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Abstract: Bioceramics, with excellent bioactivity and biocompatibility, have been widely used in
dentistry, particularly in endodontics. Mineral trioxide aggregate (MTA) is the most widely used
bioceramic in endodontics. Recently, many new bioceramics have been developed, showing good po-
tential for the treatment of endodontic diseases. This paper reviews the characteristics of bioceramics
and their applications in various clinical endodontic situations, including root-end filling, root canal
therapy, vital pulp therapy, apexification/regenerative endodontic treatment, perforation repair, and
root defect repair. Relevant literature published from 1993 to 2023 was searched by keywords in
PubMed and Web of Science. Current evidence supports the predictable outcome of MTA in the treat-
ment of endodontic diseases. Although novel bioceramics such as Biodentine, EndoSequence, and
calcium-enriched mixtures have shown promising clinical outcomes, more well-controlled clinical
trials are still needed to provide high-level evidence for their application in endodontics. In addition,
to better tackle the clinical challenges in endodontics, efforts are needed to improve the bioactivity
of bioceramics, particularly to enhance their antimicrobial activity and mechanical properties and
reduce their setting time and solubility.

Keywords: bioceramics; endodontic diseases; vital pulp therapy; root canal therapy; endodontic
microsurgery; regenerative endodontic treatment

1. Introduction

In the early 1990s, bioceramics were introduced in the field of endodontics as a new
group of dental materials. A mapping review of dental biomaterials found that bioceramics
were a research focus between 2007 and 2019 [1]. Bioceramics are biocompatible ceramic
materials or metal oxides including alumina, zirconia, bioactive glass, glass ceramics,
hydroxyapatite, calcium silicate, and resorbable calcium phosphate. Bioceramics can be
classified as bioinert, bioactive, and biodegradable materials based on their reactivity
with surrounding tissues [2,3] (Figure 1). Bioceramics used in endodontics are generally
bioactive, among which calcium silicate-based cements (CSCs) are the most common [4].
In addition to having excellent physical and chemical properties, CSCs play an important
role in endodontic therapy due to their biocompatibility and bioactivity [5,6].

Over the last three decades, there has been a great deal of interest in developing
bioactive dental materials that can interact and induce regeneration of the surrounding
tissue. As the first bioactive ceramic material applied in endodontics, mineral trioxide
aggregate (MTA) is the most studied bioceramic to date. A bibliometric study showed that
MTA was a hot topic in endodontic research in the first 20 years of the 21st century [7]. MTA
was developed based on Portland cement and possessed good biocompatibility and sealing
abilities [8,9]. It was first introduced in dentistry as a root-end filling material in 1993 and
was approved by the Food and Drug Administration (FDA) in 1997. ProRoot MTA was the
first commercial MTA product launched in 1999. The first ProRoot MTA product was gray,
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and all subsequent products have improved on this basis. The inherent limitations of MTA
include prolonged curing time, high cost, and the possibility of discoloration [10].
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In the early 2000s, many modified MTA products appeared, which overcame the short-
comings of traditional MTA while retaining its original excellent performance. White MTA,
which was introduced in 2002, reduced the possibility of tooth discoloration compared
to gray MTA because of the lower concentrations of iron, aluminum, and magnesium
oxides. MTA Angelus was launched in 2001 and was approved by the FDA in 2011. MTA
Angelus has a shortened setting time and improved operability while retaining the superior
performance of traditional MTA [11,12].

In the late 2000s and early 2010s, more bioceramics were developed and applied to
endodontic therapy, and they have biological properties comparable to MTA, such as an-
tibacterial activity, low cytotoxicity, and mild inflammatory response [13,14]. Products such
as Biodentine, EndoSequence root repair material (ERRM), BioAggregate, and calcium-
enriched mixtures (CEM) have been widely used in clinical practice [15]. Biodentine was
introduced in the dental market in 2009 as a “dentine substitute”, which facilitates its pene-
tration into open dentine tubules [16]. Biodentine is formulated using MTA-based cement
technology and shows increased mechanical strength and faster solidification because it
contains no calcium aluminate or calcium sulfate [17]. ERRM contains EndoSequence
bioceramic putty (BC Putty) in putty form (the same as iRoot BP Plus and TotalFill RRM
Putty) and EndoSequence bioceramic sealer (BC Sealer) in paste form (the same as iRoot SP
and TotalFill Sealer). ERRM is a hydrophilic calcium silicate material that forms hydroxya-
patite after solidification. It is a class of ready-to-use bioceramics with good operational
performance and a low risk of tooth discoloration [18]. BioAggregate is an aluminum-free
bioceramic and contains additives such as calcium phosphate and silica. BioAggregate has
been proven to possess excellent stable bond strength and sealing properties, but relatively
poor mechanical properties [19,20]. CEM, which was first applied to dentistry in 2008, is
made of different calcium compounds and has similar excellent properties to MTA at a
more reasonable price [21]. It has similar physical properties and clinical indications to
MTA but has a different chemical composition [4]. TheraCal LC entered the market in 2011
as a light-curing resin-modified calcium silicate product for use as a liner in direct and
indirect pulp-capping procedures [22].

In the last 10 years, the application of bioceramic materials in endodontics has been
extensively studied. Some studies focused on the evaluation of the performance and
clinical effects of existing bioceramics, while some studies focused on the update of existing
bioceramics products, such as EndoSequence fast-set putty and BC Sealer HiFlow. There
were also efforts to develop new bioceramics such as the tricalcium silicate-based repair
material associated with 30% calcium tungstate (TCS + CaWO4), despite the lack of clinical
data so far [23].

The development of various bioceramics has greatly advanced the clinical practice of
endodontics. This article reviews the characteristics of bioceramics and their clinical appli-
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cations in various clinical situations in endodontics, including root-end filling, root canal
therapy, vital pulp therapy, apexification/regenerative endodontic treatment, perforation
repair, and root defect repair. In addition, we also discuss current limitations and possible
solutions to better expand the applications of bioceramics to endodontic treatment.

2. Search Methodology

We conducted an electronic search of relevant studies in PubMed and Web of Science
databases from 1993 to 2023, with no restrictions on study type. The searched MeSH
keywords included Ceramics, Dental Cements, Biocompatible Materials, and Endodontics.
In addition, we manually searched major endodontics journals from the last 5 years,
including the Journal of Endodontics, International Endodontic Journal, Australian Endodontic
Journal, and Iranian Endodontic Journal. Reference mining was performed on the identified
articles and used to locate other papers. Root-end filling, root canal therapy, vital pulp
therapy, apexification, regenerative endodontic treatment, perforation repair, and root
defect repair were used as keywords to locate bioceramics-related research in endodontics.

3. Characteristics of Bioceramics
3.1. Chemical Properties

In order to understand the differences between different materials, Table 1 lists the
chemical composition of bioceramics used in endodontics [4,24–27]. ProRoot MTA, Bio-
dentine, BioAggregate, and CEM are all CSCs that are composed of powder and liquid.
The powder is mainly composed of dicalcium silicate and tricalcium silicate, and the main
component of the liquid is water. After mixing the powder with the liquid, a mixture
of mainly hydrated calcium silicate gels is produced, which eventually solidifies into a
hard structure. BC Putty is a premix CSC, which is a ready-to-use material with the main
components of calcium silicate and calcium phosphate. TheraCal LC is a light-cured, resin-
modified calcium silicate-based paste, mainly containing type III Portland cement and
resin. Both BC Sealer and EndoSeal MTA are premixed, injectable calcium silicate-based
sealers, with the main difference being that EndoSeal MTA contains aluminum while BC
Sealer does not. MTA Fillapex, BioRoot RCS, and Tech BioSealer are all two-component
calcium silicate-based sealers whose active ingredients are MTA, tricalcium silicate, and
CEM, respectively.

Table 1. Composition of bioceramic products used in endodontics.

Bioceramics Chemical Composition

ProRoot MTA (gray)
Powder

Dicalcium silicate, tricalcium silicate, tricalcium
aluminate, calcium sulfate, bismuth oxide, and
calcium aluminoferrite

Liquid Sterile water

ProRoot MTA (white)
Powder Dicalcium silicate, tricalcium silicate, tricalcium

aluminate, calcium sulfate, and bismuth oxide

Liquid Sterile water

Biodentine
Powder Tricalcium silicate, dicalcium silicate, calcium carbonate,

calcium oxide, zirconium oxide, and iron oxides

Liquid Water, calcium chloride, and hydrosoluble polymer

BC Putty Putty
Calcium silicates, monobasic calcium phosphate,
zirconium oxide, tantalum oxide, proprietary fillers, and
thickening agents

BioAggregate
Powder

Tricalcium silicate, dicalcium silicate, calcium phosphate,
calcium hydroxide, hydroxyapatite, silicon dioxide, and
tantalum oxide

Liquid Deionized water
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Table 1. Cont.

Bioceramics Chemical Composition

CEM
Powder

Calcium oxide, sulfur trioxide, phosphorous pentoxide,
silicon dioxide, trace amounts of aluminum trioxide,
sodium oxide, magnesium oxide, and chloride

Liquid Water-based solution

TheraCal LC Paste

Type III Portland cement, Sr glass, fumed silica, barium
sulfate, barium zirconate, a resin containing bisphenol A
glycidyl methacrylate (Bis-GMA), and poly
dimethacrylate (PEGDMA)

BC Sealer Paste Calcium silicates, calcium phosphate, zirconium oxide,
tantalum oxide, and thickening agents

MTA Fillapex
Paste A Salicylate resin, bismuth trioxide, and fumed silica

Paste B Fumed silica, titanium dioxide, MTA (40%), and base resin

BioRoot RCS
Powder Tricalcium silicate, zirconium oxide, and povidone

Liquid Water, calcium chloride, and hydrosoluble polymer

Tech BioSealer
Powder CEM, calcium sulfate, calcium chloride, bismuth oxide,

and montmorillonite

Liquid Dulbecco’s phosphate-buffered saline (DPBS)

EndoSeal MTA Paste
Calcium silicates, calcium aluminates, calcium
aluminoferrite, calcium sulfates, radiopacifier, and
thickening agent

3.2. Biocompatibility and Bioactivity

The biocompatibility and bioactivity of bioceramics are mainly reflected in their
interactions with surrounding tissues. Bioceramics affect the proliferation, differentia-
tion, migration, and apoptosis of stem cells, osteoblasts/osteoclasts, dental pulp cells
(DPCs)/periodontal ligament cells (PDLCs), and immune cells [6]. The response of cells to
bioceramics determines the outcome of wound healing and tissue repair.

Mesenchymal stem cells (MSCs) derived from dental tissue include dental pulp stem
cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), and stem cells
from apical papilla (SCAPs) [28]. MSCs have self-renewal and multidirectional differentia-
tion potential, which is of great significance for pulp regeneration and osteogenesis [29].
Bioceramics significantly promote the attachment and survival of stem cells, and their
effect on stem cells depends on cell type [28,30]. Biodentine, NeoMTA Plus, and TheraCal
LC have good biocompatibility and can induce odontogenic/osteogenic differentiation of
MSCs [31]. MSCs can be used in bone regeneration and tissue engineering when combined
with calcium phosphate bioceramics [32]. ProRoot MTA and Biodentine show biological
characteristics conducive to DPSCs activity in vitro [33]. Biodentine induces odontoblastic
differentiation of DPSCs through mitogen-activated protein kinase (MAPK) and calcium-
/calmodulin-dependent protein kinase II (CaMKII) pathways [34]. MTA-HP and ERRM
promote the proliferation, mineralization, and attachment of DPSCs [35]. MTA and ERRM
possess good biocompatibility and osteogenic properties, which promote the proliferation,
adhesion, and migration of SHED [36]. MTA, Biodentine, and ERRM have shown good cy-
tocompatibility and bioactivity when cultured with SHED [37]. ProRoot MTA, Biodentine,
and ERRM can potentially induce SCAPs mineralization and odontogenic/osteogenic dif-
ferentiation, supporting their application in pulp regeneration [38,39]. SCAPs co-cultured
with ProRoot MTA and Biodentine showed higher adhesion ability and viability than Bio-
Root RCS and calcium hydroxide [40]. BC Sealer significantly enhances the cell migration of
SCAPs and promotes the activity of alkaline phosphatase and the formation of mineralized
nodules [41].
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The repair of the bone tissue around damaged teeth depends on the number and
balance of osteoblasts and osteoclasts [42]. When bioceramics are used in perforation repair
and root-end filling, the interaction between the materials and cells is crucial for controlling
inflammation and promoting wound repair [43]. MTA significantly inhibits RANKL-
mediated osteoclastogenesis and osteoclast activity, thereby inhibiting bone resorption
in periapical lesions [44]. BioAggregate stimulates osteoblastic differentiation, inhibits
osteoclast formation in vitro, and shows considerable inhibitory effects on osteoclastic
differentiation and inflammatory bone resorption in vivo [45–47]. BC Sealer and ProRoot ES
show better biocompatibility than conventional root canal sealers and promote osteoblastic
differentiation [48].

DPCs/PDLCs are involved in wound healing and the regeneration of teeth and
periapical tissues [49]. Bioceramics interact with DPCs/PDLCs when used for pulp capping,
perforation repair, and root-end filling. MTA, Biodentine, BioAggregate, and ERRM induce
the expression of genes related to mineralization and odontoblastic differentiation in
DPCs [50–54]. BioAggregates also promote the adhesion, migration, and attachment of
DPCs [55]. Biodentine, MTA Angelus, and ERRM have low cytotoxicity and high cell
viability against DPCs in vitro and can be used as biocompatible materials in vital pulp
therapy [56,57]. Bioceramics such as ProRoot MTA, Biodentine, and ERRM show favorable
effects on the odontogenic differentiation of DPCs in vitro and can effectively promote the
formation of high-quality dentine bridges [58]. MTA Fillapex and BC Sealer induce lower
expression of inflammatory mediators and enhanced osteoblastic differentiation of PDLCs
through integrin-mediated signaling pathways [59].

When a biomaterial is placed into the tissue, immune cells, such as monocytes and
macrophages, respond immediately. Macrophages release proinflammatory cytokines,
such as TNF-α, IL-1, and IL-12, at the onset of the acute inflammatory response; anti-
inflammatory cytokines, such as IL-4, are released during tissue regeneration and heal-
ing [60,61]. MTA changes the secretion of inflammatory cytokines, participates in leukocyte
recruitment and extravasation, and regulates inflammatory control and tissue healing in
pulpitis and periapical diseases [62,63]. MTA and BC Sealers have good biocompatibility
with macrophages, inducing M1 and M2 polarization in RAW 264.7 and promoting the re-
lease of their proinflammatory cytokines [64–66]. Biphasic calcium phosphate ceramics can
promote the CaSR-mediated polarization of M2 macrophages for bone induction through
the continuous release of calcium ions [67].

Several studies have investigated the biocompatibility and bioactivity of bioceramics
in endodontics. MTA is the most thoroughly investigated material and has been considered
the “gold standard”. There are not enough studies to evaluate other bioceramics compared
to MTA, and there are differences in the methods and results of various in vitro models.
Therefore, more comprehensive experiments are needed to provide high-level evidence for
the application of these materials in endodontic treatments.

4. Clinical Applications in Endodontics

Bioceramics have been widely used in various endodontic clinical settings (Figure 2).
Bioceramic putties such as MTA, Biodentine, BioAggregate, BC Putty, and CEM are com-
monly used for root-end filling, vital pulp therapy (VPT), apexification/regenerative en-
dodontic therapy, perforation repair, and root defect repair. Bioceramic pastes, such as
BioRoot RCS and BC Sealer, are commonly used as sealing agents in root canal fillings.

4.1. Root-End Filling

Root-end filling can be achieved using either orthograde or retrograde filling, both of
which aim to achieve apical sealing. An ideal apical sealing material should have bioactivity,
biocompatibility, long-term sealing ability, good operating performance, and the ability to
promote tissue healing [8,68,69]. In dentistry, almost all available restorative materials have
been used as root-end filling materials, and bioceramics such as MTA are among the most
prominent [70].
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Figure 2. Schematic diagram of a clinical application of bioceramics in endodontics. Cells surrounding
the bioceramics are shown in parentheses.

4.1.1. Orthograde Filling

Orthograde filling generally refers to the apical barrier technique, which transports
MTA or other materials from the coronal side of the root canal to the apical position to
seal the apex of the tooth and provide conditions for the rigorous root canal filling [71]
(Figure 3). MTA has been widely used in the apical barrier technique and has achieved
long-term clinical and radiographic success [72–76]. In a case series of 5–15 years, MTA
as an apical barrier for the treatment of nonvital immature teeth achieved a healing rate
of 96% [77].
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Figure 3. Treatment procedures for the apical barrier technique. (A) Permanent teeth with incom-
pletely developed apical foramen and pulp necrosis or periapical disease. (B) Root canal disinfection.
(C) Apical barrier using bioceramic putty. (D) Root canal filling.

The application of other bioceramics as apical barriers has also been reported. Bioden-
tine as an apical barrier is better at preventing bacterial leakage than MTA in vitro [78,79].
Apical barrier techniques using MTA, Biodentine, and CEM increase the fracture resistance
of immature teeth [80,81]. CEM as an apical barrier material has a smaller or similar amount
of leakage to MTA as determined by the fluid filtration method in vitro [82–84]. The results
of the liquid filtration show that BioAggregate and white MTA apical plugs have similar
leakage resistance [85]. In a clinical trial, the 2-year success rate of 11 teeth treated with
MTA and BioAggregate was 100% [86].

Of note, MTA is currently the most recommended material for apical barriers, while
other materials such as Biodentine, BioAggregate, and CEM require more high-quality
studies to prove their effectiveness in this clinical application.
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4.1.2. Retrograde Filling

Retrograde filling is a surgical method for the treatment of recurrent periapical le-
sions, to seal the root end and avoid the spread of infection in the root canal system [87].
Retrograde filling is performed after 3 mm of apical resection and 3 mm of root-end prepa-
ration, which is one of the most critical steps in endodontic microsurgery and intentional
replantation [88,89].

Endodontic Microsurgery

Endodontic microsurgery (EMS) is an effective method for tooth preservation in
patients with complicated periapical diseases. The clinical outcomes of apical surgery are
inseparable from rigorous root-end filling, which is a critical step in ensuring effective
apical closure to reduce microleakage and reinfection [90] (Figure 4). Bioceramics, such
as MTA, are widely used in EMS because of their good biocompatibility, excellent sealing
ability, inhibition of pathogenic microorganisms, and ability to promote the healing of
periapical tissues [91]. The success rate of bioceramics is significantly higher than that
of amalgam and resin materials and is similar to the use of intermediate repair materials
(IRM) and super ethoxybenzoic acid (Super EBA) as root-end filling materials in apical
surgery [91–93].
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Figure 4. Treatment procedures for EMS. (A) A tooth with refractory periapical disease. (B) Root-end
resection. (C) Root-end preparation. (D) Root-end filling with bioceramic putty. (E) Complete
root-end filling.

The success rate of 1–5 years of bioceramics as root-end filling materials in EMS is
86.4–95.6% [91]. MTA and Biodentine have splendid biocompatibility and apical sealing
abilities, and both can promote periapical bone healing in vitro [94,95]. The use of fast-
setting CSCs in EMS is recommended, especially in complicated clinical situations that
require the rapid initial setting of materials [96]. BC Putty shows similar apical sealing
performance to MTA in vitro and may better induce tissue healing adjacent to the resected
root surface [97–100]. A retrospective clinical study [101] showed that the success rates
of 6 months to 9 years for teeth with ProRoot MTA and BC Putty root-end filling were
92.1% and 92.4%, respectively. The one-year overall success rate of EMS using BC Putty
was 92.0% in another retrospective clinical trial [102]. In prospective clinical studies, the
one-year success rates of MTA and BC Putty were all greater than 93%, indicating a good
prognosis [103,104].

Apical surgery was the earliest field of bioceramic application. MTA and BC Putty
are well-proven root-end filling materials with predictable outcomes. However, there
is insufficient evidence to conclude that any material is superior to the other [105,106].
Nonetheless, more randomized controlled trials are needed to provide high-level evidence
for their effectiveness.
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Intentional Replantation

Intentional replantation (IR) is a method of extracting an intact affected tooth and
replanting it in situ after treatment, which is suitable for the failure of EMS or root injury
that cannot be repaired in the mouth [107] (Figure 5). Recent studies show that IR has a
more consistent success rate of 88% to 95%, and it is considered a more commonly accepted
therapeutic strategy [108,109]. IR is a cost-effective alternative to root canal retreatment
and tooth extraction in appropriate cases [110–115]. The long-term success and survival of
IR depend on numerous factors, one of which is the type of root-end filling material [116].
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Figure 5. Treatment procedures for IR. (A) A tooth with refractory periapical disease. (B) Tooth
extraction and root-end resection. (C) Root-end preparation. (D) Root-end filling with bioceramic
putty. (E) Tooth replantation. (F) Apical inflammation disappears.

The application of MTA in EMS has achieved good clinical outcomes. However, some
reports have argued that MTA may not achieve the same effect in IR. It was found that
an extraoral time of more than 15 min and the use of ProRoot MTA as a root-end filling
material in IR were significantly associated with a lower survival rate [117]. A prospective
study showed that the replantation time over 15 min had a 28.6% risk of ankylosis and
a 12.7% probability of persistent or emerged periapical radiolucency when retro-filled
with ProRoot MTA, which significantly reduced the healing rate [118]. The long operation
time of MTA and its susceptibility to blood contamination may lead to a decrease in its
sealing ability and resistance to wash-out. Therefore, it is recommended to use fast-setting
bioceramics for the root-end filling of IR. Many new bioceramics with good operability
have been reported for IR. Good clinical results using BC Putty and CEM in IR can be seen
in some case reports [119–122]. In case series, root-end filling with CEM for IR was also
successful in 90% of teeth at a mean follow-up of 15.5 months [123].

There is no clear clinical treatment protocol or guideline for IR, which leads to differ-
ences in surgical procedures and the lack of specialized studies on filling materials. MTA is
the most widely used material; however, its effectiveness is debatable. Case reports using
BC Putty or CEM exist, but the research is of low quality. Therefore, further studies and
long-term follow-up of clinical trials are required.

4.2. Root Canal Therapy

Root canal therapy is the most effective and most common method for treating pulpal
and periapical diseases [124]. The single-cone technique is an easy-to-operate and time-
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saving method of root canal therapy, with sealer as the main material and gutta-percha as
an auxiliary [125] (Figure 6). In addition, the GentleWave system utilizes advanced fluid
dynamics to clean root canals, minimizing excessive cutting caused by mechanical prepara-
tion and reducing the risk of intracanal separation of Ni–Ti rotary instruments [126–128].
After root canal cleaning, hydraulic condensation with bioceramic sealer is used for root
canal obturation, especially for irregular root canals. These techniques are increasingly
dependent on the root canal sealer, so the fluidity and other physicochemical properties of
the sealer play a crucial role in the success of treatment [129]. Bioceramic sealers, such as
BC Sealer, possess good biocompatibility, superior fluidity, and chemical stability. When ap-
plied to the single-cone technique, bioceramic sealers have achieved satisfactory short-term
clinical results [130,131].
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 Figure 6. Treatment procedures for single-cone technique. (A) A tooth with pulpal or periapical
disease. (B) Root canal cleaning and shaping. (C) Inject bioceramic sealer. (D) Insert gutta-percha.
(E) Cut off the gutta-percha from the root canal orifice. (F) Complete root canal filling.

The combinatory use of bioceramic sealers and the single-cone technique has achieved
excellent outcomes. Root canal filling using gutta-percha/bioceramic sealer has a similar or
shorter postoperative pain duration than gutta-percha/traditional sealer [132,133]. An over-
all success rate of 90.9% using the BC Sealer and single-cone technique was achieved from a
retrospective study [134]. BC Sealer combined with the single-cone technique achieved an
88.7% success rate for initial treatment and a 63.9% success rate for retreatment in another
retrospective study [135]. In prospective studies, the BioRoot RCS combined with the
single-cone method has achieved a 1-year success rate of 90~97.44%, which is comparable
to the 89~93.33% success rate of warm vertical condensation of gutta-percha using resin-
based sealers [136,137]. A randomized clinical trial using epoxy and calcium silicate-based
sealers in a single-cone technique showed no significant differences in postoperative pain
or healing process [138].

Based on current evidence, the single-cone method combined with bioceramics has
achieved satisfactory clinical results and has great operability. However, it is not currently
accepted by most clinicians because of the lack of standardized clinical guidelines and the
high reliance on root canal sealers. The use of the single-cone method remains controversial
and requires long-term clinical trials with large sample sizes.
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4.3. Vital Pulp Therapy

The treatment strategy for exposed vital pulp teeth has shifted to conservative and
minimally invasive treatment, which is closely related to the development of bioactive
dental materials in recent years [139,140]. VPT includes pulp capping and pulpotomy,
which are methods for maintaining the vitality and function of the pulp after injury, decay,
or restorative procedures [141,142]. The selection of the capping material is one of the keys
to success, and MTA is a commonly used and widely studied material [24]. The American
Association of Endodontics (AAE) recommends the use of CSCs in VPT, whose clinical
application has been consistently successful [143].

4.3.1. Pulp Capping

Pulp capping refers to covering the dentin surface close to the pulp or covering
an exposed pulp wound with a repair material to protect the pulp and eliminate the
lesions [144]. Pulp capping can be divided into direct pulp capping (DPC) and indirect
pulp capping (IPC), depending on whether the material is in direct contact with pulp
tissue [140,145] (Figure 7). The application of MTA in DPC has been the most studied
topic. MTA used in DPC can achieve predictable clinical outcomes and is more effective in
maintaining the long-term viability of the pulp than calcium hydroxide [146–150].
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Figure 7. Treatment procedures for pulp capping. (A–C) Treatment procedures for indirect pulp
capping. (A) Caries or defect close to the pulp. (B) Indirect pulp capping with bioceramic putty or
paste. (C) Coronal filling. (D–F) Treatment procedures for direct pulp capping. (D) Caries or defect
in contact with the pulp. (E) Direct pulp capping with bioceramic putty or paste. (F) Coronal filling.

Other bioceramics have been reported for pulp capping. BioAggregate has excellent
cellular compatibility in vitro and is a possible alternative to MTA for pulp capping [55].
BC Putty also has comparable biocompatibility with MTA for pulp tissue and can induce
the formation of restorative dentin bridge [151–153]. Biodentine and MTA Angelus lead
to satisfactory results in vitro, showing a light inflammatory response and pronounced
barrier formation for mineralization [154]. The dentin bridge formation thickness of Bio-
dentine is higher than that of CEM and MTA in a clinical study, but it shows greater pulp
inflammation [155]. Biodentine has better clinical and histological performance as a DPC
agent compared with Dycal (a calcium hydroxide-based product), as demonstrated by
reduced postoperative pain and sensitivity, thicker dentin bridge formation, and less pulpal
inflammation [156,157]. Biodentine, with its high operability and competitive price, has no
distinguishing success rate for DPC in 1–3 years compared to MTA [158–163].
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Based on available evidence, bioceramics promote reliable mineralized tissue for-
mation and sustained pulp vitality. MTA and Biodentine are currently the most studied
materials and are recommended for pulp capping. Although other bioceramics (such as
BC Putty and CEM) have been studied less, they have also achieved better results than
traditional calcium hydroxide.

4.3.2. Pulpotomy

Pulpotomy is a method to remove inflamed pulp tissue and cover the pulp section
with a pulp-capping agent to retain healthy pulp tissue [164]. Pulpotomy can be di-
vided into partial and complete pulpotomy according to the depth of pulp resection [165]
(Figure 8). The application of MTA in pulpotomy can achieve outstanding results, which
is supported by high-quality evidence [166–171]. Studies have shown that MTA has a
better success rate than calcium hydroxide in mature permanent teeth undergoing partial
pulpotomy [172–174].
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Figure 8. Treatment procedures for pulpotomy. (A–D) Treatment procedures for partial pulpotomy.
(A) Caries or defect in contact with the pulp. (B) Removal of part of the coronal pulp. (C) Pulp capping
with bioceramic putty. (D) Coronal filling. (E–H) Treatment procedures for complete pulpotomy.
(E) Caries or defect in contact with the pulp. (F) Removal of all the coronal pulp. (G) Pulp capping
with bioceramic putty. (H) Coronal filling.

The use of Biodentine in pulpotomy results in a success rate similar to that of MTA and
reduces the likelihood of discoloration [175,176]. A prospective randomized controlled trial
gave evidence that MTA and Biodentine used in pulpotomy have 100% and 89.4% success
probabilities after 2 years, respectively [177]. Prospective studies showed a one-year success
rate of 95–98.4% for total pulpotomy with Biodentine in mature permanent teeth with
irreversible pulpitis [178,179]. Additionally, pulpotomy using hydraulic calcium silicate
cements (HCSCs) has an 81–90% radiological success rate [180]. BC Putty shows a good
response to partial pulpotomy in clinical cases, and it may be an effective covering material
for the pulpotomy of young permanent teeth after trauma [181–183]. Total pulpotomy
with BC Putty successfully treated 90.5% of permanent teeth with irreversible pulpitis in a
prospective cohort study [184]. In clinical trials using CEM and MTA for the pulpotomy of
vital immature permanent molars, all cases (49 teeth) showed pulp survival and signs of
continuous root development after 1 year [185]. Randomized controlled trials have found
that MTA and CEM are equally effective pulpotomy agents in mature permanent teeth of
different age groups, with a 5-year success rate of over 98% [186]. Pulpotomy used with
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MTA/CEM is recommended as a viable and favorable alternative to root canal therapy
in mature permanent teeth, demonstrating considerable and effective postoperative pain
relief [187–193].

Although root canal therapy is still the current standard treatment for mature per-
manent teeth with irreversible pulpitis, the advent of bioceramics makes pulpotomy an
effective alternative [164]. The determination of strict indications is necessary, and random-
ized clinical trials with sufficient sample sizes and long-term follow-up are still needed for
further comparison of the two treatments [194,195]. Based on the current evidence, MTA is
still the first choice for pulpotomy, although bioceramics such as Biodentine, BC Putty, and
CEM also have great potential.

4.4. Apexification and Regenerative Endodontic Treatment

Since dental stem cells can promote root development, some strategies are used to treat
young permanent teeth with pulp necrosis but incomplete root development [196–198].
Apexification and regenerative endodontic therapy are effective options for periapical tissue
healing and open apical closure [199–202]. In addition to dental stem cells, biomaterials are
also key factors in therapy [203].

4.4.1. Apexification

Apexification refers to the placement of drugs in the root canal, which causes the root to
continue to develop, and the apical foramen to narrow or close [204] (Figure 9). Compared
with calcium hydroxide, MTA used in apexification induces better apical closure and less
inflammatory infiltration and reduces the frequency of treatment and the possibility of
tooth fracture [205–207].
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Figure 9. Treatment procedures for apexification. (A) Permanent teeth with incompletely developed
apical foramen and pulp necrosis or periapical disease. (B) Root canal disinfection. (C) Apexification
with bioceramics. (D) Root development. (E) Root canal filling.

Many new bioceramics have been reported for apexification [208]. Biodentine and
ProRoot MTA prevent early root fractures during the first 30 days of apexification, and
this effect is superior to that of NeoMTA Plus [209]. Several cases used Biodentine in
apexification and suggested that it might increase the resistance of immature teeth [210–215].
A randomized clinical trial showed that using Biodentine in the apexification of nonvital
immature molars achieved good apical healing comparable to MTA and reduced treatment
time [216]. There is no difference in the amount of leakage measured by the glucose leakage
model when MTA and BC Putty are used for apexification in vitro [217]. However, there
are also studies in which the leakage of MTA is less than that of BC Putty measured using
the radioactive isotope method in the apexification model [218]. BC Putty also promotes
the continued maturation and development of immature teeth with nonvital pulp [219].
The clinical success rates of BC Putty, MTA, and calcium hydroxide are similar; however,
the former two materials require a shorter time for the formation of an apical barrier and
only need a single visit [220].
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MTA is currently recommended as the first-choice treatment for apexification. Bioden-
tine, BC Putty, and other materials used for apexification almost be seen in case reports.
Therefore, more high-quality assessments are needed in the future.

4.4.2. Regenerative Endodontic Treatment

Regenerative endodontic treatment (RET) is an alternative to apexification in suitably
selected cases and shows better results than apexification in increasing root thickness and
length [199,221]. Blood clot induction, also known as revascularization, is a commonly
used RET technique. Revascularization stimulates blood clots in the periapical tissues of
teeth after removing the infection in the root canal by disinfection, which recruits stem
cells around the root to proliferate, differentiate, and promote the formation of “new pulp
tissues” in the root canal [222,223] (Figure 10). MTA is the most widely applied sealing
material in RET and has an excellent overall survival rate [224,225].
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Figure 10. Treatment procedures for revascularization. (A) Immature necrotic permanent teeth.
(B) Root canal disinfection. (C) Stimulate blood clot formation. (D) Fill with bioceramic putty.
(E) Coronal seal. (F) Root development.

The sealing material for revascularization is in direct contact with the blood clot,
and this is why it is required to be bioactive, biocompatible, noncytotoxic, and antimicro-
bial [226]. New bioceramics are strong candidates for the coronal sealing of previously
established blood clot stents. Biodentine, ProRoot MTA, and RetroMTA induce the prolifer-
ation of SCAPs, which can be used as effective sealing materials for RET [227]. Biodentine
promotes the release of transforming growth factor-beta 1 (TGF-β1) from the root canal
dentin and leads to higher mineralization of human apical papilla cells (APC) than Pro-
Root MTA [228]. MTA and Biodentine used for RET show similar void characteristics
and tortuosity and there are no differences in sealing ability in vitro [229]. Biodentine has
been used as a barrier material for RET, with good results in some case reports [230–232].
RET using bioceramic putty can result in partial or complete apical closure at an average
of 54.4 months [233]. BC Putty and MTA used in RET result in apical healing and root
maturation in 75% of teeth, which is thought of as a viable treatment option [234].

The level of evidence for the use of bioceramics other than MTA in RET is low, as it is
generally seen in in vitro studies and case reports [235]. RET is a future direction for pulp
necrosis in immature teeth, and more high-quality studies are needed to support it with
the development of bioceramics.

4.5. Perforation Repair

Tooth perforation is the connection between the wall of the root canal and periodontal
space [236]. The repair of perforation by bioactive nonabsorbable materials is the key to
treatment (Figure 11). The three most widely recommended materials for sealing root
perforations are calcium hydroxide, MTA, and CSCs [237]. MTA is the standard material
for the repair of furcal perforations and can produce a favorable histological response [238].
NeoMTA Plus shows better early biocompatibility than MTA Angelus, EndoSeal MTA, and
ProRoot MTA, providing similar sealing ability [239,240].
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Figure 11. Treatment procedures for perforation repair. (A) Perforation in the floor of the pulp
chamber. (B) Root canal therapy. (C) Perforation repair with bioceramics. (D) Coronal filling.

Other bioceramics have also been used for perforation repairs. Biodentine and MTA
result in similar periradicular inflammatory responses and bone resorption when they are
used to seal perforations [241,242]. When used for sealing the furcal perforation, Biodentine
is more effective in preventing dye leakage than MTA [243–246]. Biodentine and MTA
can reduce the risk of potentially harmful stress in the perforation region [247]. BC Putty
used in repairing furcation perforations shows similar and even less leakage to MTA
in vitro [248,249]. CEM and Portland cement are used to repair furcal perforation, and
their ability to prevent dye and bacterial leakage is similar to MTA [250–252]. Premixed
bioceramics are promising materials for repairing furcal perforations in primary molars,
with better sealing performance and clinical outcomes than MTA [253].

Although data on the long-term efficacy of MTA in the treatment of perforation are
scarce, available evidence suggests that MTA has a great sealing ability [254,255]. Bioden-
tine, BC Putty, and others have shown similar and even better sealing performances in
perforation repair than MTA in vitro. However, there are only a few clinical studies on these
materials, and more high-quality studies are required to evaluate their clinical applications.

4.6. Root Defect Repair

Root defects such as the palate–radicular groove and root resorption are intractable
diseases with a poor prognosis, and various surgical and nonsurgical methods are used
to repair them [256]. Bioceramics are often preferred because the materials may directly
contact the tooth and periodontal and apical tissues [257].

4.6.1. Palatal-Radicular Groove

The palatal-radicular groove (PRG) is defined as a developed groove in the root,
usually located on the palatal side of the maxillary incisors [258] (Figure 12). PRG is a
developmental abnormality, most likely due to genetic factors [259]. PRG must be filled
to block the infection pathway after cleaning and preparation, and the filling materials
include glass ionomer cement (GIC), composite resin, and CSCs [260].

The mechanical properties and biocompatibility of the filling material are important
considerations because PRG is distributed in both the tooth crown and root. Bioceramics
have an advantage over the other materials mentioned above in this respect. MTA for
PRG repair has been observed in some cases, and its poor operability and risk of teeth
discoloration are major concerns [261–263]. Moreover, Biodentine has been used to seal
PRG to achieve long-term preservation of affected teeth with combined periodontal lesions
in some cases [264–267]. IR for PRG of maxillary incisors has also been reported, in which
BC Putty was used to fill the PRG [268,269].

PRG-related studies are limited to case reports. There are no in vitro studies and
prospective clinical studies, and even fewer studies on filling materials for PRG. With the
development of bioactive materials, it is hoped that more materials can be applied to the
study of PRG to provide a basis for treatment.



Bioengineering 2023, 10, 354 15 of 30Bioengineering 2023, 10, x FOR PEER REVIEW 16 of 32 
 

 

Figure 12. Treatment procedures for PRG repair. (A) PRG. (B) PRG preparation. (C) PRG filling with 

bioceramic putty. (D) Cervical filling. 

The mechanical properties and biocompatibility of the filling material are important 

considerations because PRG is distributed in both the tooth crown and root. Bioceramics 

have an advantage over the other materials mentioned above in this respect. MTA for PRG 

repair has been observed in some cases, and its poor operability and risk of teeth 

discoloration are major concerns [261–263]. Moreover, Biodentine has been used to seal 

PRG to achieve long-term preservation of affected teeth with combined periodontal 

lesions in some cases [264–267]. IR for PRG of maxillary incisors has also been reported, 

in which BC Putty was used to fill the PRG [268,269]. 

PRG-related studies are limited to case reports. There are no in vitro studies and 

prospective clinical studies, and even fewer studies on filling materials for PRG. With the 

development of bioactive materials, it is hoped that more materials can be applied to the 

study of PRG to provide a basis for treatment. 

4.6.2. Root Resorption 

Root resorption, which can be simply divided into internal and external resorption, 

refers to the loss of dental tissue on the inner or outer surfaces [270,271]. The management 

of root resorption can include conservative or surgical treatment, depending on the 

location, degree, and extent of occurrence [272] (Figure 13). Root resorption and 

perforation appear together in many cases, and MTA used in their treatment has been 

reported to have satisfactory long-term results [273–280]. 

Figure 12. Treatment procedures for PRG repair. (A) PRG. (B) PRG preparation. (C) PRG filling with
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4.6.2. Root Resorption

Root resorption, which can be simply divided into internal and external resorption,
refers to the loss of dental tissue on the inner or outer surfaces [270,271]. The management
of root resorption can include conservative or surgical treatment, depending on the location,
degree, and extent of occurrence [272] (Figure 13). Root resorption and perforation appear
together in many cases, and MTA used in their treatment has been reported to have
satisfactory long-term results [273–280].
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Figure 13. Treatment procedures for root resorption repair. (A–D) Treatment procedures for internal
root resorption repair. (A) Internal root resorption. (B) Root canal cleaning. (C) Root canal filling in
the apical segment with gutta-percha and bioceramic sealer. (D) Internal root resorption repaired
with bioceramic putty. (E–H) Treatment procedures for external root resorption repair. (E) External
root resorption. (F) Root canal therapy. (G) External root resorption preparation. (H) External root
resorption repaired with bioceramic putty.

Bioceramics other than MTA have been reported in some cases. BC Putty, MTA, and
Biodentine provide higher fracture resistance to the teeth when filling the internal resorp-
tion compared with the gutta-percha/sealer technique [281,282]. Moreover, Biodentine
and CEM used in the treatment of tooth absorption have shown good results in case re-
ports [283–289]. Nonsurgical repair using bioceramic putty is an effective treatment option
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for external cervical resorption [290]. Bioceramic sealers (MTA Fillapex and BC Sealer)
show high PH values, calcium release, and good root strengthening potential, and have the
potential to repair root absorption defects with satisfactory results [270,291].

Cases of root resorption are rare and complicated, and we find that all related clinical
studies are case reports rather than prospective trials. MTA has been used to repair root
resorption defects in many cases, and other bioceramics, such as Biodentine, CEM, and BC
Putty, also have a certain degree of application. As there is no comparative study on filling
materials, the selection can only be made according to the situation of specific cases.

5. Perspectives

To date, MTA has been the most studied bioceramic in endodontics. MTA has been
demonstrated to have a predictable clinical outcome in the treatment of endodontic diseases
and has been recognized as the gold standard for the development of novel bioceram-
ics. Currently, various novel bioceramics have been developed, aiming to improve their
physical and chemical properties and to reduce technique sensitivity and potential tooth
discoloration. Comparable biocompatibility and bioactivity as well as clinical outcomes
of various novel bioceramics have been reported. However, the antimicrobial activity,
mechanical properties, setting time, and solubility of bioceramics need to be improved in
the future.

Bacteria are the main cause of endodontic diseases. Antimicrobial properties are
an important prerequisite for the application of bioceramics in endodontics. However,
only a few bioceramics have been proven to have potent antimicrobial activity against
intracanal biofilms [292]. Recent progress in bioceramic-based scaffolds with antibacterial
activity includes drug-induced, ion-mediated, and physically activated, and their com-
bined antibacterial strategies are according to the specific antibacterial mechanism [293].
Doping antibacterial ions, such as silver, copper, and zinc ions into bioceramic scaffolds
can improve their anti-infection activity. Silver (Ag) is one of the best-known antibacterial
agents and can be introduced in a variety of forms into different bioceramics. Incorporating
silver ions into hydroxyapatite (HA) results in excellent antibacterial activities against
Pseudomonas aeruginosa [294]. Consistently, β-tricalcium phosphate (β-TCP) augmented
with silver as a bone grafting material may minimize potential infections [295]. Copper (Cu)
is a commonly used therapeutic agent with remarkable angiogenic and antimicrobial activi-
ties, and the release of Cu2+ can be controlled by clever design and effective methods. Cu2+

is introduced to silicon-containing bioceramics to simultaneously enhance their mechanical
and antibacterial properties [296]. Zinc (Zn) shows osteogenic, angiogenic, and antibac-
terial properties. Bioactive glass scaffolds containing Zn2+ exhibit cytocompatibility and
antibacterial abilities [297]. In addition, the introduction of antibiotics or drugs into bionic
bone scaffolds and the use of bioceramics and scaffolds to control their release can increase
the antibacterial activity. Lactic-co-glycolic acid (PLGA)-coated chitosan microspheres
loaded with HA and doxycycline hyclate complexes have been developed for periodontal
delivery [298]. Endodontic sealers that incorporate novel, highly loaded antimicrobial
drug-silica coassembled particles (DSPs) show great antimicrobial activity [299]. The phys-
ical antibacterial function of bioceramics is another important strategy. Nanomaterials
and nanostructures have unique physical and chemical properties that may physically
activate antibacterial activity, particularly against drug-resistant bacteria [300]. Therefore,
traditional bioceramics in endodontics are expected to be improved by adding ions, loading
antibiotics, and activating nanomaterials to address the challenges of infection control
in endodontics.

Good mechanical properties are critical in certain clinical procedures of endodontics;
however, bioceramics nowadays have not achieved adequate requirements [3]. Further
research is required to improve the mechanical properties of bioceramics without altering
their biological activity. To date, various approaches have been adopted to strengthen the
mechanical properties of calcium phosphate scaffolds, including scaffold structural opti-
mization, ink modification, sintering optimization, and the fabrication of ceramic-polymer
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composite scaffolds [301]. Calcium phosphate silicate (CPS) is a promising bioceramic
for bone grafting, and iron (Fe) is a promising element that can enhance the mechanical
strength of CPS ceramics [302]. Iron-doped akermanite ceramic is a suitable formulation for
future bone substitute materials because it provides sufficient mechanical strength as well
as good bioactivity [303]. Three-dimensional (3D) printing has provided new vitality for
the manufacture of bioceramic scaffolds as it can achieve adjustable porosity and complex
shape design. 3D printing-based calcium silicate bioceramic scaffolds with appropriate pore
dimensions are promising for promoting mechanical properties [304]. Polymer-bioceramic
composites are bone-tissue-engineering scaffolds that combine bioceramics with biocom-
patible polymers. The mechanical properties of bioceramics can be improved using this
method. Introducing silica-based bioglass allows HA-based bioceramics to maintain a
high compressive strength [305]. Polyether-ether-ketone (PEEK) is reinforced with bioac-
tive silicate-based bioceramics as nanofillers, which exhibit significantly improved elastic
modulus, flexural strength, and microhardness [306]. Iron doping, 3D printing, and poly-
mer composites are the mainstay methods for enhancing the mechanical properties of
bioceramics, which are expected to be used in endodontics with good outcomes.

When bioceramics are used for root-end filling, they are immediately in contact with
the blood. Therefore, the ability to resist wash-out is an important factor that determines
the sealing performance in this clinical situation. Setting time is a key factor in resisting
the wash-out of bioceramics [15,307]. Currently, some fast-set bioceramics have been
developed, such as EndoSequence fast-set putty and iRoot FS [308]. It is important to
further optimize the solidification time of bioceramics for endodontic use. Nanomaterials,
such as multiwalled carbon nanotubes (MWCNTS), titanium carbide (TC), or boron nitride
(BN), can be incorporated into BioRoot RCS to shorten its setting time [309]. MTA Repair
HP with a nanostructure can achieve both fast-setting and efficient bioactive activity [310].
Adding ions is a common method of material modification that can be used in bioceramics
to improve their solidification properties. Calcium silicates doped with zinc and magnesium
have been synthesized by the sol–gel method, showing a significant decrease in setting time
compared to white MTA [311]. HPO4

2- ions are substituted in calcium sulfate dihydrate
crystals during setting and have profound effects on the rheological properties and setting of
the CSC paste [312]. Bi2O3 as a popular radiopacifier can prolong the initial and final setting
times and retard the degree of hydration [313]. Therefore, the selection of a radiopacifier
such as barium titanate (BT), which does not affect the curing time, is also a strategy to
reduce the setting time of bioceramics. Most importantly, the self-setting nature of bone
cement is not compromised by BT incorporation [314]. The addition of nanomaterials
and ions and the replacement of the components that affect solidification are promising
strategies to reduce the setting time of bioceramics, and thus may promote its application
in endodontics.

The high solubility of the bioceramic materials is also a concern, as it may result in
gaps between the dentinal wall and filling material, which compromise the quality of
the seal. Calcium silicate-based sealers are associated with significantly higher solubility
than epoxy-resin sealers (AH Plus) [315–318]. Ionic doping is a promising strategy to
compensate for the shortcomings (high solubility) of bioceramic materials. Y2O3 and
CeO2-doped SiO2–SrO–Na2O glass ceramics can release less Si4+ and Na+ [319]. The
addition of nano-phase materials to bioceramics may have the potential to improve the
physicochemical, microstructure, and compressive strength properties. Lower solubility
composites are obtained by adding nanomaterials such as MWCNTs, TC, or BN to BioRoot
RCS [309,320]. The addition of ions and nanomaterials is expected to reduce the solubility
of bioceramics, thereby improving the sealing property of bioceramics in endodontics.

Commercially available bioceramics are composed of a variety of compounds, and
even for the same material, the chemical composition may vary slightly depending on the
manufacturer. Currently, most of the comparative studies on different bioceramic materials
used commercial products. Laboratory studies with active compounds are still needed
to yield consistent results. More well-controlled laboratory and clinical studies are still
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needed to better demonstrate the structure–function relationship of various bioceramics,
which is of great significance in promoting the development of materials, and this is also a
field that needs future efforts.

6. Conclusions

Bioceramics such as MTA have been demonstrated to possess excellent bioactivity
and biocompatibility, and have been widely used in the clinical practice of endodontics.
However, none of the bioceramic materials is completely ideal, and they always have their
individual limitations in practical applications. With the development of materials, more
and more bioceramics other than MTA have been developed, such as Biodentine, ERRM,
BioAggregate, CEM, and BioRoot RCS. These new materials are used in root-end filling,
root canal therapy, VPT, apexification/RET, perforation repair, and root defect repair. They
have been proven to have comparable or even better clinical outcomes than MTA through
numerous clinical trials, in vitro experiments, and case reports. However, high-quality
clinical studies with long-term follow-ups and well-controlled laboratory studies are still
scarce. To use these bioceramics with more confidence in the clinical practice of endodontics,
more high-quality research evidence is needed in the future. Bioceramics play an important
role in the treatment of endodontic diseases and have broad development prospects. We
expect that more new or improved bioceramics will be developed in the future.
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