a graphical user interface. These interfaces can assist users in estimating
kinematic and kinetic variables of interest from mocap data without utilising an MSK
modelling framework. In terms of utilising ML models on larger datasets and potentially
working with open-access mocap data, an example of such data validated with an in vivo in-
strumented device is from the Grand Knee Challenge [69,70] for the lower extremity. Another
prominent repository is the CMU Motion Capture Dataset [87]—one of the largest publicly
available mocap datasets. We plan to expand the study to consider other ML architectures
for upper-extremity biomechanical modelling, e.g., Gaussian Processes. This could be
particularly beneficial in subject-naive settings where there is room for improvement. The
benefit of Gaussian Processes compared to FFNNs and RNNs is that one automatically ob-
tains information about uncertainty in predictions. Undertaking methodological variations
could be considered, such as exploring the different NN frameworks or ML methods listed
in [25,29,33] and evaluating their applicability to different tasks [88].

Although this study solely focuses on marker-based and inertial motion capture sys-
tems (amongst the most widely used mocap systems in research and clinical
settings) [7], future studies should explore other vision-based technologies (e.g., Kinect
sensors) in this context as they can be highly unobtrusive, cost-effective, user-friendly, and
portable. Similarly, vision-based action recognition methods and pose estimation [27,77,89]
should also be explored for transitioning biomechanical analyses beyond the laboratory in
future studies. Similar to this study, we hypothesise regarding synchronously recording
movements through surface markers (or markerless methods [27]) and capturing reference
or ‘gold-standard’ kinematics through bone-pin markers, fluoroscopy, magnetic resonance
imaging, etc., [68]. Unfortunately, among other barriers, these techniques can be highly inva-
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sive or cause radiation exposure when used routinely. Addressing this issue, sophisticated
ML models could be trained in the future that map synchronised skin-mounted marker
data to MSK model (kinematic and kinetic) outputs estimated using the comprehensive,
high-fidelity (bone-pin marker or bio-imaging) experimental data [68]. This could be an
essential technique leveraging ML benefits to tackle the issue of soft tissue artefacts [57,59]
for similar tasks tracked through stereophotogrammetry using skin-mounted markers or
markerless methods. Finally, future studies should also explore ML models’ robustness in
the presence of artificial noise or contamination.

7. Conclusions

To the authors’ knowledge, this is the first-ever proof-of-concept or preliminary study
(across lower and upper extremities) that uses experimental data captured from an IMC
system to directly estimate OMC-driven MSK model outputs (kinematic and kinetic) using
an ML approach, bypassing the need for a (lab-based) OMC system and a computationally
expensive MSK model. This was achieved by following ML best practices, such as an
extensive hyperparameter search and utilising dropout for regularization. We used FFNN
and RNN architectures alongside linear models. Both FFNN and RNN architectures
achieved comparable performance on both kinematic and kinetic variables across SE and
SN settings with strong-to-excellent Pearson’s correlation coefficients and outperformed
linear models. Our results demonstrate the effectiveness of these models, and more broadly,
ML methods, in approximating MSK models, synergistically leveraging the benefits of both
mocap systems.

Such ML models are promising alternatives to the MSK modelling process requiring
OMC input data, which are superior to predictive models that use only IMUs. With their
high accuracy, ease of use, and computational efficiency, these ML models (coupled with
IMC inputs) have the potential to bring motion analysis and MSK modelling beyond the
lab, particularly in resource-limited settings, as an affordable and accessible solution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10050510/s1, Figure S1: Left side: Custom-built
apparatus for Reach-to-Grasp task execution in the Forward direction; Right-side: Reach-to-Grasp
task setup; Figure S2: Number of parameters in Linear Model (LM), Feed-Forward Neural Network
(FFNN), and Recurrent Neural Network (RNN). Note: The number of parameters for Linear Models
is negligible than the other two models; hence, they are indiscernible here. Figures S3: Joint reaction
forces estimated by the Musculoskeletal (MSK) model for all five subjects. Note: The three trials
for individual subjects are shown in the same colour. Figure S4: Comparing Feed-Forward Neural
Network (FFNN) and Recurrent Neural Network (RNN) predictions for joint moments (% Body
Weight × Body Height) with the corresponding Musculoskeletal (MSK) model outputs on a test trial
in Subject-exposed (left) and Subject-naive (right) settings. Note: The performance of FFNN and RNN
are comparable (see Figure 4 in the main text); in this figure, we report r and NRMSE values only for
FFNN. Figure S5: Comparing Feed-Forward Neural Network (FFNN) and Recurrent Neural Network
(RNN) predictions for muscle forces (% Body Weight) with the corresponding Musculoskeletal (MSK)
model outputs for a test trial in Subject-exposed (left) and Subject-naive (right) settings. Note: The
performance of FFNN and RNN are comparable (see Figure 4 in the main text); in this figure, we report
r and NRMSE values only for FFNN. Figure S6: Comparing Feed-Forward Neural Network (FFNN)
and Recurrent Neural Network (RNN) predictions for muscle activations (%) with the corresponding
Musculoskeletal (MSK) model outputs for a test trial in subject-exposed (left) and subject-naive
(right) settings. Note: The performance of FFNN and RNN are comparable (see Figure 4 in the main
text); in this figure, we report r and NRMSE values only for FFNN. Table S1: Average Pearson’s
correlation coefficient and average NRMSE values for Linear Model (LM), Feed-Forward Neural
Network (FFNN), and Recurrent Neural Network (RNN) prediction compared with Musculoskeletal
(MSK) model outputs. The FFNN and RNN models consistently outperform the linear model. For a
given output category, averaging is done over all output features and test trials. Table S2: Average
Pearson’s correlation coefficient and Average NRMSE Values for Feed-Forward Neural Network
(FFNN) and Recurrent Neural Network (RNN) predictions compared with Musculoskeletal (MSK)
model outputs. Note: The average is taken over all output features and over all test trials (for a
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given output category). In the RNN cell category, ‘B’ stands for Bidirectional cell (which processes
the input time series in both forward and backward directions). Table S3: Average RMSE Values for
Feed-Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) predictions compared
with Musculoskeletal (MSK) model outputs. Note: The average is taken over all output features and
over all test trials (for a given output category). In the RNN cell category, ‘B’ stands for Bidirectional
cell (which processes the input time series in both forward and backward directions).
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