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Abstract: In recent years, deep learning has achieved good results in the semantic segmentation
of medical images. A typical architecture for segmentation networks is an encoder–decoder struc-
ture. However, the design of the segmentation networks is fragmented and lacks a mathematical
explanation. Consequently, segmentation networks are inefficient and less generalizable across
different organs. To solve these problems, we reconstructed the segmentation network based on
mathematical methods. We introduced the dynamical systems view into semantic segmentation
and proposed a novel segmentation network based on Runge–Kutta methods, referred to hereafter
as the Runge–Kutta segmentation network (RKSeg). RKSegs were evaluated on ten organ image
datasets from the Medical Segmentation Decathlon. The experimental results show that RKSegs far
outperform other segmentation networks. RKSegs use few parameters and short inference time, yet
they can achieve competitive or even better segmentation results compared to other models. RKSegs
pioneer a new architectural design pattern for segmentation networks.

Keywords: semantic segmentation; convolutional neural network; dynamical system; Runge–
Kutta methods

1. Introduction

Deep learning has recently achieved success in many fields [1–6]. In particular, deep
convolutional neural networks have greatly advanced the progress of medical image seg-
mentation. The state-of-the-art segmentation networks are typically encoder–decoder
structures. Network models for image classification are usually adopted as the backbones
of semantic segmentation networks [7–10]. The backbone is also referred to as the encoder.
Correspondingly, there is a decoder following it. Skip connections closely connect the
encoder and decoder. Consequently, the design of the segmentation network is fragmented
and lacks overall consideration. Furthermore, the design lacks a mathematical explanation.
As a result, there are several issues in medical image segmentation networks. First, segmen-
tation networks are very large and computationally expensive. Second, the performance of
segmentation networks often varies across different organs, and the generalizability is poor.
Therefore, it is necessary to redesign the segmentation network with overall consideration
and mathematical explanation.

From experience in image classification [11–16], the dynamical systems view is a
good perspective for designing efficient network models with appropriate mathematical
interpretation. Reference [11] views the forward pass of a neural network as the trajectory
of a dynamical system described by an ordinary differential equation (ODE). Since the
trajectories of dynamical systems are usually approximated by numerical methods, numer-
ical methods are also used to construct neural networks. The Runge–Kutta (RK) methods
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are frequently used numerical methods [17]. They are used to construct Runge–Kutta
convolutional neural networks (RKCNNs) [16]. RKCNNs are state-of-the-art numerical
networks for image classification. They are very efficient and save computing resources
significantly. They also surpass the models using linear multi-step methods, another kind
of numerical method.

No segmentation model has been constructed from the dynamical systems view,
although semantic segmentation is based on image classification. To obtain higher seg-
mentation efficiency, the construction of a numerical segmentation network is a valuable
research topic.

We abandoned the concept of encoder and decoder in segmentation models and
instead model the entire network from the dynamical systems perspective. We regarded the
process of semantic segmentation as a dynamical system since it is also the neural network’s
forward pass, just like the image classification. Similarly, we used the RK methods in the
segmentation networks to approximate the trajectory of the dynamical system. Due to the
superiority of RKCNN, we exclusively used RKCNN as a reference in order to construct
segmentation networks.

Unlike all of the existing numerical models including RKCNNs, we creatively used
multiple scales within one time step of RK methods. In other words, the existing models
maintain the same scale within a time step, while we down-sampled and up-sampled
within a time step. Different stages approximated the increment of the time step in different
scales. Consequently, we proposed a novel segmentation network structure using the RK
methods. It is called RKSeg. Moreover, we evaluated the performance of RKSegs on ten
organs using images from the Medical Segmentation Decathlon (MSD) [18,19].

Overall, the main contributions of our work are:

• We abandoned the encoder–decoder structure and considered the design of the seg-
mentation network holistically from the dynamical systems perspective.

• We introduced RK methods into the segmentation network and inventively used
various dimensions within one time step of RK methods.

• We proposed a novel segmentation network architecture called RKSeg.

1.1. Related Work
1.1.1. Segmentation Networks

First, the classification models AlexNet [20], VGG net [21], and GoogLeNet [22],
were adapted into fully convolutional networks (FCNs) [7] for semantic segmentation.
Specifically, the fully connected layers were cast into convolutional layers. Moreover,
up-sampling layers were added at the end of networks for pixel-wise prediction. Based
on the single-stream FCN, they combine the predictions from multiple layers to improve
performance.

Afterward, Reference [8] modifies and extends FCN. The backbone is no longer an
existing classification model but a new design. Furthermore, the up-sampling part of FCN
is expanded in order to transform FCN into a U-shaped architecture, the so-called U-Nets.
U-Nets focus on biomedical image segmentation. Next, densely connected convolutional
networks (DenseNets) [23] are merged into U-Nets. As a result, FC-DenseNets [24] are
proposed. Based on U-Nets, UNet++ [9] is proposed as a nested U-Net architecture with
deep supervision. Subsequently, UNet 3+ [10] surpassed U-Net and UNet++ on two
organ datasets. Then, nnU-Nets [25] optimized U-Nets and become the state-of-the-art
segmentation models. nnU-Nets proved their generalizability on the ten organ datasets of
MSD. U-shaped models are dominant in medical image segmentation.

On the other side, DeepLab [26] combines the responses at the final layer of deep
convolutional neural networks with a fully connected conditional random field (CRF).
Then, DeepLabv2 [27] applies the atrous convolution, i.e., convolution with upsampled
filters, to DeepLab. Next, DeepLabv3 [28] augments the effects of atrous convolutions and
abandons CRF. DeepLabv3+ [29] improves DeepLabv3 with the encoder–decoder structure.
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The state-of-the-art segmentation networks consider the down-sampling part origi-
nating from the classification network as the backbone or encoder and the up-sampling
part as the decoder. These perspectives divide the semantic segmentation process into two
parts and connect them via skip connections. However, these designs are experimental. To
be specific, FCNs use two skip connections of small scales to improve precision. U-Net
connects downstream and upstream paths in pairs by scale. UNet++ overlays U-Nets of
various depths and densely connects them at each scale. UNet3+ introduces full-scale skip
connections. DeepLabv3+ uses a skip connection at a medium scale. In general, they have
no clear mathematical explanation for whether a node or a skip connection is necessary.

1.1.2. RKCNNs

RK methods are divided into explicit methods and implicit methods. The explicit RK
methods are easy to implement using a neural network to approximate ODE. However, the
equations of implicit RK methods are too complicated to compute directly. In an ordinary
way, Newton iterations are used to approximate the implicit RK equation. However,
RKCNNs approximate the RK equations using neural networks no matter whether they
are explicit or implicit. Furthermore, the coefficients of RK methods are learned through
training but not specified as in other models. More details of RK methods and RKCNNs
are introduced below.

A neural network stands for a time-dependent dynamical system. The system state y
is a function of time t. Moreover, the rate of change of y is described by ODE [30]:

dy
dt

= f (t, y(t)), y(t0) = y0, (1)

where y0 is the initial value. The RK methods use the ODE to approximate the system state
after a time step. This approximation can be performed step by step. The (n + 1)th time
step of RK methods is written as below [31]:

yn+1 = yn + h ∑s
i=1 bizi, tn+1 = tn + h, n ≥ 0, (2)

where
zi = f

(
tn + cih, yn + h ∑s

j=1 aijzj

)
, 1 ≤ i ≤ s. (3)

The system state at time tn+1 is y(tn+1). In Equation (2), yn+1 is an approximation
of y(tn+1); h is the size of the (n + 1)th time step; h ∑s

i=1 bizi is the increment of y after h.
The slope zi of the ith stage is computed using Equation (3). For s-stage RK methods, the
estimated slope is a weighted average of all s slopes. i.e., ∑s

i=1 bizi. aij, bi, and ci are the
coefficients of RK methods and co-decide the accuracy of the approximation.

RKCNNs are constructed based on the above equations. RKCNN contains three
components: the pre-processor, the post-processor, and the periods between the former
two. The raw images are processed by the pre-processor, which outputs an initial value
to subsequent periods. The last period outputs to the post-processor. Next, the classifier
makes predictions. For different datasets, the number of periods is various. If there are
multiple periods, there are transition layers between different periods. Moreover, the
transition layers reduce the dimension. Large-scale or complex images can be processed
at multiple scales to improve performance. RKCNNs on the MNIST dataset have only
one period, since all in MNIST are handwritten 0 to 9 gray-scale images of 28 × 28 pixels.
Nevertheless, RKCNNs on the SVHN [32] and CIFAR [33] datasets are three-period, since
all in both datasets are complex color images of 32 × 32 pixels. In addition, each period
could be divided into multiple time steps.

If hbizi is denoted by ei, Equation (2) is rewritten as [16]:

yn+1 = yn + ∑s
i=1 ei. (4)

http://yann.lecun.com/exdb/mnist/
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In RKCNNs, the convolutional subnetwork for every time step is constructed based on
Equation (4). There are three different architectures of RKCNN, and they are distinguished
by the suffixes -E, -I, and -R. The difference among these architectures is how to approximate
ei.

In RKCNN-E, ei is approximated by a network Ei as follows [16]:

ei = Ei(yn, e1, . . . , ei−1). (5)

The parameter of this network is a function of tn, aij, bi, and ci. i.e., tn, aij, bi, and ci are
learned through training rather than being specified [16].

RKCNN-I and RKCNN-R use Equation (5) to approximate xi, which is the initial value
of ei [16]. i.e., xi is written as below:

xi = Xi(yn, x1, . . . , xi−1). (6)

In RKCNN-I, a network as shown below approximates ei using xi [16]:

ei = Ii(yn, e1, . . . , ei−1, xi+1, . . . , xs). (7)

In RKCNN-R, the network for approximating ei is slightly different from Equation (7).
It is written as follows [16]:

ei = Ri(yn, x1, . . . , xi−1, xi+1, . . . , xs). (8)

We introduce RKCNNs into semantic segmentation. Table A1 describes all of the
above mathematical symbols.

2. Materials and Methods
2.1. Architecture of RKSegs
2.1.1. RKCNN-Based FCN

We make the prototype of RKSegs based on single-stream FCNs. At first, RKCNNs are
classification networks. Therefore, we can adapt them to FCNs. Since the MNIST dataset
and many medical image datasets are grey-scale maps, we choose the RKCNNs for MNIST
as the backbone of FCNs. Specifically, down-samplings in the pre-processor are the same
as in the original models. The pooling layer before the full connection is removed. The full
connection in the post-processor is changed to 1 × 1 convolution for pixel-wise prediction.
In addition, up-sampling is appended at the end of the network. Since truncation errors
can accumulate over multiple time steps [34], only one time step is used like in the original
models, i.e., n = 0. Then, we get RKCNN-based FCNs as the prototype of RKSegs. An
example is shown in Figure 1.

Skip connectionDown-sampling Up-sampling

k k k k k c

E1 E2 E3 +y0 e1 e2

y0

y0 e1

L

y1

k

k

E4e3

y0

e1

e2

k

1x1 conv4x4 conv3x3 conv
1x1, k

3x3, k
conv

Figure 1. FCN with a 4-stage RKCNN-E as the backbone. y0 is the initial state, while y1 is the system
state after one time step. Ei is the convolutional subnetwork for the ith stage described in Equation (5),
where 1 ≤ i ≤ 4. ei is the weighted increment of the ith stage. According to the RK method, y1 is
the sum of y0 and the weighted average of the increments. k is the number of output channels per
subnetwork. c is the number of classes.
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2.1.2. From FCN to RKSeg

The prototype of RKSeg is FCN, which uses the RKCNNs for the MNIST dataset as
the backbone. The image size of the MNIST dataset is 28 × 28 pixels. However, the medical
images are much larger than this size. Hence, we must improve the model. Additionally,
the major computations in the prototype are on the same scale. Nevertheless, multiple
scales can bring benefits to segmentation. Thus, we must consider the scheme to reduce
the dimension.

We remove down-sampling from the pre-processor and add down-sampling bef in
order to preserve more multi-scale information. If RKCNN-E is used as the backbone,
based on Equations (4) and (5), the model is described as follows:

y1 = y0 +
s

∑
i=1

U(ei), (9)

where
ei = Ei(D(y0), D(e1), . . . , D(ei−1)). (10)

In Equation (9), U(·) is a function for up-sampling ei as the same scale as y0. In
Equation (10), D(·) is a function for down-sampling input as the same scale as ei. The
resulting model is shown in Figure 2b. It is referred to as RKSeg-L, since the core of the
network is on the left.

In consideration of the superiority of nnU-Nets on medical image segmentation, we
use nnU-Nets for reference to adapt RKSegs. In nnU-Nets, the subnetwork in each node
is
[

3×3, m
3×3, m

]
convolutional layers, where m is the number of output channels. m gradually

doubles as the scale gets smaller until 480. In RKSegs, we use
[

3×3, k
3×3, k

]
convolutional layers,

where k does not change but remains the same as the initial number. Like the last node

of nnU-Nets, the post-processor of RKSegs is
[

3×3, k
3×3, k
1×1, c

]
convolutional layers, where c is the

number of classes.
In addition, except for the first stage, every stage in RKSegs has multi-scale input.

Therefore, the convolutional down-sampling in nnU-Nets is not applicable for RKSegs. We
adopt MaxPool for down-sampling and interpolation for up-sampling in RKSegs. Although
deep supervision is helpful to UNet++, UNet 3+, and nnU-Net, we do not use it in RKSegs,
since it cannot be explained from the dynamical systems view.
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Figure 2. Comparison of nnU-Net and proposed RKSegs. The number under each node denotes
the number of output channels. c is the number of classes. (a) nnU-Net. (b) RKSeg-L based on
RKCNN-E. Ei is the subnetwork described in Equation (10). (c) RKSeg-R based on RKCNN-E. Ei is
the subnetwork described in Equation (14). (d) RKSeg-L based on RKCNN-I. Xi is the subnetwork
described in Equation (11). Ii is the subnetwork described in Equation (12). (e) RKSeg-R based
on RKCNN-I. Xi is the subnetwork described in Equation (15). Ii is the subnetwork described in
Equation (16). (f) RKSeg-L based on RKCNN-R. Xi is the subnetwork described in Equation (11). Ri

is the subnetwork described in Equation (13). (g) RKSeg-R based on RKCNN-R. Xi is the subnetwork
described in Equation (15). Ri is the subnetwork described in Equation (17).
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Similarly, to construct RKSeg-L with RKCNN-I or RKCNN-R as the backbone, we
rewrite Equation (6) as below:

xi = Xi(D(y0), D(x1), . . . , D(xi−1)). (11)

For RKSeg-L based on RKCNN-I, we rewrite Equation (7) as below:

ei = Ii(D(y0), D(e1), . . . , D(ei−1), D(xi+1), . . . , D(xs)). (12)

For RKSeg-L based on RKCNN-R, we rewrite Equation (8) as below:

ei = Ri(D(y0), D(x1), . . . , D(xi−1), D(xi+1), . . . , D(xs)). (13)

The resulting models are shown in Figure 2d,f.

2.1.3. More Variants

In RKSeg-L, the computations of stages are from large scale to small scale. This
sequence can be reversed. Therefore, we down-sample the initial state y0 and then up-
sample after each stage. In other words, for RKSeg based on RKCNN-E, Equation (5) is
rewritten as below:

ei = Ei(D(y0), V(e1), . . . , V(ei−1)). (14)

In Equation (14), V(·) is a function for up-sampling input as the same scale as ei. This
type of RKSeg is shown in Figure 2c. It is referred to as RKSeg-R, since the core of the
network is on the right.

Similarly, to construct RKSeg-R with RKCNN-I or RKCNN-R as the backbone, we
rewrite Equation (6) as below:

xi = Xi(D(y0), V(x1), . . . , V(xi−1)). (15)

For RKSeg-R based on RKCNN-I, we rewrite Equation (7) as below:

ei = Ii(D(y0), V(e1), . . . , V(ei−1), V(xi+1), . . . , V(xs)). (16)

For RKSeg-R based on RKCNN-R, we rewrite Equation (8) as below:

ei = Ri(D(y0), V(x1), . . . , V(xi−1), V(xi+1), . . . , V(xs)). (17)

The resulting models are shown in Figure 2e,g.
According to the comparison in Figure 2, the number of nodes in RKSegs is almost half

that in nnU-Nets with the same down-sampling depth. Moreover, the number of feature
maps is reduced remarkably. Most importantly, nodes and skip connections of RKSegs are
justified in the RK method.

2.2. Experiments

We evaluate RKSegs and state-of-the-art segmentation networks on the MSD dataset.
The MSD tests the generalisability of algorithms when applied to 10 different semantic
segmentation tasks. It involves ten organs: brain, heart, liver, hippocampus, prostate, lung,
pancreas, hepatic vessel, spleen, and colon. Some medical images in MSD are MRI scans,
and others are CT scans.

Owing to the superiority of nnU-Nets on MSD, we evaluate UNet++, UNet 3+, and
RKSeg following the configuration of nnU-Nets, i.e., they have the same initial number
of feature maps, depth of down-sampling, convolutions, and loss function as nnU-Nets
on each organ dataset. However, DeepLabv3+ and FC-DenseNet do not follow these
configurations since they are very different from UNets. Moreover, nnU-Net, UNet++, and
UNet 3+ adopt deep supervision, while RKSeg, DeepLabv3+, and FC-DenseNet do not use
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deep supervision. For efficiency, MobileNetV2 [35] is used as the backbone for DeepLabv3+.
FC-DenseNet56 is evaluated. All of the evaluated models use 2D convolutions.

We implement RKSegs within the nnU-Net framework, which is written using Pytorch.
The code of RKSegs is available at https://github.com/ZhuMai/RKSeg (accessed on 26
March 2023). It can be integrated into the nnU-Net framework to train.

The nnU-Net framework creates a five-fold cross-validation using all of the available
training cases in MSD. We do not carry out cross-validation for RKSegs but entirely follow
the configuration and training hyperparameters of nnU-Nets. For example, stochastic
gradient descent with an initial learning rate of 0.01 and a Nesterov momentum of 0.99 is
used. Moreover, RKSegs are trained in the same batch sizes as nnU-Nets.

We choose the first fold split by nnU-Net, i.e., fold 0, to evaluate all the competitive
models since MSD does not release the ground truth of the testing cases. All of the evaluated
models are trained from scratch for 150 epochs on GeForce RTX 3080 GPU. The training
is carried out three times. The testing cases are only used to evaluate the inference time.
All the data are pre-processed by the nnU-Net framework. Details of the data used in our
experiments are listed in Table 1.

Table 1. Introduction of datasets used in experiments.

Organs Segmentation Target Training
Cases

Validation
Cases

Testing
Cases Modality Type

Brain
1: edema

387 97 266 Multimodal multisite MRI data 4D2: non-enhancing tumor
3: enhancing tumor

Heart left atrium 16 4 10 Mono-modal MRI 3D

Liver 1: liver 104 27 70 Portal venous phase CT 3D2: cancer

Hippocampus 1: anterior 208 52 130 Mono-modal MRI 3D2: posterior

Prostate 1: peripheral zone 25 7 16 Multimodal MR 4D2: transition zone
Lung cancer 50 13 32 CT 3D

Pancreas 1: pancreas 224 57 139 Portal venous phase CT 3D2: cancer

Hepatic Vessel 1: vessel 242 61 140 CT 3D2: tumour
Spleen spleen 32 9 20 CT 3D
Colon colon cancer primaries 100 26 64 CT 3D

We first compare RKSegs with different backbones, i.e., RKCNN-E, RKCNN-I, and
RKCNN-R. The stages are alternately updated in RKCNN-I and RKCNN-R so it has at
least two stages [16]. Moreover, the number of subnetworks in a time step must be even.
In the configuration of nnU-Nets, the depth of down-sampling is even only on the heart
and prostate datasets. Therefore, we only compare RKSegs with different backbones on the
heart and prostate datasets. Next, we compare RKSegs with state-of-the-art models on all
ten organ datasets of MSD.

3. Results
3.1. Comparison of Backbones

Dice similarity coefficients (DSCs) are evaluated on the validation sets of MSD. The
number of parameters and DSCs are listed in Table 2. For the shown models of the prostate,
the mean DSC of the two segmentation targets is the highest among the three runs.

https://github.com/ZhuMai/RKSeg
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Table 2. DSCs of RKSegs with different backbones. DSCs are listed sequentially according to the
segmentation targets of the corresponding organs in Table 1. The mean ± std over three runs is in
brackets. The unit of parameters is a million bytes. The highest DSCs are in blue.

Heart Prostate

Models Backbones Params Left Atrium Params Peripheral
Zone

Transition
Zone Mean

RKSeg-L

RKCNN-E 0.28 0.9137
(0.9101± 0.0032) 0.28 0.6642

(0.6522± 0.0105)
0.8715

(0.8709± 0.0042)
0.7678

(0.7615± 0.0068)

RKCNN-I 0.22 0.8983
(0.8937 ± 0.0033) 0.22 0.6430

(0.6392 ± 0.0071)
0.8641

(0.8604 ± 0.0027)
0.7535

(0.7498 ± 0.0040)

RKCNN-R 0.22 0.9028
(0.9008 ± 0.0022) 0.22 0.6563

(0.6510 ± 0.0039)
0.8703

(0.8663 ± 0.0055)
0.7633

(0.7587 ± 0.0044)

RKSeg-R

RKCNN-E 0.28 0.9136
(0.9108± 0.0020) 0.28 0.6608

(0.6486± 0.0088)
0.8740

(0.8717 ± 0.0023)
0.7674

(0.7602± 0.0051)

RKCNN-I 0.22 0.9117
(0.9102 ± 0.0015) 0.22 0.6553

(0.6382 ± 0.0144)
0.8694

(0.8587 ± 0.0076)
0.7624

(0.7485 ± 0.0104)

RKCNN-R 0.22 0.9086
(0.9060 ± 0.0029) 0.22 0.6601

(0.6439 ± 0.0115)
0.8733

(0.8723± 0.0023)
0.7667

(0.7581 ± 0.0063)

According to the experimental results, RKSegs based on RKCNN-E get higher DSCs
than the others. Furthermore, they have no limitation on the depth of down-sampling, so
they can be used on more datasets. As a result, we consider that RKCNN-E is more suitable
as the backbone of RKSegs.

3.2. Compared to State-of-the-Art Models

We compare RKSegs based on RKCNN-E with state-of-the-art models. If there are
multiple segmentation targets on an organ dataset, we choose the model with the highest
mean of all targets across the three runs. The experimental data are shown in Table 3.

Table 3. DSCs of competitive models on the validation sets of MSD. DSCs are listed sequentially
according to the segmentation targets of the corresponding organs in Table 1. The mean ± std over
three runs is in brackets. The unit of parameters is a million bytes. The training time is shown in the
format of hh:mm:ss. The experimental data on ten organ datasets are divided into (a)~(j). The fewest
parameters and the highest DSCs are in blue.

(a) Brain

Models Params Edema Non-Enhancing
Tumor Enhancing Tumor Mean Time

nnU-Net [25] 18.67 0.7876
(0.7869 ± 0.0006)

0.6046
(0.6036 ± 0.0010)

0.7527
(0.7489 ± 0.0033)

0.7150
(0.7131 ± 0.0015) 3:22:49

UNet++ [9] 24.00 0.7840
(0.7870 ± 0.0023)

0.6084
(0.6040 ± 0.0031)

0.7580
(0.7578 ± 0.0004)

0.7168
(0.7163 ± 0.0006) 4:42:23

UNet 3+ [10] 11.98 0.6218
(0.6113 ± 0.0079)

0.4137
(0.4159 ± 0.0122)

0.4782
(0.4808 ± 0.0137)

0.5046
(0.5027 ± 0.0014) 22:01:57

DeepLabv3+ [29] 5.22 0.7820
(0.7785 ± 0.0026)

0.5737
(0.5731 ± 0.0026)

0.7235
(0.7249 ± 0.0043)

0.6931
(0.6922 ± 0.0007) 2:52:06

FC-DenseNet56 [24] 2.50 0.7773
(0.7780 ± 0.0006)

0.6045
(0.6034 ± 0.0026)

0.7556
(0.7538 ± 0.0046)

0.7124
(0.7117 ± 0.0009) 2:19:45

RKSeg-L (ours) 0.21 0.7865
(0.7853 ± 0.0014)

0.6091
(0.6054 ± 0.0037)

0.7628
(0.7565 ± 0.0072)

0.7194
(0.7157 ± 0.0041) 6:10:22

RKSeg-R (ours) 0.21 0.7787
(0.7818 ± 0.0022)

0.6092
(0.6061 ± 0.0024)

0.7566
(0.7515 ± 0.0036)

0.7148
(0.7131 ± 0.0012) 2:42:23
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Table 3. Cont.

(b) Heart

Models Params Left Atrium Time

nnU-Net [25] 29.97 0.9191 (0.9190 ± 0.0001) 2:29:16
UNet++ [9] 49.35 0.9138 (0.9136 ± 0.0002) 2:59:31
UNet 3+ [10] 18.13 0.6555 (0.6528 ± 0.0021) 36:17:41
DeepLabv3+ [29] 5.22 0.9000 (0.8969 ± 0.0026) 1:15:27
FC-DenseNet56 [24] 2.49 0.9230 (0.9175 ± 0.0039) 2:36:19
RKSeg-L (ours) 0.28 0.9137 (0.9101 ± 0.0032) 11:19:51
RKSeg-R (ours) 0.28 0.9136 (0.9108 ± 0.0020) 1:40:39

(c) Liver

Models Params Liver Cancer Mean Time

nnU-Net [25] 41.26 0.9586 (0.9563 ± 0.0017) 0.5662 (0.5560 ± 0.0121) 0.7624 (0.7562 ± 0.0064) 2:33:14
UNet++ [9] 86.77 0.9514 (0.9512 ± 0.0003) 0.4861 (0.4693 ± 0.0123) 0.7187 (0.7102 ± 0.0062) 4:42:29
UNet 3+ [10] 25.01 0.0000 (0.0000 ± 0.0000) 0.0000 (0.0000 ± 0.0000) 0.0000 (0.0000 ± 0.0000) 55:50:10
DeepLabv3+ [29] 5.22 0.9569 (0.9562 ± 0.0005) 0.5523 (0.5455 ± 0.0090) 0.7546 (0.7508 ± 0.0046) 1:32:43
FC-DenseNet56 [24] 2.49 0.8545 (0.8597 ± 0.0071) 0.2645 (0.2542 ± 0.0074) 0.5595 (0.5570 ± 0.0029) 2:37:57
RKSeg-L (ours) 0.35 0.9517 (0.9524 ± 0.0013) 0.5454 (0.5257 ± 0.0186) 0.7485 (0.7390 ± 0.0095) 17:22:25
RKSeg-R (ours) 0.35 0.9461 (0.9458 ± 0.0003) 0.4597 (0.4458 ± 0.0115) 0.7029 (0.6958 ± 0.0058) 1:57:55

(d) Hippocampus

Models Params Anterior Posterior Mean Time

nnU-Net [25] 1.93 0.8866 (0.8864 ± 0.0001) 0.8691 (0.8689 ± 0.0005) 0.8778 (0.8777 ± 0.0002) 1:06:31
UNet++ [9] 2.21 0.8878 (0.8871 ± 0.0006) 0.8698 (0.8699 ± 0.0001) 0.8788 (0.8785 ± 0.0002) 1:19:40
UNet 3+ [10] 2.07 0.8627 (0.8617 ± 0.0008) 0.8372 (0.8367 ± 0.0004) 0.8500 (0.8492 ± 0.0005) 4:11:23
DeepLabv3+ [29] 5.22 0.8752 (0.8750 ± 0.0004) 0.8588 (0.8582 ± 0.0005) 0.8670 (0.8666 ± 0.0003) 1:03:57
FC-DenseNet56 [24] 2.49 0.8932 (0.8922 ± 0.0008) 0.8751 (0.8745 ± 0.0005) 0.8841 (0.8833 ± 0.0006) 2:15:51
RKSeg-L (ours) 0.11 0.8894 (0.8886 ± 0.0008) 0.8731 (0.8724 ± 0.0005) 0.8813 (0.8805 ± 0.0006) 0:49:29
RKSeg-R (ours) 0.11 0.8892 (0.8889 ± 0.0007) 0.8736 (0.8728 ± 0.0007) 0.8814 (0.8809 ± 0.0007) 0:49:21

(e) Prostate

Models Params Peripheral Zone Transition Zone Mean Time

nnU-Net [25] 29.97 0.6747 (0.6685 ± 0.0044) 0.8827 (0.8808 ± 0.0015) 0.7787 (0.7747 ± 0.0030) 2:34:08
UNet++ [9] 49.35 0.7129 (0.6982 ± 0.0104) 0.8855 (0.8842 ± 0.0012) 0.7992 (0.7912 ± 0.0056) 3:03:04
UNet 3+ [10] 18.15 0.5402 (0.5218 ± 0.0187) 0.8381 (0.8329 ± 0.0039) 0.6892 (0.6774 ± 0.0113) 36:37:15
DeepLabv3+ [29] 5.22 0.6409 (0.6128 ± 0.0206) 0.8726 (0.8666 ± 0.0043) 0.7568 (0.7397 ± 0.0125) 1:29:24
FC-DenseNet56 [24] 2.50 0.7149 (0.7026 ± 0.0090) 0.8875 (0.8832 ± 0.0035) 0.8012 (0.7929 ± 0.0062) 3:14:00
RKSeg-L (ours) 0.28 0.6642 (0.6522 ± 0.0105) 0.8715 (0.8709 ± 0.0042) 0.7678 (0.7615 ± 0.0068) 11:31:27
RKSeg-R (ours) 0.28 0.6608 (0.6486 ± 0.0088) 0.8740 (0.8717 ± 0.0023) 0.7674 (0.7602 ± 0.0051) 1:45:07

(f) Lung

Models Params Cancer Time

nnU-Net [25] 41.26 0.5620 (0.5557 ± 0.0047) 2:34:18
UNet++ [9] 86.77 0.4915 (0.4531 ± 0.0274) 4:15:01
UNet 3+ [10] 24.99 0.0000 (0.0000 ± 0.0000) 55:12:41
DeepLabv3+ [29] 5.22 0.5929 (0.5468 ± 0.0326) 1:18:37
FC-DenseNet56 [24] 2.49 0.4302 (0.4173 ± 0.0101) 2:21:04
RKSeg-L (ours) 0.35 0.5302 (0.5085 ± 0.0163) 17:09:48
RKSeg-R (ours) 0.35 0.5961 (0.5763 ± 0.0219) 1:45:26



Bioengineering 2023, 10, 506 11 of 16

Table 3. Cont.

(g) Pancreas

Models Params Pancreas Cancer Mean Time

nnU-Net [25] 41.26 0.7418 (0.7434 ± 0.0015) 0.3644 (0.3533 ± 0.0093) 0.5531 (0.5484 ± 0.0039) 2:40:00
UNet++ [9] 86.77 0.6906 (0.6889 ± 0.0027) 0.3393 (0.3320 ± 0.0064) 0.5150 (0.5104 ± 0.0044) 4:23:14
UNet 3+ [10] 25.01 0.0000 (0.0000 ± 0.0000) 0.0000 (0.0000 ± 0.0000) 0.0000 (0.0000 ± 0.0000) 55:29:29
DeepLabv3+ [29] 5.22 0.6982 (0.6843 ± 0.0110) 0.2964 (0.2821 ± 0.0102) 0.4973 (0.4832 ± 0.0102) 1:24:22
FC-DenseNet56 [24] 2.49 0.3575 (0.3332 ± 0.0207) 0.2067 (0.1941 ± 0.0104) 0.2821 (0.2637 ± 0.0156) 2:25:15
RKSeg-L (ours) 0.35 0.7090 (0.7084 ± 0.0034) 0.3395 (0.3264 ± 0.0104) 0.5242 (0.5174 ± 0.0063) 17:13:50
RKSeg-R (ours) 0.35 0.6798 (0.6802 ± 0.0016) 0.3193 (0.3007 ± 0.0179) 0.4995 (0.4904 ± 0.0094) 1:49:43

(h) Hepatic Vessel

Models Params Vessel Tumour Mean Time

nnU-Net [25] 41.26 0.6631 (0.6603 ± 0.0026) 0.6548 (0.6500 ± 0.0035) 0.6590 (0.6552 ± 0.0027) 2:38:24
UNet++ [9] 86.77 0.6522 (0.6512 ± 0.0036) 0.6419 (0.6322 ± 0.0078) 0.6471 (0.6417 ± 0.0038) 4:20:34
UNet 3+ [10] 25.01 0.1120 (0.0921 ± 0.0221) 0.2638 (0.2646 ± 0.0043) 0.1879 (0.1784 ± 0.0132) 55:24:44
DeepLabv3+ [29] 5.22 0.6392 (0.6343 ± 0.0041) 0.6473 (0.6358 ± 0.0082) 0.6432 (0.6350 ± 0.0060) 1:23:00
FC-DenseNet56 [24] 2.49 0.5923 (0.5864 ± 0.0043) 0.3963 (0.3599 ± 0.0270) 0.4943 (0.4731 ± 0.0156) 2:29:33
RKSeg-L (ours) 0.35 0.6522 (0.6507 ± 0.0019) 0.6372 (0.6328 ± 0.0033) 0.6447 (0.6417 ± 0.0021) 17:13:56
RKSeg-R (ours) 0.35 0.6475 (0.6465 ± 0.0009) 0.5971 (0.5706 ± 0.0195) 0.6223 (0.6085 ± 0.0101) 1:49:12

(i) Spleen

Models Params Spleen Time

nnU-Net [25] 41.26 0.9082 (0.9059 ± 0.0017) 2:27:17
UNet++ [9] 86.77 0.9101 (0.8960 ± 0.0119) 3:47:19
UNet 3+ [10] 24.99 0.5711 (0.5561 ± 0.0153) 54:49:08
DeepLabv3+ [29] 5.22 0.9228 (0.9158 ± 0.0062) 1:13:43
FC-DenseNet56 [24] 2.49 0.5632 (0.4762 ± 0.0774) 2:07:48
RKSeg-L (ours) 0.35 0.9222 (0.9151 ± 0.0055) 17:09:42
RKSeg-R (ours) 0.35 0.9171 (0.9165 ± 0.0006) 1:41:05

(j) Colon

Models Params Colon Cancer Primaries Time

nnU-Net [25] 41.26 0.2718 (0.2434 ± 0.0202) 2:32:09
UNet++ [9] 86.77 0.2088 (0.1844 ± 0.0184) 3:01:07
UNet 3+ [10] 24.99 0.0000 (0.0000 ± 0.0000) 36:55:21
DeepLabv3+ [29] 5.22 0.2082 (0.1929 ± 0.0169) 1:17:03
FC-DenseNet56 [24] 2.49 0.1496 (0.1022 ± 0.0336) 1:38:18
RKSeg-L (ours) 0.35 0.2960 (0.2857 ± 0.0122) 17:07:55
RKSeg-R (ours) 0.35 0.2311 (0.2248 ± 0.0066) 1:43:32

Furthermore, we evaluate the inference time of the competitive models on testing
cases of MSD. The results are shown in Table 4.

Table 4. Average inference time per test case in MSD. The unit of time is second. The shortest time is
in blue.

Models Brain Heart Liver Hippocampus Prostate Lung Pancreas Hepatic
Vessel Spleen Colon

nnU-Net [25] 2.93 5.60 42.25 0.42 0.93 24.18 8.82 6.16 8.07 7.53
UNet++ [9] 5.47 8.35 135.64 0.58 1.55 108.13 40.60 27.21 36.84 35.43
UNet 3+ [10] 5.62 8.85 136.35 0.64 1.75 111.54 40.41 27.77 37.60 35.21
DeepLabv3+ [29] 3.61 4.83 43.39 0.81 0.91 22.24 8.28 5.71 7.42 7.31
FC-DenseNet56 [24] 4.60 6.10 82.42 0.98 1.21 60.08 23.37 15.85 21.27 20.31
RKSeg-L (ours) 2.06 3.48 37.55 0.31 0.75 18.63 6.49 4.56 5.89 5.55
RKSeg-R (ours) 2.21 3.46 37.00 0.33 0.71 20.34 7.08 4.93 6.34 5.90
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A segmentation result of RKSeg-L on the spleen dataset is shown in Figure 3. RKSeg-L
can even segment more curved details on the right side of the spleen. Its segmentation
result is more like the raw image than the label.

(a) (b) (c)
Figure 3. Demonstration of the segmentation result of RKSeg-L on the spleen dataset. (a) Raw image.
(b) Label. (c) Segmentation of RKSeg-L.

4. Discussion

We construct RKSegs based on RKCNNs. If RKCNN-I or RKCNN-R has the same num-
ber of nodes as RKCNN-E, then it has half the stages of RKCNN-E, because it updates each
stage alternately [16]. Therefore, the number of skipped connections from the stages to the
addition in RKCNN-I or RKCNN-R is only half of that in RKCNN-E. Hence, RKSegs based
on RKCNN-E have more information from different stages at different scales. Multi-scale
information can bring benefits to segmentation. As expected, RKSegs based on RKCNN-E
achieve higher DSCs than corresponding RKSegs based on RKCNN-I or RKCNN-R. As a
result, RKSegs based on RKCNN-E are chosen for comparison with state-of-the-art models.

According to the experimental results, our RKSegs have the fewest parameters. At the
same time, RKSegs achieve the highest mean DSCs over three runs on three CT datasets,
namely the lung, spleen, and colon datasets. In addition, on the brain dataset, which is
an MRI dataset, RKSeg wins on a segmentation target, while UNet++ wins on the other
two targets and the mean of three targets. On the other six organ datasets, RKSegs obtain
competitive DSCs with only 0.85~11% of the parameters of the best models. Additionally,
according to the standard deviation of three runs, RKSegs are stable. In terms of training
time, RKSegs obtain the shortest time once, the second shortest time eight times, and the
third shortest time once. However, the inference time of RKSegs is the shortest among all
of the evaluated models.

FC-DenseNet56 achieves the highest mean DSCs over three runs on two MRI datasets,
the hippocampus and prostate datasets. On the prostate dataset, FC-DenseNet56 wins on a
segmentation target and the mean of two targets, while UNet++ wins on the other target.
Additionally, the performance of FC-DenseNet56 is very poor on six CT datasets. nnU-Nets
achieve the highest mean DSCs over three runs on one MRI dataset and three CT datasets.
Nevertheless, nnU-Nets have a lot of parameters on each organ dataset. UNet++ achieves
the highest mean DSC over three runs on an MRI dataset, the brain dataset. However,
UNet++ has the most parameters among all of the evaluated models.

In summation, RKSegs are general and efficient on diverse organ datasets with differ-
ent modalities.

For the encoder–decoder structure, skip connections are used to introduce multi-scale
information in prediction. However, whether to add nodes for the decoder and where to
add skip connections are up to experimentation.

Contrarily, RKSegs are constructed from the dynamical systems view. Each node
and skip connection of RKSegs is justified in the RK methods. Hence, RKSegs avoid
many superfluous components in other models. Computational resources are greatly
saved. Experimental results show that RKSegs have much higher efficiency than competing
models and generalize across diverse organ datasets. Even so, the efficiency of RKSegs still
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could be improved. For example, the convolutional subnetwork of each node, the depth of
the network, and the training hyperparameters of RKSegs are all the same as nnU-Nets in
our experiments. They can be tuned to improve the performance of RKSegs.

5. Conclusions

The encoder–decoder structure is a well-known structure in medical image segmen-
tation. However, the composition of the decoder and the skip connections between the
encoder and decoder are designed experimentally. Therefore, segmentation models are
either inefficient or not generalizable across different organs. To remedy these deficiencies,
we introduce a dynamical systems view to build segmentation models.

We propose a novel segmentation network based on RKCNNs, which use RK methods
to construct networks. Our network is called RKSeg. Unlike RKCNNs, RKSegs perform
down-sampling and up-sampling within a time step of the RK methods. In RKSegs, each
node and skip connection is meaningful in the RK methods. According to the experiments,
RKSegs based on RKCNN-E achieve superior performance on the ten organ datasets of
MSD, while they have much fewer parameters than other models. Furthermore, RKSegs
have a shorter inference time than competitive models on each organ dataset.

Mathematical methods bring benefits to the performance of network models. Our
work may inspire new ideas about segmentation networks.
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Appendix A

An introductions to the math symbols mentioned in the main text in summarized in
Table A1.

http://medicaldecathlon.com/
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Table A1. Introductions to the math symbols in the main text.

Math Symbols Introduction

t A scalar representing time.
y A vector representing the state of a dynamical system.
y(t) y is a function of t.
dy
dt The rate of change of the system state.
tn The nth moment.
t0 The initial time.
y(tn) The system state at tn.
yn An approximation of y(tn).
y0 The initial state of the system.
h The size of the time step from tn to tn+1.
s The stages of RK methods.
zi The slope in the ith stage.

aij
A coefficient of RK methods. It indicates the dependence of the stages on the
derivatives found at other stages.

bi
A coefficient of RK methods. All bi are quadrature weights, showing how the
final result depends on the derivatives computed at the various stages.

ci
A coefficient of RK methods. It indicates the position of the stage value within
the time step.

∑s
i=1 bizi The weighted average of zi as the estimated slope.

h ∑s
i=1 bizi The increment of the system state after the duration h.

hbizi The weighted increment of the ith stage.
ei It stands for hbizi.
xi The initial value of ei in RKCNN-I and RKCNN-R.
Ei The convolutional subnetwork to get ei in RKCNN-E.
Xi The convolutional subnetwork to get xi in RKCNN-I or RKCNN-R.
Ii The convolutional subnetwork to get ei in RKCNN-I.
Ri The convolutional subnetwork to get ei in RKCNN-R.
m The number of convolution filters. It is variable.
k The number of convolution filters. It is constant.
c The number of classes.
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