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I. THEORETICAL MODEL EQUATION SUMMARY 

 

 𝑉 = 𝑓(𝐸) = 𝑐 𝐸   (1) 
 

 𝐸 = 𝐸 + 𝐸 + 𝐸   (2) 
 

 𝐸 = ≅ 𝑎 + 𝑘 𝐷(𝑃) ≅ 𝑎 + 𝑏 𝑃  (3) 

 

 𝐸 =     𝐸 ,  ,      high shear rate / accelerating flow 𝐸 ,  ,     low shear rate / decelerating flow  (4) 

 

 𝐸 , = 𝑚 𝑄 𝑄⁄1 + 𝑄 𝑄⁄   (5) 

 

 𝐸 , = 𝐸 , ∗ 𝑛  𝑒 + 𝑛  𝑒  𝑛  𝑒 + 𝑛  𝑒  𝑑𝑡 = 𝐸 , ∗  𝑒 + 𝑛𝑛 𝑒   𝑒 + 𝑛𝑛 𝑒  𝑑𝑡  

 

(6) 

 

 

II. NOMENCLATURE 

a, k, a’, b’ Constants 
c, d Constants 
D Internal arterial diameter expressed as a function of P via the constitutive equation of the arterial wall 
E Reflected irradiance (received by the PPG) 
E0 Incident irradiance 
EDC DC value of reflected irradiance 
EQ Reflected irradiance attributed to the blood flow rate 
EQ, H Reflected irradiance at accelerating/high shear flow conditions 
EQ, L Reflected irradiance at decelerating/low shear flow conditions 
EV Reflected irradiance attributed to the blood volume/pressure 
f (E) Characteristic function of the receiver and the receiver circuit configuration  
m', Qc Constants 
nd, na, τd, τa Constants 
P Intraluminal pressure 
Q Blood flow rate 
t Time 
t1 Duration of decelerating/low shear flow conditions 
VPPG Measured voltage of the receiver  
z Depth of tissue / blood layer 
μa Absorption coefficient 
μs’ Reduced scattering coefficient 

 

 



III. THEORETICAL MODEL EXPLANATION 

     We divided the theoretical explanation in four illumination cases that also correspond to the in vitro experiments we conducted. 
The terms introduced in each of these cases refer to Fig. 7. In each case, there are certain assumptions and approximations that are 
required to derive the measured irradiance. The final, “combined” case best reflects the illumination and hemodynamic conditions 
that are expected when measuring reflective PPG on a peripheral artery.  

Initial Case:  

Eo Incident irradiance 
E Measured irradiance 
Eri Partial reflection 
Ebs Backscattered irradiance 
Eai Losses due to absorption and scattering 
ETR Tissue reflection 

 
     Er1 contributes to the constant component of irradiance. The partial reflections Er2 and Er4 on the arterial wall can be neglected 
because the refractive index of blood and the arterial wall are similar, resulting in reflectance of less than 0.1%. The tissue reflection 
ETR is generally higher, due to the larger difference in refractive index between blood and surrounding tissues, e.g. bone, and it is 
modelled with a partial reflector. 
 
Changes in Pressure: 

Eai,1 Losses due to absorption and scattering 
Δr Change in the vessel radius 

 
     We will show that the measured irradiance can be approximated by a function of a single parameter, the pressure. This is the 
case because all contributing factors, intuitively, depend on pressure under physiological conditions. The use of the reflector was 
necessary, as changes only in Ebs were not measurable in static experiments. This was expected, because the change in reflectance 
as calculated by a theoretical approximation [1] was found negligible. As a result, the measured irradiance was primarily affected 
by the flux that was transmitted through the vessel, was partially reflected on the reflector and was re-transmitted through the vessel. 
     Under normal conditions, with simultaneous changes in pressure and flow rate, we can distinguish two factors that affect the 
change in losses and therefore in measured irradiance: 

i. The distention of the vessel, Δr, resulting in a change of the depth of the blood layer. This change is reflected in z in (3). 
With increasing pressure, the vessel distends, the losses increase, and thereby the measured irradiance decreases. The 
opposite behavior is observed with decreasing pressure.  

ii. The change of the reduced scattering coefficient μs’ due to the aggregation-disaggregation and orientation-disorientation 
of red blood cells (RBC). With increasing flow, the pressure increases, the RBCs disaggregate, μs’ increases [2], the losses 
increase, and thereby the measured irradiance decreases. Equivalently, RBC orientation with flow increases μs’ and 
reduces light transmission [3]. The opposite behavior is observed with decreasing flow and pressure. 

These two factors both cause a decrease in irradiance with increasing pressure and vice versa. They cannot be easily separated from 
each other, as an increase in pressure and diameter will unavoidably cause some degree of disaggregation. It could be possible to 
separate between the two only in vitro, with a slow increase in pressure so as not to disturb the RBC rouleaux, but this is not the 
case in the cardiovascular system.  
      Because the effect of both factors is to the same direction, their effects could be combined in a single equation that depends on 
the diameter or the pressure, third and fourth expressions in (3) respectively. To verify this approach, we examine the case of vertical 
transmission in the radial artery. We assume a diameter of 3 mm that is subject to a 10% diameter change. We derive the attenuation 
and scattering coefficients at 830 nm from [4]. Additionally, we expect the reduced scattering coefficient to change up to 4% due to 
aggregation [4]. The actual change in μs’ during a typical heart cycle (0.75 s) will be lower, about 2%, because aggregation does not 
happen instantaneously. A similar change can also be seen in the results of transmission through RBC suspensions [2], if we consider 
only the first 0.5 s after flow stop, an amount of time which corresponds to the typical diastolic part of the heart cycle, during which 
the flow rate is low enough to allow aggregation. However, let us assume a slightly higher value of 5% change in μs’ during a heart 
cycle. Even for these overestimated changes in diameter and μs’, (3) is with a good approximation a linear function of the diameter 
(R2 = 0.995, NRMSE < 1%). If the illumination is not perpendicular to the vessel, or if the probe is placed off-center, the relative 
change in the optical depth due to the radial expansion of the artery would be even greater. Because of that, the relative contribution 
of diameter change in the measured irradiance will be further accentuated compared to that of aggregation. To properly model the 
effects of aggregation and orientation in this case we could follow an approach similar to (4)–(6), because both phenomena start at 
low shear conditions. The exponential behavior of the transmittance can also be seen in similar in vitro experiments [2]. The result 
of this approach is a new set of equations that replace (3): 
 

 𝐸 =    𝐸 ,  ,    high shear rate / accelerating flow 𝐸 ,  ,     low shear rate / decelerating flow  (7) 



 𝐸 , = 𝐸 𝑒cosh 𝑧 2𝜇 𝜇 ≅ 𝑎 + 𝑘 𝐷(𝑃) ≅ 𝑎 + 𝑏 𝑃 (8) 

 𝐸 , = 𝐸 , ∗ 𝑒 + 𝑛 ′𝑛 ′ 𝑒  𝑒 + 𝑛 ′𝑛 ′ 𝑒  𝑑𝑡 (9) 

     These equations are presented here for completeness. In our experiments, omitting the exponential decay due to aggregation and 
orientation, or equivalently using (3) instead of (7)–(9), resulted in a maximum relative error of 1%. Therefore, we chose to omit it 
as it was comparable to the standard deviation of our measurements. Another fact that justifies this approach is that both pressure 
and diameter decrease gradually until their diastolic value. The almost exponential decrease of pressure during diastole, can 
sufficiently account for the exponential behavior of transmission due to aggregation and orientation. On the contrary, the blood flow 
rate decreases rapidly and remains close to zero during diastole, therefore, the effects of aggregation and orientation are more 
pronounced in the case of blood flow rate changes (vi, third case). The changes in reflectance due to these two phenomena are also 
treated in the following case.  
     Summarizing, the effects of diameter change, RBC aggregation and orientation on the light transmission through a vessel reduce 
transmission with increasing pressure and flow rate, and they can be combined in a single approximative function that depends on 
one variable. Here, we chose pressure as this variable. From (1), we can calculate the change in measured irradiance when the 
pressure changes. Under typical conditions, it accounts only for a small percentage of the incident irradiance (𝐸 /𝐸 ∈[10 , 10 ]). The contribution of the partial reflections Eri can be ignored because 𝐸 ≈ 𝒪(𝐸  𝐸 ) ≪ 𝒪(𝐸 ). 
 
Changes in Flow Rate:  

Eai,2 Losses due to absorption and scattering 
Eqi,2 Reflected irradiance due to RBC alignment 

 
     The effects of RBC orientation and aggregation cannot be omitted in this case, because they directly affect blood’s reflectance, 
Ebs. Hence, it is necessary to use the system of (4)–(6). From (1), we can calculate the change in reflectance due to RBC alignment. 
Under typical flow rate changes, it accounts only for a small percentage of the incident irradiance (𝐸 /𝐸 ∈ [10 , 10 ]). 
Moreover, we may neglect Eq2,2, because 𝐸 , ≈ 𝒪(𝐸  𝐸 ) = 𝒪(𝐸 ). Similarly to the previous case, the partial reflections on the 
walls can be ignored.  
 
Combined Effects: 

Eai,3 Losses due to absorption and scattering 
Eqi,3 Reflected irradiance due to RBC alignment 

 
     In the combined case, the effects of pressure and flow rate changes are superimposed. Although the effects are not technically 
independent, they both account for minor amounts of the incident irradiance, so that they can be considered practically independent. 
For example, the reduction in E3 due to Eq1,3 will be of the order 𝒪 𝐸  𝐸 , = 𝒪(𝐸  𝐸 ) = 𝒪(𝐸 ) and hence negligible. The same 
applies to the reduction due to Eq2,3. Furthermore, the increase in radius will not significantly affect Eq1,3, because the added layer 
of thickness Δr will also be filled with aligned RBCs that will reflect the incoming radiation. As a result, the combined effects can 
be added, as in (2).  
 



 
IV. CONSTANT DEFINITION AND DERIVATION 

Constant Definition 
PPG type Derivation 

Cali-
brated 

Uncali-
brated 

 

a Theoretical value of reflected irradiance of 
the artery at zero internal diameter +  Experimentally: Measured value of reflected irradiance 

at different values of internal diameter under no flow 
conditions. Linear regression. k Slope of the irradiance-internal diameter 

curve + + 

a' Value of reflected irradiance of the artery at 
zero-load state +  Experimentally: Measured value of reflected irradiance 

at different values of internal pressure under no flow 
conditions. Linear regression (Fig. 2a) b' Slope of the irradiance-internal pressure curve + + 

c Scaling factor of the power law that describes 
the operating curve of a phototransistor + * Calculated using the characteristics of the phototransistor 

given by the manufacturer and the corresponding circuit, 
or else experimentally. d Exponent of the power law that describes the 

operating curve of a phototransistor + * 

m' 
Scaling factor of the function that describes 
the dependence of reflected irradiance on 

blood flow rate1  
+ + Experimentally: Measured value of reflected irradiance 

at different values of blood flow rate. Nonlinear 
regression (Fig. 2b). Qc Critical value of blood flow rate1; if Q=Qc 

then EQ,H = m’/2 + + 

nd Scaling factor of the exponential decay 
function due to the disorientation of RBCs. + + Experimentally: Measured value of reflected irradiance 

after abrupt flow stop. Nonlinear regression (Fig. 8). 
Only the ratio of the two constants is required. The ratio 

defines the intensity of reduction in irradiance due to 
aggregation compared to that caused by disorientation.  

na Scaling factor of the exponential decay 
function due to the aggregation of RBCs. + + 

τd Time constant of the exponential decay 
function due to the disorientation of RBCs. + + Experimentally: Measured value of reflected irradiance 

after abrupt flow stop. Nonlinear regression (Fig. 8). 
Because disorientation is more rapid, τd < τa. τa Time constant of the exponential decay 

function due to the aggregation of RBCs. + + 
+ Required 
* Required only if (1) cannot be accurately approximated by a linear function (e.g. when large differences of irradiance are expected or if d >>1). 
In this case, the characteristic function of the receiver will distort the measured signal. This distortion will have to be included in the model 
equations.  
1 These constants were derived by the theoretical equation for the percentage of aligned RBCs as function of the shear rate or blood flow rate.  

Figure S7. Diagram of the illumination cases of the in vitro setup. Initial: Constant pressure, no flow. Pressure: Static increase in pressure and
consequently in diameter, no flow. Flow: Increase in blood flow rate accompanied by red blood cell alignment with the flow direction, no pressure 
changes. Combined: Increase in pressure and blood flow rate. The symbols are explained in the analysis above. The symbols of the initial case
are not repeated in the following cases for simplicity purposes, unless they are significantly affected.  



 

  

REFERENCES 

[1] S. Liang and K. Shimizu, ‘Development of a technique to measure local scattering in turbid media using backscattered light at 
the surface for noninvasive turbidity evaluation of blood in subcutaneous blood vessels’, Jpn. J. Appl. Phys., vol. 60, no. 2, p. 
022002, Jan. 2021, doi: 10.35848/1347-4065/abd36a. 

[2] L. D. Shvartsman and I. Fine, ‘Optical transmission of blood: effect of erythrocyte aggregation’, IEEE Transactions on 
Biomedical Engineering, vol. 50, no. 8, pp. 1026–1033, Aug. 2003, doi: 10.1109/TBME.2003.814532. 

[3] L.-G. Lindberg and P. A. Oberg, ‘Optical properties of blood in motion’, OE, vol. 32, no. 2, pp. 253–257, Feb. 1993, doi: 
10.1117/12.60688. 

[4] N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, ‘A literature review and novel theoretical 
approach on the optical properties of whole blood’, Lasers Med Sci, vol. 29, no. 2, pp. 453–479, Mar. 2014, doi: 
10.1007/s10103-013-1446-7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. Example of the non-linear regression of the biexponential decay function. Measured value of PPG as a function of time, after abrupt
flow stop experiments (points), the fitted function (solid blue line) and the 95% prediction bounds of the fitted function (dashed blue lines). The
time that the flow stops is indicated with the arrow. We set the time t=0 s when the flow stops, and the asymptote to zero (𝑙𝑖𝑚→ 𝑃𝑃𝐺 = 0). There

are 4 constants, nd, na, τd, τa that can be specified by this process. To differentiate between the two time constants, we assume that τd < τa, because
RBC disorientation is a more rapidly evolving phenomenon, compared to aggregation.  

 


