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Abstract: Craniotomy is a fundamental component of neurosurgery that involves the removal of the
skull bone flap. Simulation-based training of craniotomy is an efficient method to develop competent
skills outside the operating room. Traditionally, an expert surgeon evaluates the surgical skills using
rating scales, but this method is subjective, time-consuming, and tedious. Accordingly, the objective
of the present study was to develop an anatomically accurate craniotomy simulator with realistic
haptic feedback and objective evaluation of surgical skills. A CT scan segmentation-based craniotomy
simulator with two bone flaps for drilling task was developed using 3D printed bone matrix material.
Force myography (FMG) and machine learning were used to automatically evaluate the surgical skills.
Twenty-two neurosurgeons participated in this study, including novices (n = 8), intermediates (n = 8),
and experts (n = 6), and they performed the defined drilling experiments. They provided feedback
on the effectiveness of the simulator using a Likert scale questionnaire on a scale ranging from 1 to
10. The data acquired from the FMG band was used to classify the surgical expertise into novice,
intermediate and expert categories. The study employed naïve Bayes, linear discriminant (LDA),
support vector machine (SVM), and decision tree (DT) classifiers with leave one out cross-validation.
The neurosurgeons’ feedback indicates that the developed simulator was found to be an effective tool
to hone drilling skills. In addition, the bone matrix material provided good value in terms of haptic
feedback (average score 7.1). For FMG-data-based skills evaluation, we achieved maximum accuracy
using the naïve Bayes classifier (90.0 ± 14.8%). DT had a classification accuracy of 86.22 ± 20.8%,
LDA had an accuracy of 81.9 ± 23.6%, and SVM had an accuracy of 76.7 ± 32.9%. The findings of this
study indicate that materials with comparable biomechanical properties to those of real tissues are
more effective for surgical simulation. In addition, force myography and machine learning provide
objective and automated assessment of surgical drilling skills.

Keywords: surgical skills; drilling; bone matrix; 3D printing; force myography; artificial intelligence

1. Introduction

Craniotomy is a surgical procedure in which a flap of the skull bone is removed
in order to expose the dura and access the brain [1]. It is an integral part of all neuro-
surgical procedures and involves the usage of high-speed drills and other specialized
instruments [2]. During a craniotomy procedure, dural tear or rupture can have several
adverse consequences, such as cerebrospinal fluid (CSF) leak, infection, hematoma, or
brain herniation [3,4]. Furthermore, patients suffering from traumatic head injuries in rural
areas require immediate surgical intervention even in the absence of neurosurgeons [5].
Therefore, competent training of craniotomy procedures in a safe and repeatable environ-
ment is essential for neurosurgeons as well as community general surgeons [6,7]. However,
the typical time-based apprenticeship paradigm for craniotomy training lacks hands-on
experience in the early stages and may compromise patient safety later on. Therefore, the
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concept of competency-based training is being adopted widely [8]. This method includes
use of simulation-based training models to hone skills outside the operating room in a safe
and repeatable manner [9].

Physical as well as virtual reality simulators can be used to provide simulation-based
training [10,11]. Among these, physical simulators provide real-time haptic feedback and
are more effective for psychomotor skills training [10]. Patient-specific physical simulators
constructed using computed tomography (CT) and magnetic resonance imaging (MRI)
data of patients provide a more realistic training environment [12]. Typically, 3D printing is
employed to fabricate the intricate structures of a physical simulator due to their complex
shape [13]. Various 3D printed materials, such as acrylonitrile butadiene styrene (ABS)
plastic, polyamide, gypsum, and polymers are used to fabricate cranial bones for surgical
simulators [14]. However, the majority of these lack biomechanical properties and do
not accurately replicate natural bone drilling [15]. Realistic tissue fidelity is essential to
provide a tool–tissue interaction feel similar to surgery. Therefore, physical neurosurgical
simulators require materials that mimic the biomechanical properties of the skull [16].

Evaluation of surgical skills is essential for competency-based training, since it pro-
vides trainees with feedback on their performance [17]. Traditionally, the evaluation of
surgical skills relied on an expert surgeon assessing the performance of trainees; however,
this method suffers from inter-observer bias and the limited availability of experts [18]. The
virtual reality simulators have a defined workspace, which makes skill validation consider-
ably more straightforward [19]. However, with physical simulators, evaluating surgical
skills is more challenging. The objective evaluation on physical simulators can be carried
out using computer vision techniques or by using electronic sensors. Video-based analysis
includes tracking and analysis of the surgical instrument movements [20]. However, video
cannot capture the data related to tool–tissue interaction, such as applied force, muscular
workload, cognitive workload, and gaze pattern. Therefore, various sensors, including
electroencephalography (EEG) [21], electromyography (EMG) [22], inertial measurement
units (IMU) [23], force sensors [24], and eye-tracking [25], have been employed in previous
studies to evaluate surgical skills. However, the sensor-based data collection system must
be minimal and should not impede the natural movements of the surgeons [26].

The aim of the present study was to develop a craniotomy simulator and system for the
objective evaluation of surgical skills. The specific contributions of the present work are as
follows: (i) The study described the development and validation of a realistic neurosurgical
craniotomy simulator for microscopic drilling activity; (ii) 3D printed materials that mimic
biomechanical properties were used to fabricate skull and dura; (iii) a force myography
band was developed to measure the variation in forearm muscle radial force patterns
during surgical drilling activity; (iv) various machine learning algorithms were used to
classify the level of surgical expertise.

2. Methodology
2.1. Simulator Design and Fabrication

A patient’s CT scan data were obtained after written consent. The data were used to
segment the scalp, skull, and dura using Simpleware ScanIP software R-2021.03 (Synopsys
Inc, Mountain View, CA, United States). The editable 3D models of these anatomical
structures were exported in the STEP format using the ScanIP NURBS module. The STEP
files were imported into the NX 2007 (Siemens, Munich, Germany) computer-aided design
software. Two square-shaped cutouts were created in the frontal region of the scalp to
expose the skull. Inside these cutouts, two flaps for the craniotomy training were created.
Support structures were modeled around these two flaps and holes were made to fix the
flaps to the scalp. An angulated base plate was designed to provide surgical position for
the craniotomy procedure. Burr holes and lines were also designed on the drilling patches
to provide markings for defined drilling activity [27]. The drilling activity includes making
four burr holes, four linear lines, and two diagonal lines. A digital anatomy 3D printer
(J750, Stratasys, Rehovot, Israel) was utilized to fabricate the components of the simulator.
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The outer body and base plate were fabricated using a combination of Vero cyan, magenta,
and yellow materials. The drilling patches were fabricated using bone matrix and dura
in Agilus materials, respectively [16]. The CAD model, drilling activity, and 3D printed
prototype of the craniotomy simulator are shown in Figure 1a–d, respectively.
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Figure 1. Craniotomy simulator with removable flaps for drilling activity. (a) CAD model, (b) 1–4
burr hole drilling activity, (c) 5–8 straight lines, and 9–10 diagonal line drilling activity, and (d) 3D
printed prototype.

2.2. Force Myography Band

For neurosurgical drilling, small forces are applied on the bone using brush-like strokes
of the drill bit. Evaluation of tool–tissue contact forces can, therefore, provide insights of
surgical competency. As it was difficult and non-ergonomic to place force sensors between
a tool and a surgeon’s hand, force myography (FMG) was used to evaluate the applied
forces. FMG measures the volumetric changes in the arm muscles via radial force and has
been widely used for hand gesture prediction [28]. Accordingly, an FMG band with eight
flexible force sensitive resistors (FSR) was designed as a wearable force-sensing device
(FSR 400, sensitivity 0.2–20 N, Interlink Electronics Inc., Camarillo, CA, United States).
The FSR sensors were calibrated using a universal testing machine (UTM) (H5KS, SDL
Atlas, Rock Hill, SC, USA). The sensors were fixed on the custom-made 3D printed mounts
(40 × 22 mm) with hard ABS plastic material to support the back filament of FSR. The
design of the FSR mount allowed for the passage of wiring and an elastic strap. The
average circumference range of the band was kept at 22 cm non-stretched, but can be
extended to 28 cm after stretching. The data collection setup is depicted in Figure 2.

A custom-made printed circuit board (PCB) was used to capture the signal of eight
FSR sensors of the FMG band. The PCB consists of a Arduino mega 2560 microcontroller
(Arduino, Budapest, Hungary), Bluetooth module (HC-05), and Battery monitoring system
(3S 20A Li-ion Lithium Battery, 18650 Charger PCB BMS Protection Board 12.6 V Cell)
to provide power to the system and receive data at a remote desktop. A voltage divider
circuit was used to capture the variation in the sensitivity of the FSR sensors and tune
them to operate in the desired curve. A constant voltage of 5 volts was supplied at one
terminal of the FSR, and the other terminal was connected to the analog input pin of the
microcontroller. The same analog pin was connected with a 10 kΩ resistor. To receive and
visualize the signal, a freeware serial terminal application (IDE processing, version 3.5.3)
was used. IDE is an open-source platform to receive the signal serially and store it in the
.txt or .csv formats.
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2.3. Data Collection and Experimental Protocol

Twenty-two subjects were recruited for this study after giving written consent. All
subjects were male and right-handed. Among these, 6 were experienced neurosurgeons
(age: 49 ± 3.5 years) with more than 10 years of experience, 8 were senior residents
(age: 29 ± 1.4 years) with 3 years experience, and the other 8 were junior residents (age:
26 ± 1 years) with no experience of craniotomy procedures. The study was approved
by the institute’s ethics committee (IEC-206/9 April 2021). The FMG strap was donned
on the dominant hand (forearm) of the participants. The seventh sensor was positioned
at the line between the styloid process of the ulna and the medial epicondyle of the
humerus. The remaining sensors were evenly distributed along the forearm’s diameter. This
configuration of sensors enabled comparable forearm muscle radial force measurements
among different participants. The participants were advised to perform three different
activities, i.e., (1) drilling four burr holes, (2) drilling four linear lines, and (3) drilling two
diagonal lines. All participants performed the defined drilling task on the patches placed
on the right side of the simulator. An encoder (grove rotary angle sensor) was attached on
the foot pedal of the drilling machine to identify the drill on and off position based on the
threshold values. During the drilling trials, eight-channel FMG data were acquired using
the experimental setup depicted in Figure 3.

2.4. Simulator Validation

The effectiveness of the craniotomy simulator was evaluated by conducting a sur-
vey among all participants, including expert neurosurgeons, senior residents, and junior
residents. After performing the training experiment with the simulator, the participants
provided feedback on parameters including usability, haptics, comfort, and suitability.
Usability refers to the simulator’s usefulness for effective skill development outside the
operating room. The haptic feedback evaluates the degree of resemblance between 3D
printed bone surrogate and real bone drilling. The comfort relates to the ease of performing
the drilling activity while donning the FMG band on the forearm. Suitability refers to
the neurosurgeons’ recommendation to include the developed simulator in the residency
program. All participants rated their experience on a scale ranging from 1 to 10, with 1–3
indicating some value, 4–6 indicating good value, and 7–10 indicating excellent value. The
neurosurgeons’ scores were tabulated in a Microsoft Excel spreadsheet.
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2.5. FMG Data Preprocessing

Participants’ eight-channel FMG data were imported into MATLAB R2020b for further
analysis. As reported in the literature, a typical human hand movement frequency is less
than 4.5 Hz [29]. Therefore, the collected FMG data of each participant was filtered using
the low pass Butterworth filter of the fourth order with a cut-off frequency of 10 Hz. In
addition, a 10-point moving average filter was used to further smoothen the FMG data.
The complete FMG data of each participant was segmented into drilling and resting state
based on the threshold value of the foot potentiometer marker. The segmented data were
then forwarded to the feature extraction step. The complete methodology for FMG data
analysis is shown in Figure 4.
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2.6. Feature Extraction

Feature extraction of the FMG signals was based on the earlier literature [30,31]. The
simplified and computationally less complex features were used in the present study. Based
on the preliminary analysis, five features were selected, as depicted in Table 1.

Table 1. Features extracted from the eight-channel FMG data.

S. No. Features Description

1. FC1 = mean(XC) Average value of FMG signal

2. FC2 = Var(XC) Variance of FMG channel

3. FC3 = WLen(XC) Cumulative length of the FMG signal

4. FC4 = MedFreq(XC)
Median frequency dividing the total power of

the signal into two equal halves

5. FC5 = CoV(XC) =
SD(XC)

Mean(XC)
× 100 Coefficient of variation in the FMG channel

Note: FCi (i = 1,2,3,4,5) stands for the features of the FMG signal (XC). The subscript ‘C’ (c = 1,2,3 . . . .8) stands for
the eight channels of the FMG signal. XC is a N-length FMG data vector of the specific activity of an individual.
Concatenating all the features extracted from all the FMG channels, a 40-dimensional feature vector is generated
(5 features × 8 channels) for a particular activity.

2.7. Classification

In this study, we evaluated the performance of naïve Bayes, linear discriminant anal-
ysis (LDA), support vector machine (SVM), and decision tree classifiers for classification
of surgical skills into expert, intermediate, and novice categories. The naïve Bayes (NB)
classifier is a subcategory of the Bayes classifier [32]. It is a supervised machine learning
algorithm that is based on a probabilistic classification approach. It is best suited for
the high dimensional dataset with the assumption that the predictors are independent of
each other. The pseudo-code for skills assessment using FMG data with the naïve Bayes
algorithm is given in Figure 5. LDA is a classifier which is flexible, powerful, and has
low computational cost [33]. By examining the linear combinations of input variables,
it separates the assigned classes. SVM classifiers are capable of learning from smaller
amounts of data [34]. The implementation of SVM involves creating a hyperplane as a
decision surface to maximize the distance between a positive and a negative example. It
performs on a higher-level feature space which is created by nonlinearly transforming
the n-dimensional input vector into a K-dimensional feature space. The decision tree is a
classifier with tree structure, and is a powerful tool for classification [35]. It is composed
of inner and leaf nodes, which represent decision thresholds and predictions, respectively.
Comparison of extracted features with each inner node of the decision tree, from the root
node to the leaf node, is the typical process of classification.

2.8. Evaluation

As the present study contains a limited dataset of 22 participants, we employed the
leave one subject out cross-validation for the training and testing of the classifier. In this
procedure, data from one of the subjects was used as the testing dataset, while the data of
the rest of the subjects were used as the training dataset. This process was repeated until all
subjects’ data were used once as a testing dataset. The performance parameters including
accuracy, precision, recall, and f1 score were calculated using the following equations:

Accuracy =
(TP + TN)

(TP + TN + FP + FN
(1)

Precision =
TP

(TP + FP)
(2)

Recall =
TP

(TP + FN)
(3)
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F1 Score =
2 ∗ Precision ∗ Recall
(Precision + Recall)

(4)

For a better understanding of the classification performance, we have calculated the
confusion matrix. The diagonal values of the confusion matrix show the correctly classified
subjects between the actual class and estimated class.
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2.9. Statistical Analysis

Due to the non-parametric nature of the data, we utilized the Kruskal–Wallis test
with Dunn’s multiple comparison test to compare the classification accuracy of various
classifiers. The significance level was considered to be 0.05.

3. Results
3.1. Simulator Validation by Neurosurgeons

The results of the validation survey by neurosurgeons were compared by plotting
boxplots, as shown in Figure 6. The results show that the vast majority of participants
strongly felt that the craniotomy simulator was easy to use and had excellent value (average
score = 8.0) for skill building outside the operating room. Regarding the haptic properties of
the 3D printed bone matrix material, the material was found to have a good value (average
score = 7.1) for use in surgical drilling simulation. The comfort of performing the activity
while wearing the FSR band was also found to have a good value (average score = 6.7),
and the participants reported no ergonomic discomfort while wearing the FMG band. The
developed simulator was found to have excellent value (average score = 7.9) for inclusion
in the neurosurgery residency program.
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3.2. Classification

The performance of four different classifiers used in the present study was analyzed
using accuracy, precision, recall, and F1 score. The classification accuracy was highest for
the naïve Bayes classifier (90.0 ± 14.8), followed by the decision tree classifier (86.2 ± 20.8)
and linear discriminant classifier (81.9 ± 23.6). The least performing classifier was the
support vector machine classifier (76.7 ± 32.9). The precision, recall and F1 score also
followed the pattern of the classification accuracy, as depicted in Table 2.

Table 2. Performance metrics for the four different classifiers [Mean (SD)].

Classifier Accuracy Precision Recall F1 Score

Naïve 90.0 (14.8) 89.6 (4.7) 90.8 (5.1) 90.0 (1.5)
LDA 81.9 (23.6) 82.2 (4.2) 82.6 (11.0) 82.3 (7.1)
SVM 76.7 (32.9) 76.6 (0.9) 77.2 (8.4) 76.8 (3.6)
DT 86.2 (20.8) 86.1 (3.0) 87.5 (9.2) 86.6 (5.0)

The results of the Kruskal–Wallis test with Dunn’s multiple comparison test showed
that there was no statistically significant difference (p = 0.6) between the accuracy of differ-
ent classifiers. However, the maximum mean classification accuracy, precision, and recall
with lesser standard deviation were achieved using the naïve Bayes (NB) classifier. This
shows that the naïve Bayes classifier was the best classifier for categorizing neurosurgeons
into expert, intermediate, and novice categories. Figure 7a shows the confusion matrix for
the naïve Bayes classifier.

Here, the diagonal elements show the correctly classified class, while the non-diagonal
shows the misclassification. The experts are 95% correctly classified as the experts, and the
NB classifier misclassified experts as intermediate 3.8% of the time and as novices 1.2% of
the time. The classification accuracy for correctly classifying intermediates was 87.2, while
the NB classifier misclassified intermediate as experts 11.4% of the time and as novices 1.4%
of the time. The novices are correctly classified 86.6% of the time, and the misclassification
equally divides between the expert and novice at 6.7%. The graphical representation of
the naïve Bayes classifier is also shown with the help of the ROC curve in Figure 7b. The
confusion matrix and ROC curve indicate that the classifier is majorly confused between
the expert and the intermediate class.



Bioengineering 2023, 10, 465 9 of 14

Bioengineering 2023, 10, x FOR PEER REVIEW 9 of 15 
 

The results of the Kruskal–Wallis test with Dunn’s multiple comparison test showed 
that there was no statistically significant difference (p = 0.6) between the accuracy of dif-
ferent classifiers. However, the maximum mean classification accuracy, precision, and re-
call with lesser standard deviation were achieved using the naïve Bayes (NB) classifier. 
This shows that the naïve Bayes classifier was the best classifier for categorizing neuro-
surgeons into expert, intermediate, and novice categories. Figure 7a shows the confusion 
matrix for the naïve Bayes classifier.  

 
Figure 7. (a) Confusion matrix, (b) ROC curve for the highest performing naïve Bayes classifier. 

Here, the diagonal elements show the correctly classified class, while the non-diago-
nal shows the misclassification. The experts are 95% correctly classified as the experts, and 
the NB classifier misclassified experts as intermediate 3.8% of the time and as novices 1.2% 
of the time. The classification accuracy for correctly classifying intermediates was 87.2, 
while the NB classifier misclassified intermediate as experts 11.4% of the time and as nov-
ices 1.4% of the time. The novices are correctly classified 86.6% of the time, and the mis-
classification equally divides between the expert and novice at 6.7%. The graphical repre-
sentation of the naïve Bayes classifier is also shown with the help of the ROC curve in 
Figure 7b. The confusion matrix and ROC curve indicate that the classifier is majorly con-
fused between the expert and the intermediate class. 

4. Discussion 
Adequate resident training requires hands-on experience, but operative neurosur-

gery affords few such chances [36]. Moreover, the pressure of performing well, time con-
straints, and the fear of mistakes hinder adequate learning [37]. It may also lead to an 
erroneous evaluation of the residents’ surgical aptitude on the part of the supervisor [38]. 
Simulation systems offer a unique solution for resident training in a safe environment as 
well as their unbiased evaluation [39]. In the present study, a craniotomy simulator was 
developed for teaching high-speed drilling skills. In addition, an FMG band was devel-
oped for objective and automated evaluation of surgical skills using machine learning. 

The cranial bone is a complex structure consisting of external outer layers of compact, 
high density cortical bone and an inner layer consisting of a low density, irregular porous 
structure [40]. The surgeons experience a unique haptic sensation when bone dust is pro-
duced by surgical drilling [41]. In the past decade, a variety of materials have been 

Figure 7. (a) Confusion matrix, (b) ROC curve for the highest performing naïve Bayes classifier.

4. Discussion

Adequate resident training requires hands-on experience, but operative neurosurgery
affords few such chances [36]. Moreover, the pressure of performing well, time constraints,
and the fear of mistakes hinder adequate learning [37]. It may also lead to an erroneous
evaluation of the residents’ surgical aptitude on the part of the supervisor [38]. Simulation
systems offer a unique solution for resident training in a safe environment as well as their
unbiased evaluation [39]. In the present study, a craniotomy simulator was developed for
teaching high-speed drilling skills. In addition, an FMG band was developed for objective
and automated evaluation of surgical skills using machine learning.

The cranial bone is a complex structure consisting of external outer layers of com-
pact, high density cortical bone and an inner layer consisting of a low density, irregular
porous structure [40]. The surgeons experience a unique haptic sensation when bone dust
is produced by surgical drilling [41]. In the past decade, a variety of materials have been
employed to fabricate cranial bones for surgical simulators, as detailed in Table 3. However,
these materials lack haptic feedback comparable to cranial bones. Therefore, we used the
recently introduced bone matrix material of the Digital Anatomy printer (J750, Stratasys,
Rehovot, Israel) to fabricate skull bone. The results of the neurosurgeon evaluation indicate
that this material provided a comparable surgical drilling feel. Since high-speed surgical
drilling generates heat, continuous irrigation is necessary to dissipate the heat [42]. How-
ever, with bone matrix material, the use of irrigation caused reduced drilling efficiency.
Consequently, continuous drilling during the experiment caused the drill bit to become
extremely hot, and a piece of moistened gauze was used to cool it in between. In addition,
the lack of irrigation caused bone dust to spread across the drilling site, which was cleared
by using suction. Therefore, further improvements in the bone material are required for
effective drilling simulation.
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Table 3. Materials used for fabrication of cranial bones for surgical simulation.

S. No. Author Cranial Bone Fabrication Methods

1. Present Study Bone matrix 3D printing—polyjet

2.
M. Lai et al. (2021) [43], R.G.
Nagassa et al. (2019) [44], J.R.

Ryan et al. (2016) [45]
Gypsum powder Stereolithography 3D

printing

3. Q. Lan et al. (2020) [46] Photosensitive polymers Polyjet 3D printing

4. M. Licci et al. (2020) [47] Polylactic acid (PLA) Fused deposition
modeling 3D printing

5. C.L. Craven et al. (2018) [48] Thickened polyurethane
resin 3D printing and casting

6. K.W. Eastwood et al. (2018)
[49]

VisiJet C4 Spectrum
plastic material ColorJet 3D printing

7. T. Mashiko et al. (2017) [50] ZP130 Powder ColorJet 3D printing

8. J. Muto et al. (2017) [51]
Polamide nylon (30% to

90%) and glass beads
(10% to 70%)

Selective laser sintering
3D printing

9. D.R. Cleary et al. (2017) [52] ABS plastic Fused deposition
modeling 3D printing

10. K. Kondo et al. (2015) [53] Plaster (zp150 powder
and zb63 clear binder)

Binder jetting 3D
printing

11. G. Coelho et al. (2015) [54] Fiberglass Molding

12. D. Inoue et al. (2013) [55] Acrylic plastic Polyjet 3D printing

The evaluation of the surgical skills and competence is a challenging task even in
simulation models. Different scoring methods, such as OSATS, are widely used and
are validated assessment scales. Using these scales, an expert surgeon evaluates and
scores the performance of trainee surgeons. However, such an evaluation unavoidably
increases human bias and places an excessive load on experts, making adaptation and
generalization difficult on a larger scale. Therefore, automatic evaluation of surgical skills
is important to provide feedback to trainees and to reduce the burden of expert evaluators.
Different wearable sensors have been used in various studies for automatic objective
evaluation of surgical skills, as depicted in Table 4. However, the sensor-based data
collection system must be compact and cause minimal disruption to the natural movements
of the surgeons. Therefore, we collected forearm muscle radial force data using an FMG
band for skills evaluation. Neurosurgeons determined that the band, which was worn on
the forearm, did not interfere with the surgical training experiments. The accuracy achieved
using the present system was on par with the existing sensors used for the assessment of
surgical skills.

The data collected from the FMG band was used to classify the surgical expertise using
machine learning algorithms. The naïve Bayes classifier achieved the highest classification
accuracy. During the study, we found that out of 22 subjects, the classifier was able to
achieve acceptable classification accuracy for 19 subjects but, for 3 subjects, the classifier
demonstrated a minimum classification accuracy of 60%, and this accuracy decreased
even further for the other 3 classifiers. The classification accuracy, therefore, displays a
considerable standard deviation. If these three participants are excluded from the study,
the mean classification accuracy increases from 90 to 95%, and the standard deviation
decreases from 14.8 to 9%. Therefore, we might consider these individuals to be non-
conventional neurosurgeons with a unique approach of performing the high-speed drilling-
based procedure. The present study can be extended by including the data of a large number
of participants. Moreover, simulators for other surgical tasks, such as suturing, cutting,
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incising, and tumor resection can be developed using similar methods, and the potential of
FMG bands or other electronic sensors for surgical skills evaluation can be analyzed.

Table 4. Wearable sensors used for objective evaluation of surgical skills.

S. No. Authors Surgical Task Sensor Used Body Location Results

1. Present Study Drilling Force myography
band Forearm 90% classification accuracy

using naïve Bayes

2. T. Manabe et al.
(2022) [21]

FLS (pegboard
transfer and

suturing)

Electroencephalography
(32–channel) Head

90% classification accuracy
using regularized

micro-state-based CSP
(common spatial pattern)

3. A. Zulbaran-Rojas
et al. (2021) [22] Graft Anastomosis

Inertial
measurement unit

and
electromyography
(flexible sensors)

Dorsum of each
hand and flexor

digitorium of the
dominant hand

Significant correlation
between mean OSATS score

and sensor parameters

4. K. Evans-Harvey
et al. (2020) [56]

Dissection of
Calot’s triangle Eye gaze tracking Eyeglass frame

Correlation between
laparoscopic screen dwell
time and OSATS scoring

[r = 0.655, p < 0.05]

6. K.F. Kowalewski
et al. (2019) [57]

Suturing, knot
tying Myo-armband Forearm MAE OSATS score: 3.7 ± 0.6

7. L. Sbernini et al.
(2018) [58]

Single interrupted
suture and simple

running suture

Sensory glove with
flex and inertial

sensors
Hand

Median classification error
rate of 0.61% for interrupted

and of 0.57% for running
sutures using ANN

8. M. Uemura et al.
(2018) [59]

Suturing on rubber
sheet

Six-degree-of-
freedom magnetic

tracking sensor

Tip of surgical
instrument (needle

holder)

79% classification between
expert and novice surgeons

using neural network

9. H. Rafii-Tari et al.
(2015) [60]

Endovascular
Catheterization

Force/torque
sensor

Aortic arch
phantom base

plate

Classification accuracies of
94% (expert) and 98% (novice)

10. K. Harada et al.
(2015) [61]

Anastomosis on
artificialblood

vessels (0.7-mm)

Infrared optical
motion tracking

markers, aninertial
measurement unit,
and strain gauges

Tool/needle end

Expert surgeons performed in
a shorter time, shorter tool
path, and with less force
during needleextraction

11. I.H. Suh et al.
(2015) [62]

Laparoscopic
surgery Electromyography Forearm and hand

muscles

Significant distraction effects
for EMG measures (EMGenv,

p < 0.004; EMGfmed,
p = 0.031).

13. I. Oropesa et al.
(2014) [63]

Grasp, Pull and
transfer tasks

TrEndo tracking
system

Surgical
instrument

Mean classification accuracy
of 71% (LDA), 78.2% (SVM),

and 71.7% (ANFIS)

5. Conclusions

It is concluded that the anatomically accurate surgical simulator with materials having
comparable haptic properties to real tissue has great potential for use in surgical training.
The study participants opined that the bone matrix material used to fabricate cranial bones
provided comparable haptic feedback for surgical drilling. Objective assessment of surgical
skills provides trainees with immediate feedback on their performance and reduces the
burden on expert evaluators. The FMG band developed in the present study was found to
be a simple and cost-effective solution for machine learning-based automated evaluation of
surgical drilling skills.
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