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Abstract: Ventilation mode is one of the most crucial ventilator settings, selected and set by knowl-
edgeable critical care therapists in a critical care unit. The application of a particular ventilation mode
must be patient-specific and patient-interactive. The main aim of this study is to provide a detailed
outline regarding ventilation mode settings and determine the best machine learning method to
create a deployable model for the appropriate selection of ventilation mode on a per breath basis.
Per-breath patient data is utilized, preprocessed and finally a data frame is created consisting of five
feature columns (inspiratory and expiratory tidal volume, minimum pressure, positive end-expiratory
pressure, and previous positive end-expiratory pressure) and one output column (output column
consisted of modes to be predicted). The data frame has been split into training and testing datasets
with a test size of 30%. Six machine learning algorithms were trained and compared for performance,
based on the accuracy, F1 score, sensitivity, and precision. The output shows that the Random-Forest
Algorithm was the most precise and accurate in predicting all ventilation modes correctly, out of the
all the machine learning algorithms trained. Thus, the Random-Forest machine learning technique
can be utilized for predicting optimal ventilation mode setting, if it is properly trained with the help
of the most relevant data. Aside from ventilation mode, control parameter settings, alarm settings
and other settings may also be adjusted for the mechanical ventilation process utilizing appropriate
machine learning, particularly deep learning approaches.

Keywords: mechanical ventilation (MV); machine learning (ML); ventilation mode (VM); optimization;
intensive care unit (ICU)

1. Introduction

One of the most important treatments routinely used in patients with respiratory
conditions or disorders is mechanical ventilation (MV). It is a complicated form of therapy
that requires quick and precise decision-making. A sub-optimal mechanical ventilation
strategy has a chance of creating ventilator-induced lung injury (VILI). The sub-optimality
of an individualized ventilation strategy also leads to an increased ICU stay, a higher cost
of ventilation, and an elevated risk of death in patients. The complete optimization of the
MV process is mainly dependent on three factors: appropriate mode selection, appropriate
control parameter settings and alarm settings, as shown in Figure 1. Most clinicians try to
avoid intubating patients and prefer to support the patient by the non-invasive ventilation
method. However, if the situation is very critical (blocked airways), intubating the patient
is necessary. After intubation, the first step is to select an appropriate ventilation mode.
Thus, ventilation mode is one of the most important ventilator settings [1]. The ventilator
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interprets the user’s instructions and then produces a series of breaths with the right
volume, flow and pressure of air and oxygen. A selection of preconfigured breath types
and sequences are determined by a certain VM setting. Each mode has a set of intended
applications. The main characteristics of defined mechanical breaths are determined by
control parameter choices.
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1.1. Ventilation Modes: Origin to Today

Negative pressure ventilation mechanical ventilators first appeared in the early 1800s,
and positive pressure ventilation ventilators started to appear in the early 1900s. The
development of mechanical ventilators has been the work of numerous researchers [2].
Mechanical ventilators were first incorporated in hospitals on a large scale in the 1960s. It
consisted of only the pressure control mode. The ventilator was useful for normalizing the
blood–gas amount using pressure control, but it had high injury rates during the treatment
of patients with acute respiratory distress syndrome, which requires controlling the amount
of tidal volume (delivery of air and oxygen mixture at a set volume) and minute ventilation.
As a result, volume control modes for ventilators have been available since the 1970s [3].
The two modalities are interdependent. Pressure data are tracked when the volume is
controlled, and vice versa. Both approaches have been used for critical care treatment since
the 1980s in accordance with respiratory needs [3]. Traditional ventilators worked well
when the patient was in a passive condition. Once the patient became active or partially
active, asynchrony was created between the patient and the ventilator. Thus, the clinicians
at that time did not have many options when the patient got into a partially active or active
condition. Thus, the ventilator industry constantly introduced new modes. All modes
were not used in a real-time situation. Today, there are numerous modes available as
per patient need. According to Chatburn, a top mechanical ventilation expert, there are
a total of 174 unique names for ventilation modes. This was the result of technological
advancements and a non-standard nomenclature for naming modes [4]. Since the names
of ventilation modes are not defined globally, any manufacturer is allowed to use them.
Understanding the distinction between unique modes and unique mode names is crucial.
Although there may be 174 unique mode names, there are fewer than 20 unique modes.
All contemporary ventilators provide ventilation mode and control parameter settings
by default. This capability is extremely beneficial when a patient requires emergency
mechanical ventilation while clinicians are occupied with other patients. In these situations,
a machine learning model could be quite effective in predicting the modes according to a
patient’s changing respiratory demands after the adoption of a default ventilation mode.
In the next section, unique modes of ventilation are briefly discussed.

1.2. Unique Modes of Mechanical Ventilation

Although there are 174 distinct mode names due to non-standardized mode nomen-
clature, all current ventilators have one thing in common: they are based on intermittent
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positive pressure ventilation (IPPV). The IPPV principle can be conceptualized as a se-
ries of forced mechanical breaths supplied by a ventilator system [5]. Based on the IPPV
principle, all modes of ventilation fall mainly into one of these three categories, as shown
in Figure 2. The first category is that of traditional modes. It consists of eight unique
modes based on various parameters. The second category belongs to advanced modes that
are the results of consistent growth in technology. In the third category, biphasic modes
are included. They supply ventilation breaths by adjusting the positive end-expiratory
pressure (PEEP) in a consistent time pattern. Traditional modes are uncomplicated and
the most advantageous for real-time applications. These modes are available on the vast
majority of mechanical ventilators. Advanced modes and traditional modes have similar
breath types. Yet, advanced modes have much more complicated controlling algorithms.
They mainly improve treatment quality and decrease the clinical workload. They automate
the process of mode adjustment as per the patient’s respiratory needs. They are present in
some modern mechanical ventilators. Biphasic mechanisms underpin biphasic modes. The
biphasic mechanism is an expansion of the mechanism that generates PEEP. Mechanical
breaths can also be generated by the PEEP-generating mechanism [5].
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Figure 2. Major classification of ventilation modes.

Table 1 represents the classification of modes. It helps identify the unique modes out
of the 174 unique mode names. Based on pressure, volume and adaptive control, there are a
total of eight traditional modes. Understanding traditional modes helps to give a clear idea
of the importance of modes and the differences in the functionality of each mode. The most
commonly used modes are the pressure control (P-CMV) mode, volume control (V-CMV)
mode, pressure and volume control (SIMV) mode and pressure support mode (PS). Out of
the advanced modes, the proportional assist ventilation (PAV) mode and adaptive support
ventilation (ASV) mode are mostly used. Biphasic modes are not much, but CPAP and
APRV modes are the most commonly used modes among them.

Table 1. Classification of modes based on IPPV principle.

Traditional Modes Advanced Modes Biphasic Modes

Continuous mandatory
ventilation (CMV)

Synchronized intermittent
mandatory ventilation

(SIMV)
Support mode

Proportional assist ventilation
(PAV)

Proportional pressure support
(PPS)

Adaptive support ventilation
(ASV)

Automatic controller of oxygen
Neutrally adjusted ventilatory assist

IntelliVent
SmartCare

Continuous positive airway
pressure (CPAP)
DuoPAP mode

Airway pressure release
ventilation (APRV)
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1.3. Ventilation Mode: Control Parameters

A patient–ventilator asynchrony is less likely to occur if the ventilation mode setting is
correct, patient-specific, patient-interactive and based on the patient’s needs. This enables
the patient to recover as soon as possible. This culminates in a shorter duration of stay
and lower costs associated with ventilation. There are eight distinct sorts of breaths, each
with its own control, triggering, cycling and application settings. The performance of a
ventilator system varies based on the types of breath and sequence. Thus, a ventilator
system provides a variety of modes to accommodate the unique respiratory needs of each
patient. Typically, just one ventilation mode is selected for a given duration. When a
respiratory therapist sets a certain mode, it is to be regarded as the mode that best meets
the individual’s breathing support requirements. However, as the decision-making process
is performed by humans, it is subjected to some degree of suboptimality. Additionally,
understanding an individual’s respiratory needs and lung pathology is a complex process.
These complications influence the mortality of a patient and may induce morbidities [6,7].
It necessitates a thorough review of patient-related data, which can be complicated, time-
consuming and prone to human error. Because of continual technological developments in
the hardware development industry, large-scale data gathering and storage are now easily
feasible. A vast amount of historical data can be used to train different machine learning
(ML) algorithms and to identify distinctive patterns and relationships between data in
order to optimize different systems and procedures [8,9].

Table 2 represents the control parameters that are set for a particular mode, such as
tidal volume in volume control mode or pressure control in pressure control mode.

Table 2. Control parameters to be set in a mode.

Controls for Ventilation Controls for Adequate
Oxygenation

Controls for Patient–Ventilator
Synchronization

Inspiratory Tidal Volume
[VTi (ml)] Fraction of inspired oxygenation FiO2 (%) Trigger sensitivity

Mandatory breaths per minute
[ f (rpm)] Positive end expiratory pressure Patient trigger (pressure or flow)

Inspiratory time (s)
I:E ratio (inspiratory to expiratory time ratio)

Pressure control (cm H2O)
Pressure support (cm H2O)

[PEEP (cm H2O)] Flow cycle

Health care institutions generally use MV therapy in their intensive care unit (ICU)
to provide care to critically ill patients. It is a rich source of patient data and patient
responses to a particular MV strategy [10]. The decision on an optimal ventilation strategy
depends upon several factors, such as laboratory data, comorbidities in the patient, vitals,
severity of illness scores, disease progression, etc. [11]. Several studies have examined
lung protective ventilation strategies, with proper mechanical ventilation mode selection.
Mechanical ventilation is primarily used to reduce the risk of ventilator-induced lung injury
(VILI) in patients with acute respiratory distress syndrome (ARDS). VILI is a condition
that can arise in mechanically ventilated patients as a result of a combination of excessive
pressure (barotrauma), excessive volume (volutrauma), repeated alveolar opening and
shutting (atelectrauma), inflammatory mediator release from the lung (biotrauma) and
oxygen toxicity [12–20]. The personalization of mechanical breathing based on individual
physiological parameters and therapeutic responses can enhance clinical outcomes [21].

Regarding the creation of machine learning models in conjunction with mechanical
ventilation and its optimization, a number of unique works have been assessed. Deep
learning (DL) methods such as convolutional neural networks (CNN) and long short-term
memory (LSTM) neural networks find their application in analyzing several unique features
of ventilator waveforms. During mechanical ventilation, three types of waveforms are
generated: an inspiratory–expiratory pressure waveform, an inspiratory–expiratory flow
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of air–gas mixture waveform and an inspiratory–expiratory volume of air–gas mixture
waveform. A CNN DL model was developed to detect patient–ventilator asynchrony
(PVA) events [22]. This model only detected the PVA events but could not classify the
type of PVA that occurred. As a result, an LSTM DL model was created to identify
and categorize the different types of patient–ventilator asynchrony [23]. These models
excluded the need for continuous monitoring of a patient’s condition. A Random-Forest
ML model [24] was also developed to achieve similar goals. A model for asynchrony
detection would not be essential, though, provided the ventilator settings are optimal,
patient-specific and interactive. A gradient boosting ML model was developed based
on the severity of illness scores to predict whether a patient was at risk of prolonged
mechanical ventilation or tracheostomy placement [25]. An XGBoost ML model was
developed for predicting patients at risk for sepsis to ensure timely diagnosis before the
situation gets out of control [26]. A regression Decision-Tree ML model was developed to
predict resistance (R) and compliance (C) values. A set of airway pressure, flow rate and
their respective R and C values were used for the creation of the model [27]. A LightGBM
ML model was developed to predict extubation success or failure before starting the
execution of spontaneous breathing trials [28]. A similar model was developed using a
support vector machine (SVM) algorithm for predicting extubation success or failure [29].
The difference between both models was that the support vector machine model was more
accurate than the LightGBM model. These models were useful for preventing the patients
from premature extubation (re-intubation) and prolonged extubation. Similar research was
also conducted on the accurate prediction of the respiratory rate and blood oxygen level
using PPG signals with the help of a machine learning model [30]. BubbleVent, a mechanical
ventilator, was manufactured and tested for effective mechanical ventilation and was able
to deliver stable PIP and PEEP levels [31]. For accurate monitoring of respiratory mechanics,
a study was successfully completed on a model-based assessment of asynchrony events
for mechanically ventilated patients [32]. A machine learning model was applied and
tested with success for parameter estimation for mechanical ventilation [33]. A rule-based
model was developed for predicting the modes of ventilation on a per-hour basis [34,35].
An ML model was also developed to predict the modes of ventilation on a per breath
basis. The analysis was performed for only one VM while keeping other VMs constant [36].
Thus, after going through several pieces of literature, it was found that optimization of
the ventilation mode setting using machine learning is still a promising area. The goal of
this study is to create a new data frame using the best feature selection test. The optimum
machine learning approach for a ventilation mode prediction on a per-breath basis was then
determined by fitting the data frame over six distinct machine learning techniques. Based
on the various ML algorithms’ accuracy, sensitivity, precision and F1 score for predicting
VM, a comparison analysis is carried out. Section 2 discusses the data collecting and
preprocessing steps required to produce a final data frame, and the results and discussion
section compares various ML algorithms fitted on the data frame. The outcome of the
current investigation is presented in Section 4.

2. Material and Methods

This section provides an overview of the dataset type, data collection method and data
preprocessing procedure employed in the current investigation. Additionally, a descriptive
and reliable statistical analysis of the data is provided.

2.1. Data Collection

Data collection is the most important part of the creation of an ML model. For this
study, the data was referred from the existing literature [36]. The data consisted of several
data files having almost 2000–4000 rows of the patient’s breath data. Each row represented
a single breath. A specific and appropriate VM was given to each breath. Annotations
of each breath were conducted by a group of three respiratory experts mentioned in the
literature [36]. Each row of data file consisted of information (for a single breath) about



Bioengineering 2023, 10, 418 6 of 18

tidal volume (both inspiratory and expiratory) and their ratio (expiratory to inspiratory),
minimum pressure (Pmin), value of positive end-expiratory pressure in the previous breath
(PEEPprev), inspiratory time and expiratory time, positive end-expiratory pressure (PEEP)
value, etc. Thus, the data in each data file were continuous, which was necessary for the
creation of the mode prediction model as VM is a continuous setting. It does not change
unless an operator intervenes. Out of the five available modes, any one will be the output
as per the respective input features. Those five modes were: pressure control mode (PC),
volume control mode (VC), pressure support mode (PS), pressure-assist ventilation (PAV)
mode and continuous positive airway pressure (CPAP) mode. PC, VC and PS are the
traditional modes of ventilation. These are the most basic and popular modes. They can be
found in the majority of ventilators. PAV is a sophisticated mode that was created using
a complex controlling algorithm. Most modern ventilators operate in this mode. Most
contemporary ventilators use the biphasic mode called CPAP. This study includes these
three categories of distinctive modes.

2.2. Data Preprocessing

Preprocessing the data is essential to the development of ML models. The monitoring
and therapeutic technologies used in critical care units (such as mechanical ventilators)
continuously produce significant amounts of data, making these settings particularly data-
rich. The most pertinent data attributes are chosen rather than using the entire set of data
to create the model. A feature selection test was performed to get the top five features
that contributed significantly to the training of the ML algorithm. This small subset of
features from the available dataset is significant for the analysis [37]. The results are shown
in Figure 3 with the help of a horizontal bar chart.
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Figure 3. Top five features that mostly contributed for training ML algorithm.

Those five features were inspiratory tidal volume (TVi), expiratory tidal volume (TVe),
PEEPprev value, minimum pressure value (Pmin) and positive end-expiratory pressure
(PEEP). All the data files were segregated, and each row was annotated as one of these
five modes: pressure control mode (PC), volume control mode (VC), pressure support
mode (PS), pressure-assist ventilation (PAV) mode and continuous positive airway pres-
sure (CPAP) mode. Missing data and rows with negative values were deleted from the data
files for the efficient handling of the data. The top five features were finally combined into
a single data frame because the remaining features (tidal volume expiratory to inspiratory
ratio, expiratory to inspiratory ratio and inspiratory to expiratory duration) had very little
effect on training the ML algorithms. Five feature columns and one output column made
up the final data frame. The single-breath data were organized in 20,237 rows.
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Table 3 shows the descriptive statistics for the per breath data when n = 20,237 is
used. The skewness and Kurtosis values shown in the table clearly indicate that the
data are normal, and hence the data are suitable for machine learning models. Table 4
displays the reliability statistics, with a Cronbach’s Alpha score of 0.787 indicating that
the data are reliable. With a conditional probability value of 0, the Hotelling’s T-squared
test is statistically significant. Furthermore, for the sample characteristics TVi and TVe, the
normality of the data is plotted and shown in Figures 4 and 5.

Table 3. Descriptive statistics of data.

N Minimum Maximum Mean Std. Deviation Variance Skewness Kurtosis
Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std.Error

20,237 61.00 700.00 390.6240 122.65019 15,043.069 0.421 0.019 0.104 0.038
20,237 1.00 1170.00 396.7983 133.21416 17,746.013 0.164 0.019 0.873 0.038
20,237 0.23 14.51 7.4352 3.05062 9.306 0.666 0.019 1.067 0.038
20,237 0.15 36.80 11.5536 7.29206 53.174 0.805 0.019 0.736 0.038
20,237 0.28 14.51 7.4459 3.05173 9.313 0.664 0.019 1.081 0.038

Table 4. Reliability statistics for data.

Reliability Statistics Hotelling’s
T-Squared Test

Cronbach’s
Alpha

Cronbach’s Alpha Based
on Standardized Items N of Items Hotelling’s

T-Squared F df1 df2 Sig

0.787 0.89 5 168,373.607 42,085.629 4 20,237 0
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Table 5 depicts the Pearson co-relationship for input variables, and it is clear that
multi-collinearity does not exist, indicating that the inputs can be used as independent
variables in machine learning. The data frame was split into training and testing datasets,
with a test size of 30% of the data frame. Based on the training dataset, the data were fitted
on six different ML algorithms. Those six ML algorithms included: Random-Forest (RFC),
Logistic Regression (LR), Gaussian Naive Bayes (GNB), LinearSVC (SVM), KNeighbors
(KNN) and Decision-Tree (DTREE). The projected output was compared to the desired
output using the test features dataset (original test output). The performance of each
method was evaluated using evaluation reports which included precision, sensitivity,
F1 score and accuracy numbers. Section 3 includes a comparison analysis that compares
the performance of various ML algorithms in predicting each mode of ventilation.

Table 5. Pearson correlations.

TVi TVe PEEPprev Pmin PEEP

TVi 1 0.174 ** 0.095 ** 0.272 ** 0.014
TVe 0.174 ** 1 0.287 ** 0.039 0.403 **

PEEPprev 0.095 ** 0.287 ** 1 0.502 ** 0.035
Pmin 0.272 ** 0.039 0.502 ** 1 0.082 **
PEEP 0.014 0.403 ** 0.035 0.082 ** 1

** Correlation is significant at the 0.01 level (2-tailed).

The parameters tuned into the ML algorithms during the model fitting procedure are
shown in Table 6. Parameters are critical to the correct training of an ML algorithm. The
performance of the final ML model improves when the correct parameters are tuned during
the model fitting process.
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Table 6. Parameters tuned in the ML algorithms.

ML Algorithm Parameters Definition Value

Random-Forest
criterion Quality measurement of a split. Gini

n_estimators The number of trees in the forest 0–100

Logistic Regression
tol Tolerance for stopping criteria. 10−4

C_inverse Inverse of regularization strength. 1.0
max_iter Max iterations taken for solvers to converge. 100

Support Vector Machine
penalty Specifies the norm used in penalization.

l2
1000

max_iter Max number of iterations to be run.
C Regularization parameter.

Guassian Naive Bayes var_smoothing
Portion of largest variance including

0.1
10−9all features added to variances for

stability calculation.

K Nearest Neighbors
n_neighbors

weights
algorithm

Number of neighbors to be used.
Weight function to be used.

Algorithm used to compute the
nearest neighbors.

5
uniform

auto

Decision-Tree criterion
splitter

Quality measurement of a split.
Strategy used to choose the split at

each node.

Gini
best

3. Results and Discussion

Evaluation reports for each algorithm were acquired based on algorithm training
and testing, and are provided in Tables 7–12, respectively. Six different ML algorithms
were employed. In this work, ML algorithms were utilized to determine the difference
in their performance when trained and tested on the same data frame. It also aided in
determining which ML algorithms are appropriate for use in the mechanical ventilation
domain in order to construct more accurate models based on the type of data provided. On
a per-breath basis, the model was only required to predict one of the five potential modes.
The five modes were pressure control (PC), volume control (VC), pressure support (PS),
proportional assist ventilation (PAV) and continuous positive airway pressure (CPAP).

Table 7. Model evaluation report for Random-Forest algorithm.

Modes Precision Recall F1-Score
Training Testing Overall

CPAP 0.99 0.99 0.98 0.99 0.99
PAV 0.98 0.97 0.99 0.98 0.98
PC 0.99 0.99 1.0 1.0 0.99
PS 0.98 0.97 0.99 0.98 0.98
VC 0.99 0.99 0.98 0.99 0.99

Table 8. Model evaluation report for Logistic-Regression algorithm.

Modes Precision Recall F1-Score
Training Testing Overall

CPAP 0.17 0.09 0.11 0.10 0.15
PAV 0.33 0.11 0.10 0.11 0.17
PC 0.67 0.82 0.85 0.84 0.75
PS 0.59 0.99 0.98 0.98 0.73
VC 0.90 0.71 0.69 0.70 0.79
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Table 9. Model evaluation report for GaussianNB algorithm.

Modes Precision Recall F1-Score
Training Testing Overall

CPAP 0.53 0.87 0.88 0.88 0.66
PAV 0.41 0.36 0.39 0.38 0.39
PC 0.79 0.77 0.79 0.78 0.78
PS 0.93 0.96 0.99 0.97 0.95
VC 0.92 0.78 0.79 0.79 0.85

Table 10. Model evaluation report for SVM algorithm.

Modes Precision Recall F1-Score
Training Testing Overall

CPAP 0.73 0.59 0.57 0.58 0.65
PAV 0.63 0.08 0.09 0.09 0.16
PC 0.58 0.95 0.97 0.96 0.72
PS 0.64 0.67 0.69 0.68 0.66
VC 0.97 0.66 0.68 0.67 0.80

Table 11. Model evaluation report for KNeighbors algorithm.

Modes Precision Recall F1-Score
Training Testing Overall

CPAP 0.55 0.61 0.59 0.60 0.58
PAV 0.53 0.51 0.49 0.50 0.51
PC 0.94 0.92 0.89 0.90 0.92
PS 0.73 0.78 0.80 0.79 0.76
VC 0.95 0.96 0.95 0.95 0.95

Table 12. Model evaluation report for Decision-Tree algorithm.

Modes Precision Recall F1-Score
Training Testing Overall

CPAP 0.95 0.94 0.96 0.96 0.95
PAV 0.93 0.91 0.94 0.93 0.93
PC 0.99 0.98 0.99 0.99 0.99
PS 0.97 0.96 0.98 0.97 0.97
VC 0.99 0.99 0.98 0.98 0.98

Using the precision parameter shown in Figure 6 for PC mode, the Random-Forest
and Decision-Tree algorithms achieved the highest precision of 0.99. Aside from these two
techniques, the KNeighbors algorithm had the second-highest precision in predicting PC
mode. Other algorithms did not perform well compared with them. Again, the Random-
Forest and Decision-Tree algorithms achieved the maximum precision in VC mode, which
was around 0.99. The support vector machine algorithm achieved the second-highest
precision, which was around 0.97. KNeighbors performed well, although it was not the
most accurate in predicting VC mode. For PS mode, the highest precision was obtained by
the Random-Forest algorithm, which was about 0.98. The Decision-Tree was the second
highest and GaussianNB was the third most precise in correctly predicting PS mode,
with precision values of about 0.97 and 0.93, respectively. The Random-Forest method
achieved the highest precision in PAV mode, at roughly 0.98, followed by the Decision-Tree
technique, at 0.93. With a precision score of 0.99 for CPAP mode, Random-Forest was the
most successful method. With the least precision value of 0.17 in predicting CPAP mode,
the logistic regression did not perform well.
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Figure 6. Model evaluation report of precision for different modes and ML algorithms.

The macro and weighted average of the accuracy values of the various machine learning
techniques is shown in Figure 7, which also demonstrates a considerable contribution of the
Random-Forest and Decision-Tree algorithms to the overall precision of the entire class.
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Figure 7. Bar chart visualization of precision comparison among different ML algorithms.

Now, considering the recall, i.e., sensitivity parameter, for PC mode as shown in
Figure 8, Random-Forest outperformed all the algorithms with the highest recall of 1.0. For
VC mode, the Random-Forest and Decision-Tree algorithms both performed well in terms
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of recall, with a value of 0.99 and 0.98, respectively. For PS mode, the logistic regression
and Random-Forest algorithms had the highest recall value of about 0.98, followed by the
Decision-Tree algorithm with a recall value of 0.97. With a recall value of 0.98 for PAV mode,
the Random-Forest algorithm surpassed all other ML algorithms. With recall values of 0.09
and 0.11, respectively, support vector machine and logistic regression had the weakest recall
performance for properly predicting PAV mode. The Random-Forest algorithm showed the
maximum recall in the CPAP mode, at roughly 0.99. Although they both performed well,
the Decision-Tree and GaussianNB algorithms were not the best at accurately predicting
CPAP mode. Again, the lowest recall score for accurately predicting CPAP mode was seen
with the logistic regression.
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Figure 8. Model evaluation report of recall/sensitivity for different modes and ML algorithms.

Figure 9 shows the average values for the sensitivity of different machine learning algo-
rithms at the macro and weighted levels. The Random-Forest and Decision-Tree algorithms
both have a major impact on the overall sensitivity of the class. Lastly, considering the
F1 score parameter for PC mode as shown in Figure 10, the Random-Forest and Decision-
Tree algorithms had the highest F1 score of about 0.99. For VC mode, the Random-Forest
algorithm had the highest F1 score of about 0.99, followed by the Decision-Tree algorithm
with an F1 score value of 0.98. For PS mode, the Random-Forest algorithm had the highest
F1 score value of about 0.98, followed by the Decision-Tree algorithm with a score of 0.97.
For PAV mode, the Random-Forest algorithm had the highest F1 score of 0.98, followed
by the Decision-Tree algorithm with an F1 score of 0.93. The rest of the algorithms did not
perform well in terms of F1 score in correctly predicting PAV mode. Lastly, for CPAP mode,
the highest F1 score was achieved by the Random-Forest algorithm with a value of 0.99,
followed by the Decision-Tree algorithm with a value of 0.95. The logistic regression did
not perform well in correctly predicting CPAP mode with the least F1 score value of 0.15.
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Bioengineering 2023, 10, x FOR PEER REVIEW 13 of 18 
 

Figure 9 shows the average values for the sensitivity of different machine learning 

algorithms at the macro and weighted levels. The Random-Forest and Decision-Tree al-

gorithms both have a major impact on the overall sensitivity of the class. Lastly, consider-

ing the F1 score parameter for PC mode as shown in Figure 10, the Random-Forest and 

Decision-Tree algorithms had the highest F1 score of about 0.99. For VC mode, the Ran-

dom-Forest algorithm had the highest F1 score of about 0.99, followed by the Decision-

Tree algorithm with an F1 score value of 0.98. For PS mode, the Random-Forest algorithm 

had the highest F1 score value of about 0.98, followed by the Decision-Tree algorithm with 

a score of 0.97. For PAV mode, the Random-Forest algorithm had the highest F1 score of 

0.98, followed by the Decision-Tree algorithm with an F1 score of 0.93. The rest of the 

algorithms did not perform well in terms of F1 score in correctly predicting PAV mode. 

Lastly, for CPAP mode, the highest F1 score was achieved by the Random-Forest algo-

rithm with a value of 0.99, followed by the Decision-Tree algorithm with a value of 0.95. 

The logistic regression did not perform well in correctly predicting CPAP mode with the 

least F1 score value of 0.15. 

 

Figure 9. Bar chart visualization of sensitivity comparison among different ML algorithms. 

 

0.99

0.53

0.76

0.6

0.75

0.970.99

0.68
0.78

0.68

0.82

0.98

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

RFC LR GNB SVM KNN DTREE

S
en

si
ti

v
it

y

ML Algorithms

Comparative bar graph for recall/sensitivity

Macro_avg Weight_avg

Random-

Forest

algorithm

Logistic-

Regression

algorithm

GaussianN

B algorithm

SVM

algorithm

KNeighbor

s algorithm

Decision

tree

algorithm

CPAP 0.99 0.15 0.66 0.65 0.58 0.95

PAV 0.98 0.17 0.39 0.16 0.51 0.93

PC 0.99 0.75 0.78 0.72 0.92 0.99

PS 0.98 0.73 0.95 0.66 0.76 0.97

VC 0.99 0.79 0.85 0.8 0.95 0.98

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F
1-

S
co

re

ML Algorithm

M o d e l  e v a l u a t i o n  r e p o r t  f o r  F 1 - s c o r e

CPAP PAV PC PS VC

Figure 10. Model evaluation report of F1 score for different modes and ML algorithms.

The macro and weighted average values of the F1 score for various machine learning
algorithms are shown in Figure 11. The KNN method is followed by the Random-Forest and
Decision-Tree algorithms in terms of their effects on the class’s total F1-score. According
to performance statistics, the bar chart visualization and a comparison analysis, it is clear
that the Decision-Tree and Random-Forest algorithms are the most effective in accurately
predicting all five modes with substantial and high values of precision, recall and F1 score.
The accuracy values of each ML algorithm are shown in Table 13. Figure 12 shows a bar
chart representation of the various accuracy levels attained by several ML algorithms
employed in per-breath prediction modes.
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Table 13. Accuracy of each ML algorithm.

ML Algorithm Accuracy

Random-Forest 0.9889
Logistic regression 0.6790

GaussianNB 0.7804
Support vector machine 0.6819

KNeighbors 0.8165
Decision-Tree 0.9716
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The Random-Forest algorithm correctly and precisely predicted all of the ventilation
modes that were included in the study. After Random-Forest, the Decision-Tree method has
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demonstrated an impressive performance in predicting all five modes with high precision,
sensitivity and accuracy values. The KNeighbors algorithm performed brilliantly in terms
of accuracy, but it was less skilled at precisely predicting each mode. Only the Random-
Forest algorithm had successfully predicted each mode of ventilation with very good
sensitivity and precision. The high precision, sensitivity and accuracy of each mode’s
prediction differed between the logistic regression, support vector machine and Gaussian
Naive Bayes algorithms. Cross-validations were performed using a 10k-fold consistency
evaluation to get the best performance of all the ML models in the study. The Random-
Forest algorithm successfully predicted each mode of ventilation properly each time, with
high values for precision, sensitivity, F1 score and accuracy for the present investigation.
The Random-Forest technique correctly predicted each mode with a performance between
0.98 and 1.00 in terms of precision, sensitivity, F1 score and accuracy. The other modes,
however, have variations in their accuracy, sensitivity, F1 score, and precision. The precision,
sensitivity, and F1 score values for each mode varied greatly after the algorithms for logistic
regression, Gaussian Naive Bayes and support vector machines were trained and assessed.
The Decision-Tree and KNeighbors algorithms consistently performed well in correctly
forecasting each mode, but their performance did not improve significantly as compared to
the Random-Forest model. According to the comparative study’s findings, the ability of the
logistic regression to accurately predict the CPAP mode was subpar. It fared mediocrely in
all other modes. With a recall score of 0.98, it did an excellent job at predicting PS mode. In
the mode of predicting PAV, the performance of the support vector machine method was the
worst. Moreover, the logistic regression also struggled to accurately identify the PAV mode.
In terms of forecasting all modes, the GaussianNB and KNeighbors algorithms fared well,
but their performances are not taken into account when compared to the performances of
the Random-Forest and Decision-Tree methods. The Random-Forest method was the most
effective when comparing the two top algorithms in the study in terms of performance.
The Random-Forest approach was considered better across all metrics used in the analysis.
Although it was not the finest, the Decision-Tree was also reliable. A consistent network
of many (n estimators can be set) connected decision trees makes up the Random-Forest
ensemble machine learning method. The Random-Forest technique is trained using samples
drawn at random from the training data frame with replacement. In doing so, it creates a
set of decision trees with deliberate variations [38,39]. The ultimate output or forecast is
thought of as the output that is obtained by the majority of decision trees. Each decision
tree has its own result. As a result, the Random-Forest technique makes effective use of
a labelled training dataset. This explains why it predicts all ventilation modes with the
maximum accuracy across all parameters. As a result, an approach for creating a data
frame pertaining to a work has been offered in the current study effort [36]. The best feature
selection test produced the final data frame, which contained five significant features.
A comparative analysis has identified the best ML algorithm for predicting the ventilator
mode setting on a per-breath basis. In this study, all three categories of distinct modes were
examined. Based on the inputs it was given, the built ML model projected that one of the
five ventilation modes—pressure control (PC), volume control (VC), pressure support (PS),
proportional aided ventilation (PAV) and continuous positive airway pressure (CPAP)
modes—would be the output. The accuracy of the predictions made by the Random-Forest
ML model for each mode of ventilation was quite high. The average accuracy of the
Random-Forest ML model was 0.9889, which was higher than that of other studies [34,35].

4. Conclusions

Mechanical ventilation therapy necessitates a thorough data analysis before deciding
on the appropriate ventilation strategy for a particular patient. In the current study, the per
breath dataset of the chosen features is first checked for statistical correctness using descriptive
statistics, the data’s reliability is assessed using Cronbach’s Alpha (0.787), and finally it is used
to train the machine learning algorithms. The results of the comparative study show that
the best ML technique for predicting the right ventilation mode setting is a Random-Forest
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algorithm with precision ranging between 0.98 and 0.99, recall ranging between 0.98 and 1.0
and an F1 score ranging between 0.98 and 0.99. However, this study was subject to a few
limitations. The data needed to create the ML model could only be obtained from one healthcare
facility. The importance of the ML model for ventilation mode prediction will increase if it
incorporates data from diverse international healthcare facilities. Furthermore, only five modes
were investigated in this study; however, additional special modes, such as pressure-regulated
volume control (PRVC) modes and synchronized intermittent mandatory ventilation (SIMV),
must be investigated in future research. As a result, for further advancements in ventilation
mode prediction using ML techniques, the Random-Forest method may be a good choice with
the addition of more diverse and global data.
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