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Abstract: Recently, various methods have been developed to identify COVID-19 cases, such as
PCR testing and non-contact procedures such as chest X-rays and computed tomography (CT)
scans. Deep learning (DL) and artificial intelligence (AI) are critical tools for early and accurate
detection of COVID-19. This research explores the different DL techniques for identifying COVID-19
and pneumonia on medical CT and radiography images using ResNet152, VGG16, ResNet50, and
DenseNet121. The ResNet framework uses CT scan images with accuracy and precision. This research
automates optimum model architecture and training parameters. Transfer learning approaches are
also employed to solve content gaps and shorten training duration. An upgraded VGG16 deep
transfer learning architecture is applied to perform multi-class classification for X-ray imaging
tasks. Enhanced VGG16 has been proven to recognize three types of radiographic images with
99% accuracy, typical for COVID-19 and pneumonia. The validity and performance metrics of the
proposed model were validated using publicly available X-ray and CT scan data sets. The suggested
model outperforms competing approaches in diagnosing COVID-19 and pneumonia. The primary
outcomes of this research result in an average F-score (95%, 97%). In the event of healthy viral
infections, this research is more efficient than existing methodologies for coronavirus detection. The
created model is appropriate for recognition and classification pre-training. The suggested model
outperforms traditional strategies for multi-class categorization of various illnesses.

Keywords: CT scan images; chest X-ray; transfer learning; COVID-19 detection; deep learning

1. Introduction

CT scans, medical imaging, or chest X-rays have been proposed as a viable method
for detecting COVID-19 quickly and early. CT scan has demonstrated high sensitivity
in identifying COVID-19 at the initial assessment of patients. In severe circumstances,
it may efficiently correct RT-PCR false negatives [1–4]. Nevertheless, this is a complex
and time-consuming process, because a professional must interpret the X-rays and CT
imaging to establish if an individual is COVID-19 positive. The first diagnostic tool to
be used to identify COVID-19 pathology is a chest X-ray. A single chest X-ray image
is insufficient for reliable prediction and treatment of COVID-19 [5–8]. To address this
limitation, multiple medical data findings are combined, and predictive classifications
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are generated, leading to improved accuracy compared to using only a single test image.
However, extracting relevant features from COVID-19 images is challenging due to daily
fluctuations in characteristics and differences between cases [9–12]. Many conventional
machine learning (ML) techniques have already been applied to automatically classify
digitized chest data. Using an SVM classification model, frequent patterns were generated
from the pulmonary surface to distinguish between malignant and benign lung nodules.
Backpropagation networks have been used to categorize imagery as normal or malignant
using a gray-level co-occurrence matrix technique [13–15].

Convolutional neural networks (CNNs) can remove valuable features in picture cate-
gorization tasks. This feature extraction is performed with transfer learning. Pre-trained
approaches collect the general properties of large-scale data such as ImageNet and then
apply them to the task. DL algorithms are better than traditional NN models if enough
labeled images are available. The CNN model is one of the most common DL algorithms
for diagnostic imaging, with excellent results. Despite ML algorithms, the effectiveness of
CNNs depends on acquiring feature representation from property imagery. As a result, the
obtainability of pre-trained models such as DenseNet, ResNet, and VGG-16 is extremely
helpful in this procedure and appears to be extremely interesting for COVID-19 identifica-
tion using chest CT images and X-ray images. Transferring acquired knowledge from a
pre-trained network that has completed one function to a new task is a systematic approach
for training CNN architecture. This technique is faster and more efficient because it does
not require a large annotation training dataset; as a result, most academics, particularly in
the medical field, prefer it.

Transfer learning can be performed in three ways [16–20] as follows: shallow tuning
adjusts individuals from the previous classification layer to novel problems while leaving
the limitations of the remaining levels untrained; the deep tune function is used to retrain
the variables that were before the network from end to end; fine tuning intends to prepare
many layers after layer and gradually adjust to learning variables until a critical perfor-
mance is obtained. Knowledge transfer in detecting X-ray images through an impressively
executed fine-tuning procedure.

The motivational aspect of the proposed model, along with the significant contribu-
tions, are as follows. The suggested system uses transfer learning to train a model faster.
The training models compute the appropriate weights. Tuning in to the work at hand,
it is identifying COVID-19. The techniques are stacked to anticipate output class. The
meta-model in this system is an individual neuron that correctly forecasts the input cate-
gory using the outputs. To train a model faster, the proposed system employs a learning
approach. The weights of the pre-trained method are correctly adjusted during training,
and the approaches are integrated via stacking. The best model architecture and training
parameters for COVID-19 and pneumonia diagnosis should be automated in order to
produce better results. Using transfer learning methodologies solves research gaps and
reduces training time.

The research is organized as follows: Section 2 focuses on the related existing works
for COVID-19 detection cases; Section 3 discusses the proposed work and the details of
the algorithms presented in this study; Section 4 illustrates the graphical plots and tabular
representation for the experimentation of the proposed and existing methods; Section 5
summarizes the proposed work and concludes with its enhancements.

2. Literature Survey and Related Work

The unique stacked ensemble model is proposed for diagnosing coronavirus from
a person’s chest CT scans or chest X-ray imaging [21]. The suggested model is a layered
ensemble before heterogeneous ML models. Some of the transfer learning techniques
are VGG-19, ResNet, DenseNet, and fully connected networks are the pre-trained DL
models. By adjusting the extra fully connected tiers in each of them before the model,
prospective candidates for the classification algorithm are obtained. After an extensive
search, three outstanding models were chosen to create approximate weighting hetero-
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geneity stacked ensembles. Early diagnosis of coronavirus-positive cases prevents the
disease from spreading further in the population and allows for earlier treatment of the
general public [22]. CT imaging and chest X-ray images have recently shown distinctive
characteristics that indicate the severity of COVID-19 in the lungs. The advancement of AI
technology, specifically DL-based healthcare, is crucial in handling vast amounts of data
to achieve accurate and quick outcomes in diagnostic imaging. It can also aid in the more
efficient and precise diagnosis of pathogens while assisting in remote locations. Various
two-dimensional convolution techniques have been proposed for analyzing chest X-ray
images to identify COVID-19 with a precision of 99% and a validation accuracy of 98%,
with a loss of around 0.15%.

Rapid identification of coronavirus [23] was a challenging and time-consuming task
that computer-aided diagnosis (CAD) techniques have effectively addressed, enabling
quick decision-making and meaningful tasks for surveillance, treatment, and medication.
The use of chest X-ray (CXR) technique has become a cost-effective and practical alternative
to CT scanning and real-time polymerase chain reaction (RT-PCR) testing, which is the most
widely used detection method for COVID-19. Although several CAD approaches have
been developed for detecting COVID-19, various issues have hindered their effectiveness.
This research develops a deep CNN (DCNN) model using ResNet32 with the convolutional
block attention module to detect COVID-19 and pneumonia.

VGG-16 surpasses all these models on the dataset with an accuracy of 85.33% [24].
Clinicians employing RT-PCR tests can diagnose COVID-19, but it has a high rate of false
positive (FP) and false negative (FN) findings, and it takes a long time. One way to increase
the true positive (TP) ratio is to run many experiments simultaneously. CT scans and X-ray
images can be used to identify COVID-19-related pneumonia earlier. Upwards of 95%
efficiency can be reached using current DL methods. Various CNN (CovNet)-based DL
models are applied to diagnose pneumonia, including ResNet 152 v2, InceptionResNet v2,
Xception, Inception v3, ResNet 50, NASNetLarge, DenseNet 201, and VGG 16 [25].

A DL framework can be created to assist in evaluating CT tests to offer diagnostics
that can help save time in managing the disease. In this study, a DL algorithm was adapted
to identify COVID-19 using extracted features from chest X-rays and CT images. Many
transfer learning models were initially used and compared, and a VGG-19 model was
subsequently tweaked to produce the best results for disease diagnosis. The diagnosis
accuracy of all models was evaluated using a sample of 1000 images. The VGG-19 model
has higher precision, sensitivity, and specificity, with 99.4% precision, 97.4% sensitivity,
and 99.4% specificity in the timely identification of coronavirus. ML and image analysis
performed well [26]. Researchers present an approach to examining the possibility of deep
transfer learning in developing a classification to identify coronavirus-positive patients
utilizing CT and CXR imaging in this research. The preprocessing data method expands
the training datasets to lessen overfitting and improve the model’s generalization capacity.
To use a preprocessing data method, we evaluated pre-trained DL models: ResNet50,
InceptionV3, VGGNet-19, and Xception. DL is better at finding coronavirus cases, according
to the research. The VGGNet-19 model surpasses the other three models presented using the
CT image dataset when each modality is considered separately, according to the findings
of the tests [27]. It is true that Deep Neural Networks (DNNs) have made significant
progress in computer vision tasks, including medical imaging, and DenseNet has been
evaluated for categorizing COVID-19 chest X-ray images. The COVID-19 pandemic has
highlighted the importance of medical imaging in the diagnosis and monitoring of diseases,
and machine learning algorithms such as DNNs can help automate and streamline the
analysis process. DenseNet is a popular convolutional neural network architecture that
has shown promising results in various image classification tasks. A public database of
6432 chest X-ray images divided into three classes was also used. The three DenseNet
modeling variants, DenseNet121, DenseNet169, and DenseNet201, were trained via transfer
learning and fine tuning. After analyzing the results, it was found that DenseNet201 had the
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best accuracy rate of 0.9367 and the most negligible validation loss of 0.1653 for COVID-19
classifications in chest X-ray images [27,28].

Patients must wait an extended period of time to receive the results of blood tests
to detect COVID-19. This method uses a DL technique to detect COVID-19 quickly. DL
and neural algorithms logistic regression is a statistical tool for predicting the outcome
of radiology data, such as CT scans and X-ray images, that are fed into these algorithms.
Using this approach, positive instances of COVID-19 will be recognized more quickly [29].
This research focuses on building a DL approach for detecting and diagnosing COVID-19
utilizing chest CT scans. A public database was employed for this, which included 349 CT
scans of 216 patients with COVID-19 clinical abnormalities and CT scans of 397 healthy
people. Accuracy, precision, recall, Matthews coefficients correlation (MCC), and F-measure
criteria were used to evaluate diagnostic accuracy. A 10-fold cross-validation procedure
was used to assess the reliability of the approach. CNN has an accuracy rate of 92.63%,
a precision of 92.95%, a recall of 93.18%, an MCC of 85.2%, and an F1 measure of 93.06%.
Based on the results achieved with the approach taken within the focus of this research,
the mentioned approach could be used as a supplement or replacement for traditional
therapeutic tests in coronavirus outbreaks [29,30]. For the identification and classification
of COVID-19, a transfer learning method with precise adjustment was used in this study.
VGG16, DenseNet-121, ResNet-50, and MobileNet were employed as before models. DL
models were developed using a dataset of 7232 (COVID-19 vs. healthy) chest X-ray images.
A local dataset of 450 chest X-ray images from Pakistani patients was gathered or used for
tests and predictions. Many essential characteristics, such as recall, specificity, F1-score,
accuracy, loss graphs, and confusing matrix, were generated to verify the accuracy of the
algorithms. VGG16, ResNet-50, DenseNet-121, and MobileNet attained an accuracy of
83.27%, 92.48%, 96.49%, and 96.48%, respectively [31].

This research aimed to show how DL, ML, and image processing can help with
the fast and accurate identification of COVID-19 from two of the most frequently used
neuroimaging techniques, chest X-rays and CT scans. CNN models based on the Alexnet
model were proposed for CAD of coronavirus from CT and X-ray images. The effectiveness
of this technique was tested on the obtained dataset. COVID-19 CT and X-ray scans were
categorized, and CT scans were used to track the progression of the disease [32]. COVID-19
has been successfully identified by utilizing CT scans and X-rays to assess lung images.
However, it takes a team of radiologists and a lot of time to review each report, which is
time-consuming. As a result, this work proposes an automatic COVID-19 recognition and
categorization algorithm based on DNNs. The provided method performs pre-processing,
extraction of features, and classifications. The input image is processed using median
filtering at an earlier stage. The VGGNet-19 model, built on a CNN, is then used as a
feature representation. Finally, to identify and classify the presence of COVID-19, an ANN
is used as a classification algorithm [33]. Researchers worldwide are investigating new
ML approaches, such as DL, to help medical experts diagnose COVID-19 disease using
medical information such as X-ray films and CT scans. ML techniques for demonstrating
the first COVID-19 identification from chest X-rays would have been effective in controlling
this epidemic, because the facility for chest X-rays is available even in smaller cities and
is significantly less expensive. As a result, researchers suggest a CNN for identifying
the presence and absence of COVID-19. The CNN model is compared with the other
models based on ancient and transfer learning. Compared to ML algorithms, the suggested
CNN is more efficient (KNN, SVM, DT, etc.) [34,35]. COVID-19 may be identified using
DL techniques, a crucial task for treatment possibilities identified based on data these
days. The development of AI, ML, DL, and diagnostic imaging approaches offers excellent
performance, particularly in the areas of detection, classification, and segmentation. The
advances in imaging technologies that have allowed clinicians to monitor the body and
accurately diagnose and assess patients without surgery. It also highlights the use of
several imaging technologies, including CT with a DL model built on a CNN, for detecting
COVID-19 [36–43].
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3. Methods

This section focuses on the need for the proposed system model in detail.

3.1. Need for Proposed Model

The proposed model is required to fulfill the following requirements: to obtain better
measures, and to automate optimum model architecture and training parameters in COVID-
19 and pneumonia diagnosis; to apply the transfer learning approaches to solve content
gaps and shorten training duration; to perform multi-class classification for X-ray imaging
tasks by applying an upgraded VGG16 deep transfer learning; to minimize the complexity
of the layered design to perform the multi-class categorization of various illnesses.

3.2. System Model

This section explores the proposed model as sketched in Figure 1. The spatial domain
procedure is applied to the image pixels and altered pixel by pixel in this filtering. It is a
filtering mask that shifts from one pixel to another by performing several operations. It
will remove noise from the image by smoothing it.
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The spatial domain filtering is divided into linear and non-linear filters. The mean and
Wiener filters are the most often used linear filtering techniques, whereas the median filter
is a non-linear filtering approach. The mean value in the mean filter is derived from the
computation of neighbors and center pixel values in the N × N size. It is calculated after
calculating the center pixel value as follows:

Y(M, N) = Mean {X[i, j], [i, j]ε w} (1)

where w are the pixel positions in the neighborhood.
The Wiener filter is applied for filtering the consistent pixel values that define the

constant power additive noise. This filtering technique is used for adaptive filtering
of the image pixel-wise. Two variations are computed by computing the pixels in the
neighborhood with the following mean and standard deviation:

µ =
1

N ×M ∑(n1,n2∈η)
a(n1, n2) (2)

σ2 =
1

N ×M ∑(n1,n2∈η)
a2(n1, n2)− µ2 (3)

where η represents the N × M of the current pixel; with this estimation, the pixel-wise
Wiener filter was applied over the denoised image, which is computed as follows:

b(n1, n2) = µ +
α2 − v2

α2 (a(n1, n2)− µ) (4)

where v2 represents the noise variance.
The median filter works by the pixels in the window sorted in ascending order. The

median value of the N ×M image is changed based on the central pixel values using

Y(M, N) = Median {X[i, j], [i, j]ε w} (5)

where w is the pixels of the neighborhood.
Image enhancement uses quality enhancement techniques to improve the image

contents based on essential features, including intensity, edges, and corners. Histogram
equalization redistributes the pixel values of an image to increase contrast, making it easier
to distinguish between different image features. This technique can help to reduce the
number of pixels that are saturated or redundant in certain areas of the image, but its
primary goal is to enhance the overall visual quality of the image. This process increases
the contrast level of the image and the computation speed of content-based medical image
retrieval. Histogram equalization is a technique that improves the image’s visual quality
by adjusting the noisy and blurred pixel values. The histogram represents the discrete
function or the intensity distribution with the graphical format applied to dark images. The
process of histogram equalization for contrast enhancement is defined as follows:

1. Read the input image.
2. Compute the histogram, probability of each pixel, and probability density function of

the input image.
3. Equalize the histogram.

The histogram represents the image’s intensities using bars representing pixel fre-
quency. For a given input image, the histogram is computed as follows:

H(rk) = nk (6)

where rk is the kth gray level value ranging from 0 to L-1, and nk is the number of pixels
in the image which have the gray level in rk. Then, determine the probability of the gray
level using

p(rk) =
nk

M× N
(7)

where nk is the number of pixels, M×N defines the image size with M rows and N columns.
The pdf of the image is computed using

pk =
k

∑
i=0

nk ×
1

M× N
(8)
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Then, the histogram equalization is applied to enhance the quality of the image by
correcting its intensity values for the discrete case using

Sk = (L− 1)× pk(r) (9)

where pk(r) represents the pdf.

3.3. Fast Attention-Based ResNet

Attention-based ResNet is used to perform feature extraction and classification. The
architecture of the proposed model is depicted in Figure 2. The learning rate of the
proposed model is set to 0.0001, and the number of epochs performed for classification
is 10. The extracted set of features has many irrelevant and redundant features that need
to be removed because it reduces the accuracy of the process. Then, the feature selection
is performed to remove the irrelevant and redundant characteristics [7]. The attention
module is responsible for the extraction of features by learning the weights of the features
corresponding to the scaling attacks. The output of the attention layer is computed using

Atni(Z) = Qi(Z). Fi(Z) + Fi(Z) (10)

where Qi(Z) denotes the attention weight and Fi(Z) denote the features. In the atten-
tion layer, the relationship between the features is computed to achieve more relevant
information from the features, which can be computed as,

R(F1; F2) =
∫ n

F1

∫ n

F2

p(F1, F2) log
p(F1, F2)

p(F1)p(F2)
dF1dF2 (11)

where p(F1, F2) denote the function of probability between the features F1 and F2 and p(F1),
p(F2) denote the individual function of marginal density, respectively. The inception layer
learns specific features deeply by reducing the size of the initial patch, which affects the
original information required for the classification process. Based on the selected features,
classification is carried out. This process ascertains whether a given unknown packet is
standard or malicious. The softmax layer performs this classification, in which the cross
entropy is computed to determine the output loss, which can be calculated as

Loss (x) = −∑k log(st(x)k)qi (12)
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Formulate the softmax st(x) of a vector using

st(x)k =
exk

∑m exm
(13)

The classification is performed by increasing the score corresponding to the input images.

3.4. Enhanced VGG-16 Architecture for X-ray Images

Figure 3,the VGG-16 architecture is implemented to extract and classify the features
using DL [8]. Initially, the features of the segmented region are extracted. The proposed
VGG-16 has three layers: a convolutions layer, a fully connected layer, and a softmax layer.
VGG 16 extracts low-level features with small masks and has fewer layers than VGG 19.
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The max pooling and average pooling layers extract the features from the image. These
layers extract the features from the segmented region, as shown in Table 1. The convolution
layer concatenates the pooling results using the sigmoid function(δ) with the measure of

C(F) = δ
(

f 7×7[FA; FM]
)

(14)

where FA ∈ r1×h×w and FM ∈ r1×h×w represent expected and max pooling measures.
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Figure 3. The architecture of VGG 16.

Table 1. Features and Aesthetics of the model.

Color Standard deviation, intensity, kurtosis, skewness
Texture Homogeneity, entropy, correlation
Shape Artery—radius, length, angle, area, eccentricity

The fully connected layer receives the extracted results using dense, flattened, and
dropout layers to bring the final classification as normal or abnormal using

C(p = q/s) =
eb

∑j ebj
(15)

Algorithm 1 presents the segmentation process of dividing an image into multiple
segments or regions based on some criteria, such as color, texture, or shape. VGG16 is
a convolutional neural network that has been widely used for image classification tasks.
However, it can also be used for feature extraction and segmentation tasks.

Algorithm 1: VGG 16

1. Input: Segmented Region (S.R.)
2. Output: Normal (N) or abnormal (AN)
3. {
4. Begin
5. Initialize { f c, f s, f t}
6. f c← { f c1, f c2, .. f cn}
7. f s← { f s1, f s2, .. f sn}
8. f t← { f t1, f t2, .. f tn}
9. Initialize the feature extraction data.
10. for i← o to n do
11. Extract f c from S.R.
12. Extract f s from S.R.
13. Extract f t from S.R.
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Algorithm 1: Cont.

14. F← { f c, f s, f t}
15. Extract the features by average pooling layer FA
16. Extract the features by maxpool layer FM
17. Concatenate the features
18. Classifying the images using softmax layer
19. Class← { N, AN}
20. end for
21. }
22. return class
23. end
24. }

4. Results and Discussion

This section analyzes the experimental results of the proposed method.

4.1. Dataset

Five different databases are applied to evaluate the performance of the proposed
method. Two databases provide chest X-ray imaging, while the remainder include chest
CT scans [11,12]. Every database was divided into three parts: test, validation, and training
set. The test set must have between at least 200 and 400 images to evaluate the model’s
flexibility well. The size of the test set determines the size of the verification set; the more
significant the test set, the more prominent the testing set will be, and conversely. The other
images were used to develop a training set. To perform the presented approach, the test
and the validation test sets are organized, consisting of the same partitions of the positive
and negative image samples. The hyper-parameters are tuned based on the training and
test sets of the coronavirus images.

The descriptions of the datasets are given as follows:
The CT image dataset contains approximately 349 CT images from 216 patients with

coronavirus and 397 patients without coronavirus. The images were collected from hos-
pitals that treat both coronavirus and non-coronavirus patients, but only the positive and
negative cases for coronavirus were included in the dataset [13,14]. Some of the samples of
coronavirus images in both positive and negative classes are given in Figure 4. The features
of the dataset are as follows:
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Types of Images: CT Images
Size of Dataset: 746 CT Scans
Positive Case images in Total: 349
Negative Case images in Total: 397
Validation Size Set: 118 Scans
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Training Size Set: 425 Scans
Test Size Set: 203 Scans

The COVID-19 images collection dataset consists of images gathered from the public
community, such as physicians and hospitals. The features of this dataset are as follows:

Types of Imaging: Chest X-rays
Size of Dataset: 579 Images
Training Size Set: 309
Validation Size Set: 70
Testing Size Set: 200
COVID-19 Positive Cases: 342
COVID-19 Negative Cases: 237

The CT set COVID-19 dataset consists of original CT scan imaging for 377 patients.
A total of 15,589 CT scans are used for CT scan images of 95 coronavirus patients and
282 regular patients. The features of this dataset are as follows:

Types of Images: CT Scan Images
Size of Dataset: 12,058 Scans
Positive Images: 2282
Negative Images: 9776
Training Set: 11, 400
Validation Set: 258
Testing Set: 400

The COVID-19 radiography collection includes 1200 images of positive COVID-19,
1341 images of healthy patients, and 1345 images of patients with fever infection. This
dataset has the following characteristics:

Figure 5 CT scans, or computed tomography scans, use X-rays to create detailed
images of the inside of the body. CT scans can be helpful in diagnosing respiratory illnesses
such as SARS-CoV-2, the virus that causes COVID-19. CT scans can show the presence
of lung abnormalities such as ground-glass opacities and consolidation, which can be
indicative of viral pneumonia.
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Images Type: X-ray
Sum of Images: 2541
Negative Images: 2686
Positive Images: 1200
Training Size Set: 3086
Testing Size Set: 400
Validation Size Set: 400
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SARS-CoV-2 CT scan images consists of 1252 CT scan images that are positive, whereas
the remaining 1230 images are classified as non-infected viruses, with the following features:

Images Type: CT Scan Images
Size of Dataset: 2482 Images
Negative Images: 1230
Positive Images: 1252
Training Size Set: 1800
Testing Size Set: 400
Validation Set Size: 400

To mitigate the model overfitting issues of the training case, the training size is
increased from 1275 images collected utilizing data augmentation based on random rotation,
horizontal flipping, and color jittering.

4.2. Data Preprocessing and Augmentation Techniques

Using data augmentation methods, some enormous volumes of datasets must be tested
using transfer learning or DL techniques [14,15]. Hence, this research model considers data
augmentation methods with the datasets.

Resize or Crop by Random: This step represents the cropping of the input image to the
unsystematic size of the image and the aspect ratio.
Rotation by Random: To perform this step, the sample is rotated by selecting an angle
at random.
Horizontal Flip by Random: This step represents the flip action for the given input image
randomly in a horizontal manner.
Color Jittering: This step randomly represents the modifications of the input image’s
contrast, saturation, and brightness.
Training Settings: The overall work is implemented through a Python framework, in which
the variables are fixed for all experiments. The simulation parameters are shown in Table 2.

Table 2. Simulation parameters.

Parameters Values

DL Model Python (PyTorch library)
Number of Epochs 1 to 100
Learning Rate 0.003
Optimization Technique ADAM
Loss Cross Entropy
Size of Batch 16
Resized Cropping Scale in Random 0.5 to 1.0
Rotation Angle Range (−5, +5)
Flipping Possibility Rate 0.5
Resized Size of Cropping in Random 224

4.3. Comparison Analysis

Classification accuracy is defined as the accuracy in performing the classification of
both COVID-19 and viral pneumonia and computed using

Accuracy =
TrP + Tr N

TrP + Tr N + Fl P + Fl N
× 100% (16)

It is important to find the optimal number of iterations that maximizes the model’s
accuracy without overfitting. This can be done by monitoring the validation accuracy
during training, which measures how well the model performs on a separate set of data
that is not used for training. The validation accuracy typically starts to plateau after a
certain number of iterations, indicating that the model is no longer improving significantly
and further training may lead to overfitting in Figure 6.



Bioengineering 2023, 10, 363 12 of 21Bioengineering 2022, 9, x FOR PEER REVIEW 13 of 23 
 

 
Figure 6. Iteration count vs. classification accuracy. 

The greater the classification accuracy, the greater the efficiency of the approach. 
Figures 6 and 7 depict the relationship between the model’s classification accuracy with 
others based on the iterations and the sample counts. The classification accuracy of the 
proposed ensemble model is high due to the extensive extraction of features and classi-
fication. 

 
Figure 7. Number of samples vs. classification accuracy. 

The feature set is generated from many features using a pre-trained model to elim-
inate redundant features [16,17]. The selection of transfer learning in the model is based 
on the recent study and literature analysis, contributing to increased classification accu-
racy. The existing approaches considered both necessary and redundant features for 
classification, which degraded the classification accuracy. 

The classification accuracy of the proposed method with others based on users and 
iterations count is presented in Table 3. The classification and accuracy of the proposed 
method are 95% and 96%, respectively, whereas the existing approaches possess only 
about 62% to 72% of accuracy. The proposed method accurately classifies COVID-19 and 
non-COVID-19 images. 

Figure 6. Iteration count vs. classification accuracy.

The greater the classification accuracy, the greater the efficiency of the approach.
Figures 6 and 7 depict the relationship between the model’s classification accuracy with
others based on the iterations and the sample counts. The classification accuracy of the pro-
posed ensemble model is high due to the extensive extraction of features and classification.
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The feature set is generated from many features using a pre-trained model to eliminate
redundant features [16,17]. The selection of transfer learning in the model is based on the
recent study and literature analysis, contributing to increased classification accuracy. The
existing approaches considered both necessary and redundant features for classification,
which degraded the classification accuracy.

The classification accuracy of the proposed method with others based on users and
iterations count is presented in Table 3. The classification and accuracy of the proposed
method are 95% and 96%, respectively, whereas the existing approaches possess only
about 62% to 72% of accuracy. The proposed method accurately classifies COVID-19 and
non-COVID-19 images.
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Table 3. Classification accuracy.

Methods
Classification Accuracy (%)

Iteration Count No of Samples

CNN 61 ± 0.05% 62 ± 0.04%
DNN 71 ± 0.02% 72.6 ± 0.03%
Improved CNN (LeNet-5) 84 ± 0.03% 85.5 ± 0.04%
DL with Transfer Learning 92 ± 0.02% 92.5 ± 0.1%
Ensemble 95 ± 0.2% 96.2 ± 0.5%

The precision is the measure of relevancy in the classified images computed using

Precision =
TrP

TrP + FlP
× 100% (17)

The comparison of the precision of the presented method and the existing approaches
to iteration count and the number of samples is illustrated in Figures 8 and 9. The figures
show that the precision of the proposed model is high due to the implementation of spatial
domain filtering, thereby eliminating the noise. Increasing the iteration count of a machine
learning model can lead to improvements in recall, but this is not always the case Figure 10.
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Further, the classification of the face and non-face regions was performed by utilizing
the feature extraction in which the optimum approach performed the selection of features.
The lack of consideration of pixel-based features and the removal of the noise level in the
images of the existing approaches resulted in reduced precision [17,18]. The superiority of
the proposed pre-trained approach is illustrated in Table 4, which presents the numerical
comparison of the presented method and existing approaches in terms of the iteration
count. The presented method’s precision is 95% to 96%, whereas the existing approaches
possess precision of about 61% to 71%. The proposed method produces better precision
than other methods in detecting coronavirus.

The recall is called sensitivity, the measure of correctness between the classified images,
calculated using

Recall =
TP

TP + FN
(18)

Figures 11 and 12 sketches the comparison of recall measure with other methods over
the fixed iterations in all cases of test data. The recall of the presented method is high due
to the implementation of effective pre-processing techniques to eliminate the noise and
correct the illumination.
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Table 4. Precision.

Methods
Precision (%)

Iteration Count Number of Samples

CNN 60 ± 0.05% 62 ± 0.04%
DNN 71 ± 0.02% 72.6 ± 0.03%
Improved CNN (LeNet-5) 84 ± 0.03% 85.5 ± 0.04%
DL with Transfer Learning 92 ± 0.02% 92.5 ± 0.1%
Ensemble 95 ± 0.2% 96.2 ± 0.5%
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Further, consideration of various features, such as low and high-level features, im-
proved the recall results of the proposed model. The lack of noise elimination and consider-
ation of integrated features restricted the recall of the existing approaches. The numerical
analysis of recall with other methods is shown in Table 5. The presented method has a recall
of 94% to 96%, whereas the existing approaches possess only about 62% to 72%. This leads
to the conclusion that the presented method is more efficient than the existing approaches
in performing coronavirus detection in healthy and viral infection cases [20].

Table 5. Recall.

Methods
Recall (%)

Iteration Count No. of Samples

CNN 59.6 ± 0.05% 61.5 ± 0.04%
DNN 69.8 ± 0.02% 71.5 ± 0.03%
Improved CNN (LeNet-5) 84 ± 0.03% 83.5 ± 0.04%
DL with Transfer Learning 91.5 ± 0.02% 92 ± 0.1%
Ensemble 94.5 ± 0.2% 95.9 ± 0.5%
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The F-measure is the combination of precision and recall calculated by computing the
harmonic mean and measured using

F−measure =
2× TP

(2× TP + FP + FN)
(19)

The comparison of the F-measure with other methods based on the iteration count
is illustrated in Figure 13. The increased F-measure of the proposed method is due to the
increase in precision and recall value.
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The detection and classification are carried out by pre-processing the input frames
and extracting extensive features from the pre-processed images. The grouping of pixels is
performed to determine the differentiation between the non-similar features. The classifica-
tion of coronavirus and pneumonia is determined with an increased F-measure over the
reduced F-measure of the other methods.

The efficiency of the presented method is proved by the numerical analysis presented
in Table 6, which compares the F-measure with the other methods. The F-measure of the
presented method is 95% to 97%, whereas the existing methods range from 63% to 72%.
The model that was developed has been shown to be efficient for pre-training purposes in
the detection and classification of masked faces.

Table 6. F-measure.

Methods
F-Measure (%)

Iteration Count No. of Samples

CNN 60.2 ± 0.05% 62.3 ± 0.04%
DNN 71.2 ± 0.02% 72 ± 0.03%
Improved CNN (LeNet-5) 84.5 ± 0.03% 84.2 ± 0.04%
DL with Transfer Learning 92.2 ± 0.02% 92.5 ± 0.1%
Ensemble 95.2 ± 0.2% 96.7 ± 0.5%

The Receiver Operating Curve (ROC) depicts the relationship between the specificity
and sensitivity in all possible cut-off values. The ROC curve is a graphical representation to
visualize the efficiency of an approach. The better performance of an approach is depicted
as the curve nearer to the left top corner of the ROC curve. The ROC curve of the proposed
model with others is also analyzed for all the image sets of evaluation. The proposed model
yields a better ROC curve than the other models in classification and detection [36,37]. The
existing approaches possess reduced ROC curve values due to the inefficiency caused by
image noise and the lack of feature integration for classification. The computational time
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is the time to compute specific tasks to obtain the desired result. Figure 13 compares the
computational time of the proposed and other models based on the iteration factor. The
computational time involved with the existing approaches is high due to the increased time
consumption in training the model.

As the number of samples increases, the computation time required to process those
samples also increases. This is because more samples typically mean more data to process
and analyze, which can be computationally intensive. For example, if you’re training a
machine learning model on a dataset of images, the more images you have, the longer it
will take to train the model Figure 14.
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The benefits of the proposed model are as follows: the pre-trained model possesses
fewer layers than the existing models and thereby possesses low complexity. This charac-
teristic of the proposed model requires a short computational time to detect and recognize
the coronavirus.

Figure 15, this method provides minimal computation time without compromising
the accuracy in detecting and recognizing the coronavirus [38,39]. The time complexity
of the layered architecture runs in a linear, that is, O(n) time. The proposed model is
computationally efficient and highly accurate for the multi-class categorization of distinct
illness types [40–43].
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Table 7 shows the comparison of the computation time with other models. From the
table, it is clear that the computation time of our approach is shallow, at about 0.4 s. In
contrast, the existing approaches possess an increased computation time of up to 0.9 s for
both preprocessed and non-preprocessed.

Table 7. Computation time (s).

Methods
Computation Time

Masked Face Unmasked Face

CNN 0.9 0.96
DNN 0.84 0.92
Improved CNN (LeNet-5) 0.78 0.84
DL with Transfer Learning 0.65 0.72
Ensemble 0.4 0.62

4.4. Limitations and Analysis

The limitations of the model are as follows: quality of outcomes based on the noise
levels in the images affect the performance measures; integrating the relevant features are
also an important requirement for the classification in the proposed model. The future
research directions of the proposed model are as follows: enhancement using recent soft
computing components and better recommender systems will be developed based on the
features of datasets [19,20,44–48]; large datasets will be considered for validation to further
improve performance measures using soft computing within the minimal computing
time [25–27,49–63].

5. Conclusions

COVID-19 and pneumonia are usually encountered due to lung symptoms that can
be identified through genes and studies. Early detection of coronavirus and effective
management of its progression can be facilitated through the use of imaging tests. In
identifying coronavirus disease, chest X-rays and CT are helpful imaging modalities. The
wide availability of huge, annotated images based on transfer learning methods—VGG-
16, ResNet, and DenseNet—has led to considerable progress in earlier transfer learning
models for medical image classification. This ensemble learning technique is an accurate
representation because it recovers a hierarchy of localized visual elements given the input.
However, irregularities in the annotation of COVID-19 and pneumonia instances produced
on X-ray imaging remain a much more problematic component of working on them.
This research classified COVID-19 and pneumonia images in a vast chest X-ray and CT
database using an ensemble learning system based on developments in the extraction
features technique. The suggested methodology provided fast and thorough COVID-19
and pneumonia classification results and the ability to deal with data inconsistencies and a
limited amount of class images. The classification and accuracy of the proposed method
are about 95% and 96%, respectively, and the precision is found to be 95% to 96%. The
recall is 94% to 96%, with an F-measure from 95% to 97%. The proposed method is more
efficient than the existing approaches in performing coronavirus and pneumonia detection
in healthy and viral infection cases. The devised model is adequate for pre-training in
detection and classification. The time complexity of the layered architecture runs in a linear,
that is, O(n) time, and takes less than 0.5 s. The proposed model is computationally efficient
and highly accurate for the multi-class categorization of distinct illness types.
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