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Abstract: This work presents a deep-learning-based denoising technique to accelerate the acquisition
of high b-value diffusion-weighted MRI for rectal cancer. A denoising convolutional neural network
(DCNN) with a combined L1–L2 loss function was developed to denoise high b-value diffusion-
weighted MRI data acquired with fewer repetitions (NEX: number of excitations) using the low
b-value image as an anatomical guide. DCNN was trained using 85 datasets acquired on patients
with rectal cancer and tested on 20 different datasets with NEX = 1, 2, and 4, corresponding to
acceleration factors of 16, 8, and 4, respectively. Image quality was assessed qualitatively by expert
body radiologists. Reader 1 scored similar overall image quality between denoised images with
NEX = 1 and NEX = 2, which were slightly lower than the reference. Reader 2 scored similar quality
between NEX = 1 and the reference, while better quality for NEX = 2. Denoised images with fourfold
acceleration (NEX = 4) received even higher scores than the reference, which is due in part to the
effect of gas-related motion in the rectum, which affects longer acquisitions. The proposed deep
learning denoising technique can enable eightfold acceleration with similar image quality (average
image quality = 2.8 ± 0.5) and fourfold acceleration with higher image quality (3.0 ± 0.6) than the
clinical standard (2.5 ± 0.8) for improved diagnosis of rectal cancer.

Keywords: diffusion-weighted MRI; rectal cancer; deep learning; denoising

1. Introduction

According to the American Cancer Society, an estimated 44,850 individuals will be
newly diagnosed with rectal cancer in 2022 in the US, out of 150,030 newly diagnosed
colorectal cancer [1]. Treatment for locally advanced rectal cancer is a total neoadjuvant
treatment, and about 30% of patients will respond with a complete pathologic response [2].
MRI is the preferred imaging modality to diagnose rectal cancer [3–6], and T2-weighted
imaging and diffusion-weighted imaging (DWI) are the most frequently used methods [7],
presenting high accuracy in the detection of cases with complete clinical response. It has
been shown that DWI increased the sensitivity of detecting pathological clinical response
(+27%) [8]. However, the specificity of DWI alone and combined with T2WI remained low
at 63% and 56%, respectively [9]. Hence, there is a need to improve the accuracy of DWI for
rectal cancer by improving image quality.

DWI for rectal cancer is typically performed via single-shot echo planar imaging
(ss-EPI) acquisition [10]. ss-EPI is the fastest technique to acquire DWI data and presents
very low sensitivity to macroscopic organ motion [11,12]. However, ss-EPI has limitations
in terms of spatial resolution and SNR and presents geometric distortions. First, since all
k-space lines need to be acquired within the duration of one shot, spatial resolution is
compromised, and the relatively long duration of the signal readout results in geometric
distortions and signal pile-ups due to sensitivity to magnetic field inhomogeneities [13].

Bioengineering 2023, 10, 359. https://doi.org/10.3390/bioengineering10030359 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10030359
https://doi.org/10.3390/bioengineering10030359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0003-3785-589X
https://orcid.org/0000-0002-1076-7948
https://orcid.org/0000-0002-8483-3653
https://orcid.org/0000-0002-4373-6494
https://orcid.org/0000-0002-3782-4930
https://doi.org/10.3390/bioengineering10030359
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10030359?type=check_update&version=1


Bioengineering 2023, 10, 359 2 of 13

Second, the application of diffusion-weighted magnetic field gradients reduces signal-to-
noise ratio (SNR) proportionally to the diffusion weight or b-value, and significant SNR
degradation is expected for high b-value images [14]. To compensate for the inherent low
SNR, the acquisition is repeated multiple times (usually 16 times in the rectum), and images
are averaged to reduce noise [15]. This is a practical but very expensive solution, as it
increases scan time proportionately to the number of repetitions.

Several techniques have been proposed to accelerate DWI and thus compensate for
the additional scan time required for repeated acquisitions. The first group of techniques
aims to undersample k-space and use advanced reconstruction techniques such as paral-
lel imaging, compressed sensing, or deep learning to reconstruct unaliased images from
undersampled k-space data. Parallel imaging techniques, such as Sensitivity Encoding
(SENSE) [16] and generalized autocalibrating parallel acquisitions (GRAPPA) [17,18], have
been extensively applied to reduce the readout duration and thus reduce distortions or
increase spatial resolution in DWI [19–23]. Simultaneous multislice (SMS) techniques
enable through-plane undersampling by simultaneously acquiring multiple slices. The
combination of through-plane SMS acceleration and in-plane parallel imaging acceleration
has led to further improvements in spatial resolution and scan time reductions [24]. Com-
pressed sensing has also been applied to accelerate diffusion MRI, but mainly diffusion
tensor imaging (DTI), which has higher dimensionality and thus is a better candidate
than ss-EPI [25,26].

Another obstacle to the application of compressed sensing is the need for random
undersampling, which is challenging for an EPI readout. The second group of techniques
reduces the number of repetitions and denoises the resulting images to compensate for
the reduced averaging. Several denoising techniques have been applied to DWI data to
reduce the number of repetitions, including joint reconstruction and denoising of complex-
values images [27], data-driven principal component analysis (PCA) [28], and model-based
Bayesian denoising of magnitude images [29].

Deep learning techniques have been recently proposed for both the reconstruction and
denoising of DWI data. The goal of deep learning is to train a convolutional neural network
(CNN) to reconstruct undersampled k-space DWI data or to denoise diffusion images
acquired with fewer repetitions. Higher undersampling factors (up to a factor of 5) were
reported using deep learning reconstruction of ss-EPI data [30]. Deep learning has also
been applied to reduce the number of repetitions for high b-value DWI in the brain [31] and
prostate [32] by training a CNN that maps a noisy image acquired with a few repetitions to
a denoised image that resembles the one acquired with a large number of repetitions.

This work proposes to develop a denoising convolutional neural network (DCNN)
trained with rectal cancer patient data to accelerate the acquisition of high b-value DWI
data in the rectum. The network will be trained using rectal cancer patient data to include
tumor variability and rectum-specific physiological variables such as gas in the rectum
and peristalsis, which make the problem of DWI in the rectum more challenging than in
the brain or prostate. A modified loss function is proposed for training, where a linear
combination of L1 and L2 terms is employed to obtain an appropriate compromise between
denoising and smoothing [33,34]. Results are evaluated quantitatively using the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) and qualitatively by expert
body radiologists.

2. Materials and Methods
2.1. Data Acquisition

Raw k-space data from 120 patients were collected retrospectively on 13 3T MRI
scanners (GE Healthcare, Waukesha, WI, USA) with approval from the institutional re-
view board. Eighty-five datasets (3079 images for different slices in the acquisition, 70%)
were used for network training, 15 datasets (608 images, 12.7%) were used for cross-
validation, and 20 datasets (760 images, 16.9%) were used for testing different versions
of the deep learning approach. DWI data were acquired using a ss-EPI DWI pulse se-
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quence as part of our standard rectal MRI examination. Diffusion gradients were applied
simultaneously along the three spatial dimensions x, y and z with b = 0, 50 (low b-value)
and 800 (high b-value) s/mm2. Low b-value data acquisition was performed with 2 or
4 repetitions (NEX = 2 or 4) and high b-value with 16 repetitions (NEX = 16). Relevant
imaging parameters include the following: field of view (FOV) = 16–20 cm, phase-encoding
FOV coverage = 100%, slice thickness = 5 mm, space between slices = 1 mm, number of
slices = 30–50, TR = 6–8 s, TE = 54–74 ms (shortest TE available using partial Fourier as de-
termined by the vendor implementation of the sequence), in-plane matrix size = 140 × 140.

2.2. Image Reconstruction

Images were reconstructed offline in MATLAB (Mathworks, Natwick, MA, USA) using
the EPI reconstruction functions in the GE Healthcare Orchestra Reconstruction Software
Development Toolkit. Images for each repetition (NEX) were reconstructed separately and
averaged to produce three types of images (Figure 1): guidance (low b-value DWI with
NEX = 2 or 4), reference (high b-value DWI reconstructed with NEX = 16) and noisy (high
b-value DWI reconstructed with NEX = 1, 2, and 4 to test acceleration factors of 16, 8, and 4,
respectively). Noisy and reference images were normalized to the maximum value of signal
intensity among all slices of the reference images, and low b-value images were normalized
to the maximum intensity of all slices. ADC maps were calculated pixel-wise by using the
following equation:

ADC = − 1
∆b

ln
(

sb
s0

)
, (1)

where s0 is the signal at low b-value, sb is the signal at a high b-value, and ∆b is the difference
between high and low b-value.
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Figure 1. Offline reconstruction of DWI raw data. Raw k-space data from every patient was recon-
structed to produce three images: guidance (low b-value DWI), noisy (high b-value DWI reconstructed
with NEX = 1, 2, and 4), and reference (high b-value DWI reconstructed with NEX = 16).

2.3. Denoising Convolutional Neural Network (DCNN)

DCNN has two inputs that were given by the high b-value image to be denoised and
the low b-value image that serves as an anatomical guide, and the output is the denoised
high b-value image (Figure 2). DCNN uses residual learning to separate noise from a
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noisy image, which was demonstrated to improve robustness of the denoising process by
including the feedback loop [35]. DCNN is composed of 64 layers. The first layer generated
64 feature maps using 3 × 3 × 2 convolution filters and nonlinearity rectified linear units
(ReLU). In layers 2 to 63, 64 filters of size 3 × 3 × 64 were used. Batch normalization was
implemented between convolution and ReLU. The output was reconstructed in the last
layer using one filter of size 3 × 3 × 64. Input images were converted to 60 × 60 patches.
Pair of patches were rotated and flipped during mini-batch learning.
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Figure 2. Denoising convolutional neural network (DCNN) architecture. The DCNN denoises the
high b-value image using the low b-value image as a guide. The DCNN is based on residual learning
and uses a loss function that combines an L2-term and an L1-term for an appropriate tradeoff between
denoising and smoothing.

DCNN is trained by minimizing a loss function given by a linear combination of an
L2 term (sum of all squared differences between denoised and reference images) and an
L1 term (sum of absolute differences between denoised and reference images):

LL1−L2 = ∑
Ntraining
n=1

1
2
‖dn − rn‖2

2 + λ∑
Ntraining
n=1 ‖dn − rn‖1, (2)

where dn is the output of the network, rn is the reference high b-value image, d Ntraining is the
number of training datasets, and λ is the weighting factor for the L1 term (right-hand-side)
relative to the L1 term (left-hand-side). DCNN was trained for 18 epochs. The loss was
calculated on the validation set every third epoch, and it decayed consistently. To select the
value of l, five different networks with weighting factors = 2, 4, 5, 6, and 10 were trained.
Denoised images from one test case using the five different networks were evaluated by
the expert body radiologist in terms of denoising and smoothing. The selected DCNN
was then applied to the testing cases using noisy images with NEX = 1, 2, and 4, which
corresponds to acceleration factors of 16, 8, and 4, respectively. The denoised output of
these three networks was then evaluated by quantitative metrics and qualitatively by expert
body radiologists.

2.4. Quantitative Evaluation

Peak signal-to-noise ratio (PSNR) [36] and structural similarity (SSIM) [36] of noisy
and denoised images acquired with NEX = 1, 2, and 4 with respect to reference images
acquired with NEX = 16 were computed to assess image quality quantitatively. PSNR was
computed as follows [36]:

PSNR(d, r) = 10log
dmax

MSE(d, r)
= 10log

dmax
1
n ∑i(di − ri)

2 , (3)

where d is the noisy/denoised image, r is the reference, i is an index for the pixels in d, and
r, n is the number of pixels, dmax is the peak intensity in d, and MSE is the mean squared
error. SSIM was computed as follows [36]:

SSIM(d, r) = I(d, r)C(d, r)S(d, r), (4)
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where I(d, r) = 2µdµr
u2

d+u2
r

is the luminance comparison function, C(d, r) = 2σdσr
σ2

d+σ2
r

is the contrast

comparison function, S(d, r) = σdr
σdσr

is the structure comparison function, µ is the mean
value, σ is the standard deviation, and σdr is the covariance between d and r.

PSNR and SSIM were computed for different loss functions, including L2-only, L1-only,
and joint-L1–L2. To assess the local image quality in the rectal region, PSNR and SSIM were
computed in a region of interest surrounding the rectum.

2.5. Qualitative Evaluation by Expert Body Radiologist

Qualitative evaluation was performed by two diagnostic body radiologists with 11 and
7 years of experience. Radiologists were blinded to the project goals and independently
reviewed noisy (NEX = 1,2,4), reference (NEX = 16), and denoised (NEX = 1,2,4) high
b-value images presented in a randomized order. Scenarios where one type of image would
be immediately followed by another type of image for the same patient were avoided by
manually adjusting the order. A four-point Likert scale (Table 1) was employed in a similar
way to previous studies [37–39]. The scale is 1 (Nondiagnostic/poor) to 4 (Excellent), and
the readers scored images based on overall image quality, rectum margin and rectal wall
layers demarcation, noise suppression, and image sharpness.

Table 1. Qualitative image evaluation criteria used by expert body radiologists.

Score Overall Image Quality Rectum Margin and Rectal
Wall Layers Demarcation Noise Suppression Image Sharpness

1 Nondiagnostic/poor No visualization or inability
to trace structures clearly

Significant noise that
hampers diagnostic
capability of readers

Nondiagnostic, blurred,
hampering diagnostic capability

2 Fair Fair demarcation
Substantial noise with

significant image
quality degradation

Substantially blurred, not
hampering diagnostic capability

but low image quality

3 Good Nearly complete and
clear demarcation Moderate noise Mild blur with mild image

quality degradation

4 Excellent Complete and
clear demarcation

Minimal noise without
image quality degradation Minimal or no blur

3. Results

Figure 3 shows the performance of DCNN for different weighting factors of the L1 term
with respect to the L2 term in the loss function. The network with a weighting factor of
4 was selected by an expert body radiologist as the one with the best balance between
denoising and delineation of the rectal wall. Using lower weights than 4 on L1 with respect
to L2 (e.g., 2) result in oversmoothed images, while using higher weights than 4 on L1 with
respect to L2 (e.g., 5 and 10) result in noisier images. The L1–L2 network with a weighting
factor of 4 was used from this point forward.

The performance of different loss functions (L1 alone, L2 alone, and joint L1–L2) to
denoise high b-value DWI data acquired with only one repetition in a representative patient
with rectal cancer is presented in Figure 4. The joint L1–L2 loss function outperforms the
L2 and L1 loss functions. Specifically, the L2 loss function presents residual noise, and
the L1 loss function presents blurring. The use of a combined L1 and L2 loss function can
improve the tradeoff between denoising and smoothing, presenting a denoised image with
preserved anatomical details. This result represents a 16-fold acceleration in the acquisition
of high b-value DWI data, reducing the acquisition time from 370 s to 22 s.

Quantitative performance between different loss functions is presented in Table 2
using PSNR and SSIM averaged over all slices for all patients in the testing group. Deep
learning denoising presented higher PSNR and SSIM than the noisy images for all loss
functions, as expected. In addition, denoised images with L1–L2 loss function presented
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the overall highest PSNR and SSIM, which agrees with the analysis performed by the
body radiologist.

Figure 5 shows the performance of DCNN for different numbers of repetitions (NEX)
or acceleration factors. Denoising performance is high in all cases, with slightly better
quality in NEX = 2 and NEX = 4 over NEX = 1, which was expected due to the use of
more repetitions.

Figure 6 shows the performance of DCNN in a different patient. As in the previous
case presented in Figure 3, the combined L1–L2 loss function outperforms both the L1 and
L2 loss functions in terms of denoising and preservation of anatomical features.

Figure 7 shows the performance of DCNN in the presence of severe distortions pro-
duced by gas in the rectum. Despite the high acceleration, DCNN preserves the image
quality of the target but improves the image quality of the conventional reconstruction with-
out denoising. This example demonstrates the robustness of DCNN to severe distortions
produced by the presence of gas in the rectum.

Quantification of ADC also resulted in high concordance between deep learning
denoising and the reference. The mean ADC value in a region of interest around the rectum
was 1.34 for DCNN-NEX1, 1.28 for DCNN-NEX2, 1.33 for DCNN-NEX4 and 1.29 for the
reference NEX16 (ADC values are in 10−3mm2/s).
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NEX = 1 corresponding to an acquisition time of 22 s. (B) Target high b-value image with NEX = 16
corresponding to 370 s acquisition time. (C) Low b-value image used as a guide. (D–F) Denoised
images were acquired with NEX = 1 using L2, joint L1–L2, and L1 loss functions. The joint L1–L2 loss
function presents a better compromise between denoising and smoothing than L2 and L1 alone.
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Table 2. PSNR and SSIM for high b-value noisy and denoised images (NEX = 1) with respect to the
high b-value reference (NEX = 16) for different loss functions computed using all the patients in the
testing set. Joint L1–L2 loss function presents the highest PSNR and SSIM, in agreement with the
analysis performed by the body radiologist.

Loss Function PSNR Denoised PSNR Noisy SSIM Denoised SSIM Noisy

L1 84.13 ± 4.6
80.29 ± 5.1

0.89 ± 0.03
0.85 ± 0.1L2 82.63 ± 5.2 0.90 ± 0.07

Joint L1–L2 84.33 ± 5.1 0.94 ± 0.03
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Figure 6. DCNN with different loss functions in another patient. (A) Noisy high b-value image
reconstructed with NEX = 1 corresponding to an acquisition time of 22 s. (B) Target high b-value
image with NEX = 16 corresponding to 370 s acquisition time. (C) Low b-value image used as a guide.
(D), (E,F) denoised images acquired with NEX = 1 using L2, joint L1–L2, and L1 loss functions. In
this case, the joint L1–L2 loss function also outperforms L1 and L2.
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Figure 7. Patient with gas in the rectum that presents strong distortion artifacts. The DCNN-NEX1
(16-fold acceleration) presents improved image quality to the conventional reconstruction without
denoising and similar image quality to the target with NEX = 16, despite the high acceleration.

Table 3 shows the results of the reader study to denoise high b-value images acquired
with NEX = 1, 2, and 4 (acceleration factors of 16, 8, and 4, respectively). Overall, the de-
noised images received higher scores than the noisy images. Among different acceleration
factors, images with 4-fold acceleration (NEX = 4) received the highest scores. Denoised
images with 4-fold acceleration even received higher scores than the reference images. For
example, in the overall image quality category, denoised images with NEX = 4 received
a median score + interquartile range (IQR) of 3 ± 0.6 from reader 1, which means 50% of
the scores spread from 2.4 to 3.6 in a 1–4 scale, and 3 ± 0.5 from reader 2, reference images
(NEX = 16) received scores of 3 ± 1 from reader 1 and 2 ± 0.5 from reader 2. Reader 1
scored similar overall image quality (2.5 ± 0.5 on a 1–4 scale) between 16-fold (NEX = 1)
and 8-fold (NEX = 2) accelerations, which were slightly lower than the reference (3.0 ± 1.0).
Reader 2 scored similar quality between NEX = 1 and the reference (2.0 ± 0.5 for both),
while better quality for NEX = 2 (3.0 ± 0.5).

Table 3. Qualitative image qualitative evaluation was performed by two expert radiologists. Median
± IQR scores are shown for each reader and image quality category.

Image
Quality

Rectum Margin and Rectal
Wall Layers Demarcation

Noise
Suppression

Image
Sharpness

Reader 1
Noisy, NEX = 1 2 ± 1 2 ± 1 2 ± 1 2.5 ± 0.5
Noisy, NEX = 2 2 ± 0.5 2 ± 0.5 2 ± 1 3 ± 0.5
Noisy, NEX = 4 2 ± 0.5 2 ± 0.5 2 ± 0.5 2 ± 0.5
Denoised NEX = 1 2.5 ± 0.6 2 ± 0.6 3 ± 1 2.5 ± 0.5
Denoised NEX = 2 2.5 ± 0.6 2 ± 0.1 3.5 ± 1 3 ± 0.5
Denoised NEX = 4 3 ± 0.6 3 ± 0.5 4 ± 0.5 3 ± 1
Target 3 ± 1 3 ± 1 3 ± 0.8 3 ± 1

Reader 2
Noisy, NEX = 1 2 ± 0.6 2 ± 0.7 2 ± 1 2 ± 0.5
Noisy, NEX = 2 2 ± 0.5 2 ± 0.5 2.5 ± 0.5 2 ± 0.5
Noisy, NEX = 4 2 ± 0.5 2 ± 0.5 2.5 ± 0.5 2 ± 0.5
Denoised NEX = 1 2 ± 0.5 2 ± 0.5 3 ± 1 3 ± 0.5
Denoised NEX = 2 3 ± 0.5 3 ± 0.5 4 ± 0.5 3 ± 0
Denoised NEX = 4 3 ± 0.5 3 ± 0.5 4 ± 0.5 3 ± 0.5
Target 2 ± 0.5 2 ± 0.5 3 ± 0.5 2.5 ± 0.5

4. Discussion

The proposed deep learning denoising of DWI in the rectum has strong clinical
significance since MRI is the preferred imaging modality for rectal cancer imaging [40], and
DWI is the most frequent imaging sequence to diagnose tumor response [3–6]. The clinical
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application goes beyond reducing total scan time and is expected to reduce sensitivity to
the presence of gas in the rectum and to peristaltic motion, which are considered two of the
major challenges for DWI in the rectum. This work is, to the best of our knowledge, the first
to train a neural network using patient data with rectal cancer with the goal of reducing the
number of repetitions and thus accelerating the acquisition and improving image quality.

Deep-learning-based denoising approaches have been shown to be promising in DWI
applications in the brain [31] and prostate [32]. Clinical application to rectal cancer is more
challenging than previous work in the brain and prostate due to the presence of gas-related
motion in the rectum, which can result in severe image distortions, as shown in Figure 7.
These distortions are different from blurring or ghosting artifacts from respiratory motion
and present geometric deformations that can severely affect diagnosis. Longer acquisitions,
such as conventional DWI performed with 16 repetitions, are more sensitive to gas in the
rectum since the geometric distortions can be different in each repetition, and averaging
will combine artifacts from different repetitions. An alternative to reducing the number of
repetitions to 1 or 2 would be to co-register different repetitions before averaging at the
expense of increased computational burden and the risk of registration-related blurring.
The combination of shorter acquisitions with a reduced number of repetitions and deep
learning denoising can enable the acquisition of diffusion images with reduced distortions
and sufficient SNR for the robust use of DWI in patients with rectal cancer.

The utilization of a joint L1–L2 loss function achieved an improved tradeoff between
denoising and smoothing than using L1 or L2 alone and resulted in better preservation
of high-resolution features such as layers in the rectal wall. This type of loss function
was already introduced in previous work for different types of applications [33,34]. This
study confirms that a joint L1–L2 loss function presents higher performance than L1-alone
or L2-alone.

Denoising of diffusion-weighted MRI is an active area of research. Previous to the
application of deep learning, data-driven principal component analysis (PCA) and model-
based Bayesian methods [41] were employed. PCA exploits correlations between repetitions
to separate signal from noise. However, denoising capabilities are limited due to the
different realization of noise in each repetition [28,42]. Bayesian methods added the Rician
noise model for magnitude images and were demonstrated to outperform PCA. However,
they are prone to smooth anatomical details in the denoised image and require many
expensive iterations, which limits clinical implementation [27]. The application of deep
learning represents a step forward in terms of denoising since the actual model between
signal and noise can be learned directly from multiple datasets without the need for
complicated mathematical models. Moreover, while training can be computationally
expensive, once the CNN is trained, the application of the trained CNN is very fast and can
even be performed in real-time [41].

The high acceleration obtained by the proposed deep learning method can be applied
to more advanced DWI techniques, such as multishot EPI acquisition methods [43], which
conventionally require longer scan times due to the acquisition of multiple shots. Reducing
the number of repetitions can compensate for the extra time to acquire multiple shots, and
therefore the combined result would be DWI with higher resolution and less distortion
provided by multishot EPI and similar or shorter scan time provided by deep learning
denoising. The proposed method can also be combined with deep learning reconstruction
of undersampled k-space data [42] to denoise results after reconstruction.

This work also has limitations. The proposed method was validated in a small popu-
lation of 20 patients with rectal cancer. Patient data were acquired at a single institution
using scanners from a single manufacturer. Future work will explore multicenter studies
using data acquired on scanners from different manufacturers. ADC comparison was
performed using the mean value in a region of interest around the rectum. Future work
will explore the segmentation of the rectal area to compute the ADC in different segments.
Moreover, this study only evaluated image quality since the main goal was to demonstrate
the feasibility of denoising high b-value DWI data. Future work will evaluate the clinical
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impact of the proposed technique, including a larger clinical population and assessment of
DWI specificity for rectal cancer response after total neoadjuvant therapy.

5. Conclusions

This work demonstrates the application of deep learning denoising to reduce the
number of repetitions in diffusion-weighted MRI of the rectum with a loss function that
optimizes the tradeoff between denoising and smoothing. The proposed method enables
eightfold acceleration with similar image quality (average image quality = 2.8 ± 0.5) and
fourfold acceleration with improved image quality (3.0 ± 0.6) with respect to a reference
acquired with 16 repetitions (2.5 ± 0.8), which can improve the diagnosis of rectal cancer.
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