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Abstract: The main focus of this work is to introduce a single free-breathing and ungated imaging
protocol to jointly estimate cardiac function and myocardial T1 maps. We reconstruct a time series
of images corresponding to k-space data from a free-breathing and ungated inversion recovery
gradient echo sequence using a manifold algorithm. We model each image in the time series as
a non-linear function of three variables: cardiac and respiratory phases and inversion time. The
non-linear function is realized using a convolutional neural networks (CNN) generator, while the
CNN parameters, as well as the phase information, are estimated from the measured k-t space data.
We use a dense conditional auto-encoder to estimate the cardiac and respiratory phases from the
central multi-channel k-space samples acquired at each frame. The latent vectors of the auto-encoder
are constrained to be bandlimited functions with appropriate frequency bands, which enables the
disentanglement of the latent vectors into cardiac and respiratory phases, even when the data are
acquired with intermittent inversion pulses. Once the phases are estimated, we pose the image
recovery as the learning of the parameters of the CNN generator from the measured k-t space
data. The learned CNN generator is used to generate synthetic data on demand by feeding it with
appropriate latent vectors. The proposed approach capitalizes on the synergies between cine MRI and
T1 mapping to reduce the scan time and improve patient comfort. The framework also enables the
generation of synthetic breath-held cine movies with different inversion contrasts, which improves
the visualization of the myocardium. In addition, the approach also enables the estimation of the T1

maps with specific phases, which is challenging with breath-held approaches.

Keywords: variational autoencoder; generative model; CNN; manifold approach; unsupervised
learning; cardiac MRI; image reconstruction

1. Introduction

Magnetic resonance imaging (MRI) is commonly used for the diagnosis and progno-
sis of cardiac disorders. The improved image contrast, clarity, and non-iodizing nature
of image acquisition make cardiac MRI the gold standard for cardiac function and tis-
sue characterization. Cardiac function is usually measured using gated breath-held 2D
acquisitions [1,2]. The changes in myocardial tissue composition often result in variations
in the T1 relaxation time, which can be measured using T1 mapping sequences; these ap-
proaches have shown great potential in the detection of myocardial pathologies and therapy
monitoring [3–5]. Commonly used T1 sequences include breath-held modified Look-Locker
inversion recovery (MOLLI) [6], saturation recovery single-shot acquisition (SASHA) [7],
and saturation pulse prepared heart rate independent inversion recovery (SAPPHIRE) [8].

Bioengineering 2023, 10, 345. https://doi.org/10.3390/bioengineering10030345 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10030345
https://doi.org/10.3390/bioengineering10030345
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://doi.org/10.3390/bioengineering10030345
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10030345?type=check_update&version=1


Bioengineering 2023, 10, 345 2 of 18

The cardiac function and T1 mapping acquisitions often require one breath-hold per slice
and intermittent rest periods between the acquisition of the slices. The acquisition of the
above datasets from multiple slices to cover the whole heart translates to long scan times,
in addition to reduced patient comfort.

Compressed sensing and low-rank methods have been extensively used to reduce
the breath-hold duration in cardiac cine [9,10] and T1 mapping [11,12]. MR fingerprinting
methods have been introduced for T1 and T2 mapping of the myocardium [13,14]. These
schemes rely on dictionaries of magnetization evolution, obtained using Bloch simulation.
All of these approaches require electrocardiogram (ECG) gating and breath-holding, which
is not tolerated by several subject groups, including pediatric subjects. Several elegant ap-
proaches exploit the synergies between cine MRI and T1 mapping. For instance, refs. [13,15]
use the central k-space samples in breath-held inversion recovery sequences to determine
the cardiac phases, followed by the recovery of the magnetization evolution of the signals
from each phase using low-rank and spatial and temporal regularization. The temporal sub-
space basis functions were derived using Bloch simulations in both cases [13,15]. Recently,
free-breathing approaches were introduced to extend the approach to patient populations
that cannot hold their breath. For instance, MR multi-tasking [16] relies on a low-rank
tensor model for the multi-dimensional signal to relax the breath-holding requirement.
This approach estimates the tensor factors from dedicated k-space navigators, which are
acquired at every other readout. The constrained tensor model quite significantly reduces
the data demand, making the motion-resolved recovery of the multi-dimensional dataset
from highly undersampled measurements well-posed. The need for dedicated navigators
makes it challenging to adapt this scheme to general sequences. In addition, the use of
continuous acquisition may make it difficult to decouple the effects of flip angle and T1
recovery, which may affect the accuracy of the estimated T1 maps. To overcome this issue,
Zhou et al. [17] introduced a dual flip angle approach, where the acquisition consists of two
blocks of two different flip angles. They perform a low-rank and sparse joint recovery of
cardiac phase and T1 dynamics that is conceptually similar to [13,15], while compensating
for translational respiratory motion.

The main focus of this work is to introduce a free-breathing and ungated imaging
protocol for the joint acquisition of cardiac function and T1 maps. We capitalize on the
synergies between functional imaging and T1 mapping to reduce the scan time and to
improve patient comfort. We recover the images with different contrasts from an inversion
recovery gradient echo (GRE) sequence using a generative deep learning model, which
is learned in an unsupervised fashion. We consider each image in the time series as a
non-linear function of the cardiac and respiratory phases as well as the inversion time.
Similar to our prior work [18], we model the non-linear function by a convolutional neural
network (CNN). The parameters of the CNN, as well as the latent variables corresponding
to the cardiac and respiratory phases, are learned from the measured undersampled k-t
space data of the same patient, resulting in a subject-specific representation. Because the
inversion time is known as a priori, we use it as a preset latent vector that is not learned
during the optimization process. When the latent variables vary in a 3D Cartesian space, the
corresponding images vary in a smooth 3D surface or manifold in a high-dimensional space.
Hence, this approach essentially uses a manifold constraint on the images. The non-linear
representation allows us to represent the data using a few parameters that are directly
related to the physical parameters (phase information and inversion time). The G-SToRM
formulation was originally introduced for motion-resolved cardiac cine MRI; the images in
the dataset are modeled as non-linear functions of low-dimensional latent variables that
represent the cardiac and respiratory phases. We use a coarse-to-fine progressive CNN
architecture, which allows us to represent the global features, including the shape and
contrast of each image frame in the low-resolution initial layers. The high-resolution layers
add finer details may be the same for all frames. We use a continuous-acquisition strategy
using a gradient echo (GRE) spiral acquisition scheme with intermittent inversion pulses
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and delays for magnetization recovery, while the data were acquired in a free-breathing
and ungated mode.

We introduce an efficient two-step reconstruction algorithm, which is significantly
more computationally efficient than our previous joint estimation strategy [18,19]. We use
a variational auto-encoder (VAE) for the estimation of the latent vectors from the central
k-space samples. Once the latent vectors are estimated, the CNN model is trained with the
latent vectors fixed. Once the learning of the CNN is complete, we can excite the CNN with
arbitrary latent vector combinations to obtain T1 weighted images with arbitrary cardiac
and respiratory phases. We estimate the T1 maps by Bloch equation mapping.

We note that generative modeling is emerging as a powerful tool in medical
imaging [20,21]. We have also introduced motion-resolved (SToRM) [18] and motion com-
pensated (MoCo-SToRM) [22] approaches for dynamic MRI applications. The G-SToRM
manifold model can be viewed as a non-linear generalization of low-rank [11,13,15] and
tensor models [16], where the images are modeled as linear functions of the temporal basis
vectors (e.g., cardiac, respiratory motion vectors). Note that low-rank and tensor models
learn the basis vectors that are non-linear functions of the physical parameters from k-t
space navigators.

2. Background
2.1. Dynamic MRI Recovery

The main objective in dynamic MRI is to acquire high-resolution images from possibly
undersampled measurements. The image frames xi : i = 1, · · · , M in the time series are
often compactly represented by the Casoratti matrix:

X =
[
x1 · · · xM

]
. (1)

The MR images are acquired by multichannel measurement operators, which are often
different for each image:

bi = Ai(xi) + ni. (2)

Here, ni is a zero-mean Gaussian noise matrix that corrupts the measurements. Specifically,
Ai are the time-dependent measurement operators, which evaluate the multi-channel Fourier
measurements of the image frame xi on the trajectory ki corresponding to the time point i.

2.2. Single-Step Cardiac Cine MRI Using Generative SToRM

CNN-based generative models were recently introduced for free-breathing and un-
gated cardiac MRI [18,19] without any contrast variations. This scheme models the 2D
images in the time series as the output of a CNN generator Gθ :

xi = Gθ(zi), i = 1, · · · , M.

The input zi is the latent vector, which lives in a low-dimensional subspace. The
recovery of the images in the time-series involves the minimization of the criterion

C(z, θ) =
M

∑
i=1
‖Ai(Gθ(zi))− bi‖2

︸ ︷︷ ︸
data term

+ λ1 ‖JcGθ(z)‖2︸ ︷︷ ︸
net reg.

+λ2 ‖∇izi‖2︸ ︷︷ ︸
latent reg.

. (3)

The first term in the cost function is a measure of data consistency. The second term
penalizes the norm of the Jacobian of the deep network, which serves as a regularization
term; it controls the smoothness of the generated image manifold [18]. The last term
penalizes the temporal gradient of the latent variables, which facilitates the recovery of
smooth latent vectors that are free of rapid changes that may arise from alias artifacts.
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Instead of reconstructing the images, the G-SToRM approach learns the optimal latent
vectors and the CNN parameters from the measured data. Once the learning is complete,
we generate the images in the time-series by exciting the generator with appropriate latent
vectors, often corresponding to the respective cardiac/respiratory phase.

3. Methods
3.1. Acquisition Scheme

The proposed sequence for the data acquisition in this work is depicted in Figure 1. The
free-breathing and ungated cardiac data are acquired using a continuous spiral sampling
of the k-space with golden angle increment and GRE readouts. The longer repetition time
(TR) offers enhanced inflow contrast between the myocardium and blood pool compared
to the shorter TR Cartesian GRE sequences. In addition, the spoiled GRE sequence for
the acquisition does not suffer from banding artifacts, unlike steady-state free precession
(SSFP) sequences. In addition, the GRE sequence with a spiral acquisition scheme is
much less sensitive to the eddy-current effects, and hence we do not need to correct the
trajectories before reconstruction. We use a constant flip angle for the GRE readouts. We
use inversion blocks of duration ≈ 7 seconds, consisting of an adiabatic inversion pulse,
800 spiral interleaves with TR = 8 ms, and a delay of 500 ms for longitudinal magnetization
relaxation. The readout duration of the spirals is 2.74 ms. Detailed parameters for the
sequence used in this work can be found in Figure 1.

Figure 1. (A) shows the MOLLI sequence scheme. (B–D) show the inversion recovery sequence for
free-breathing and ungated cardiac MRI. The acquisition is started with a 180◦ inversion pulse at the
beginning, and following inversion pulses were applied every 6.9 s (6.4 s of data acquisition and 0.5 s
of delay time). The pulse diagram is shown in (B). The data are continuously acquired with golden
angle (137.5◦) spiral trajectories (C). In (D), we list the detailed sequence parameters. ((A) is adopted
from Figure 1 in [23] with permission).

3.2. Pre-Estimation of the Latent Variables Using VAE

In our previous work [18,19], the CNN parameters as well as the latent vectors were
jointly estimated from the entire k-t space data. A challenge with this approach is the high
computational complexity. In addition, this approach is not directly applicable to the T1
mapping setting considered in this work because the navigators are modulated by the
inversion pulses.

To minimize the computational complexity and to adapt the method to the T1 mapping
setting, we propose a two-step strategy illustrated in Figure 2A,B; in the first step, we
estimate the cardiac and respiratory phases from the k-space navigators (central k-t space
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data) from all the coils using a conditional VAE [24] as shown in Figure 2A. We assume the
latent variables ct to be two-dimensional, with the dimensions corresponding to the cardiac
phase and respiratory phase, respectively. Because the timing of the inversion pulses are
known a priori, we feed the inversion signal pt as a conditional vector to the network,
which is held fixed throughout the optimization process. In this work, we use a three-layer
fully connected network with three inputs, obtained by the concatenation of ct and pt.

The VAE consists of an encoder Eφ and a decoder Dθ

(zt, σt) = Eφ(bt, pt) (4)

b̃t = Dθ(ct, pt) (5)

The decoder generates the approximate k-space navigator signals b̃t at time t, given
the 2D latent vectors ct =

[
ccard,t cresp,t

]
and the conditional vector pt. The decoder

is implemented using fully connected layers, whose parameters are denoted by θ. We
use a progressive architecture, starting with a dense layer, and the spatial dimension of
the features are grown gradually. We concatenate the latent vectors and the conditional
vector and feed them as inputs to the decoder. The latent vectors ct follow the condi-
tional distribution p(ct|bt), which is approximated by qφ(ct|bt). Similar to the classical
VAE setting, we model qφ(ct|bt) = N (zt, Σt) as a Gaussian distribution, where the mean
vector zt =

[
zcard,t zresp,t

]
and the diagonal covariance matrix Σt = diag(σt), where

σ =
[
σcard,t σresp,t

]
, are derived by the encoder network Eφ. The coefficients ct can be

obtained by sampling from qφ(ct|bt).
The standard VAE cost function is specified by C(θ, φ) = ∑Nframes

t=1 Et(θ, φ), where Et is
given by

Et(θ, φ) = − 1
2σ2Ect∼qφ(bi)

[
‖Dθ(ct, pt)− bt‖2

]
︸ ︷︷ ︸

data term

− KL[qφ(ct)||p(ct)]︸ ︷︷ ︸
prior

. (6)

The first term is the data term that compares the output of the decoder to the k-space
navigator signals. The second term is the Kullback–Leibler (KL) divergence of the distribu-
tion qφ(ci) from the desired prior distribution p(ci). The KL divergence term encourages
the latent distribution qφ(ct|bt) to follow a zero mean and unit variance Gaussian distribu-
tion, which ensures that the latent vectors will be uncorrelated. In this work, we assume
p(ci) = N (0, I), where I is the identity matrix. In this case, the KL divergence can be
explicitly evaluated as

L(ct) =
− log[det(Σt)]− n + trace(Σt) + zT

t zt

2

where we assume a latent space of dimension n.
In our experience, the use of the latent vectors estimated by the above VAE model

with G-SToRM can provide good image recovery. However, the latent vectors are often
not disentangled and hence may not be interpretable. In particular, each latent signal
may capture a mix of cardiac and respiratory motion components. In this work, we are
interested in disentangling the impact of cardiac and respiratory components, which will
facilitate the generation of images with specific cardiac or respiratory phases. Several
disentanglement priors were introduced in machine learning, including beta-VAE [25], to
improve the interpretability of the latent vectors. These approaches rely on information
theoretic or statistical priors, which are dependent on the distribution of the latent vectors.
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Figure 2. Illustration of the proposed two-step reconstruction scheme. (A) shows the estimation of
the latent signals from the k-t space navigators using a variational auto-encoder. The center k-space
data are used as the input of the encoder, and it tries to learn the motion distribution. (B) depicts the
reconstruction framework. The estimated latent signals together with the contrast signal, derived
from the timing of the inversion pulses, are fed into the generator with parameters θ. The generator
then outputs the image frames in the time series with varying contrast, cardiac phase, and respiratory
phase. The forward operators are applied for each image frame and compared to the acquired k-space
measurements. Post-recovery, the framework can be used in a generative mode as shown in (C). For
instance, we fix the respiratory and cardiac signals and only vary the contrast signal. These signals
are then fed into the learned generator, which then outputs the image frames in the time series that
correspond to different inversion times, which are then used for the T1 estimation. Likewise, the
respiratory and contrast signals can be fixed and the cardiac signal can be varied; we can obtain a
synthetic breath-hold cine by feeding this combination to the generator. The retrospective binning
strategy for T1 mapping estimation is illustrated in (D). Here, we identify the time-instants when
the latent vectors are in a specified cardiac and respiratory phase, and we feed the generator the
corresponding latent vectors and inversion signal to generate the corresponding images. The T1 maps
are obtained by matching the images with the sub-dictionary of the fingerprints.

Motivated by self-gating methods that use band-pass filtering with preset bands [26,27]
to separate the phase signals, we use a disentanglement strategy based on the frequency
range of the latent vectors. In this work, we constrain the cardiac and respiratory mean
vectors to be sparse linear combinations of real exponentials with frequencies between
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0.1–0.6 Hz and 0.8–2 Hz, respectively. In particular, we constrain mean vectors zcard,t and
zresp,t to be

zcard,t = Ce (7)

zresp,t = Rd (8)

where C and R are matrices whose rows are sinusoidal basis functions with frequencies
in respective bands, and e and d are the corresponding coefficients. We note that the
matrices C and R are not necessarily orthogonal matrices because of the delays used for
magnetization recovery when no data are acquired.

We note that the estimation of the latent vectors is challenging in the T1 mapping
context because the k-space navigator signals are modulated by inversion pulses, as seen
in Figure 2A. In particular, the strength of the navigator signals are very low when the
myocardium and blood are nulled. We note that prior approaches relied on several pre-
processing steps on the k-space navigators, including rejecting unreliable sections and
interpolation [17]. To minimize the modulation of the latent vectors, we penalize the `1
norm of the coefficients e and d to encourage them to be sparse. We pose the VAE with the
bandlimited disentanglement strategy as

{θ∗, φ∗} = arg min
θ,φ

C(θ, φ) + λ
(
‖e‖`1 + λ2‖d‖`1

)
,

e = (CTC)−1CT zcard,t

d = (RTR)−1RT zresp,t.

We use gradient descent to minimize the above cost function.

3.3. Image Reconstruction

Once the VAE optimization is completed, the mean vectors zt in (4) are indicative of
the cardiac and respiratory phases. This information, together with the inversion time,
may be used to bin the data to respective phases. Since each of the bins is often heavily
undersampled, the standard practice is to use a constrained reconstruction algorithm
such as MRI multi-tasking [16] to perform the recovery. However, multi-tasking requires
dedicated k-space navigators to estimate the subspace factors. We instead rely on the
implicit structural bias of CNNs to constrain the reconstructions, motivated by deep
image prior [28] and its extensions to dynamic MRI [18]. In particular, CNNs can learn
natural images faster than noise, which can be used as a prior to constrain imaging-
based inverse problems [28]. The extension of this work to dynamic MRI [18] seeks to
combine the information from multiple cardiac/respiratory phases, thus further improving
the reconstructions.

We model the 2D image frames in the time series as the output of a CNN generator:

xt = Gζ(zt, pt), i = 1, · · · , M (9)

in response to the concatenation of the latent vectors and the parameters, as shown in
Figure 2B. A progressive CNN architecture similar to [18] is used to realize Gζ , which
facilitates the learning of the information from multiple time points. In particular, the
filters at the top layers of the CNN capture the fine image details that can be learned from
multiple time instances. By contrast, the coarse features at the earlier layers are specific to
the shape of the objects and contrasts, which may vary with time.

The cost function for the scheme can be described as follows:

C(ζ) =
Nframes

∑
t=1
‖At

(
Gζ(zt, pt)

)
− bt‖2

︸ ︷︷ ︸
data term

+η ‖JcGζ(z)‖2︸ ︷︷ ︸
net reg.

. (10)
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Here, zt are the latent vectors estimated using the auto-encoder as described in
Section 3.2, while pt is the inversion signal. Both variables are held fixed during the
image reconstruction step. Image recovery is thus reformulated as the learning of the
CNN generator parameters ζ from the entire set of measured k-t space measurements.
Here, At corresponds to the multi-channel non-uniform Fourier transform operators that
vary from time frame to time frame. We add the network regularization term to make the
learning of the generator more stable. Here, JcG denotes the Jacobian of the mapping, which
restricts the capacity of the model. The illustration of the reconstruction scheme is shown
in Figure 2B. The main distinctions of the proposed approach with [18] is the pre-learning
of the latent vectors rather than the joint learning of both ζ and z. The main benefits of this
two-step approach are the quite significant reduction in computation time and the ability
to work with larger datasets. To further speed up the convergence, we propose a stochastic
training strategy. Specifically, we randomly divide the number of all frames into different
batches at each iteration, followed by stochastic gradient descent. These improvements
enable us to extend the approach to the T1 mapping setting.

Once the generator parameters ζ are learned, one can generate images with arbitrary
cardiac/respiratory phases and inversion time using (9), as shown in Figure 3. These images
can be used to evaluate cardiac function and to quantify the T1 parameters, described in
the section below.

(a) (b)

Figure 3. (a) Results on subject #1. (b) Results on subject #6. Generation of synthetic breath-hold
cine data with different contrasts. We show the results on two subjects in (a,b), respectively. In
each figure, the top three image rows on the left correspond with the synthetic breath-hold cine at
three representative inversion times. The images from the 2D conventional gated Cartesian cine
images acquired using the balanced SSFP sequence are also shown in the bottom row for comparison
purposes. The right side of each sub-figure is the plot of the signal evolutions of the myocardium and
blood pool.

3.4. T1 Mapping

We propose two approaches to estimate the T1 maps, which we term the retrospective
binning and generative approaches, respectively. Both approaches rely on fingerprint
matching, where we use Bloch simulations to generate the fingerprints for different T1
values as in [29]. Since we allow a recovery time after each inversion block, we expect a
reduced dependency of estimated T1 maps on the flip angle. Since we directly account
for the impact of the excitation pulses and the repetition time, the fingerprint matching
approach is expected to be more accurate than the analytical exponential models.

3.4.1. Generative Approach

Once the learning is complete, we fix the latent vectors z as the desired cardiac and
respiratory phase (e.g., diastole and peak inspiration) and vary the inversion signal p with
the desired step-size as shown in Figure 2C. The generator is excited with the constant latent
signals and varying inversion signals to generate images with different inversion times.
The T1 maps are derived by comparing the fingerprints to the pre-computed dictionary.
Here, we use the entire Bloch dictionary for the matching; the combinations of inversion
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times and the phases, which are not seen during imaging, are interpolated by the generative
model. This approach considerably simplifies the evaluation of the T1 maps. However, we
note that the images generated by this approach are not necessarily data-consistent, since
the specific combinations of phases may not have happened during the imaging process.
We hence compare the T1 maps derived using this approach with the retrospective binning
strategy, which is data-consistent.

3.4.2. Retrospective Binning

Once the learning is complete, the generator can be fed with the latent vectors and
inversion signal at any arbitrary time point to obtain the corresponding image. In the
retrospective binning strategy, we identify the time-instants when the latent vectors are in
a specified cardiac and respiratory phase as illustrated in Figure 2D. We feed the generator
the corresponding latent vectors and inversion signal to generate the corresponding images.
Note that the loss function in (10) involves these images, and hence they are more data-
consistent than the generative approach in Figure 2C. In the retrospective setting, we use
a sub-dictionary from the Bloch dictionary, consisting of the above time-instants. The T1
maps are obtained by matching the images with the sub-dictionary.

4. Experiments

All the data used in this work are acquired on a 3T MR750W scanner (GE Healthcare,
Waukesha, WI, USA).

4.1. Implementation Details

We note that the proposed scheme in this work is totally unsupervised and hence no
fully sampled training data are needed. The parameters in the dense auto-encoder as well
as the parameters of the CNN are learned from the undersampled k-t space data of the
specific subject being worked on, resulting in a subject-specific representation. In other
words, we solve the networks based on each different subject.

4.1.1. Dense Auto-Encoder

The encoder Eφ and decoder Dθ used for motion estimation are implemented using
dense multilayer perceptron, and ReLU activation is used. The encoder Eφ has four layers,
and the four layers have 25, 50, 100, and 70 features, respectively. The decoder Dθ also has
four layers, and the four layers have 70, 100, 50, and 25 features, respectively.

We determine the parameter λ using trial and error on one of the subjects such that
the Fourier transform of the latent vectors has a well-defined peak. Lower values of λ often
result in latent vectors with residual modulation corresponding to inversion preparations.
Once the parameter is determined on one of the datasets, they are fixed for other datasets.

4.1.2. CNN Image Generator

We use a CNN image generator with three inputs (2D latent vectors and a 1D condi-
tioning vector involving the inversion time). The CNN generates a two-channel output
image, which corresponds to the real and imaginary parts in the MR images. Eight layers
are used to implement the generator, and the total number of trainable parameters in the
generator is about 15 times the image size of one image frame. For the convolutional
layers, leaky ReLU activation is used for the generator except for the last layer, where
tanh is used as the activation function. Random initialization is used to initialize all the
networks. Note that we progressively increase the dimensions of the features, starting with
small dimensions.

The parameter η is determined by using trial and error on one of the subjects. Specifi-
cally, we tune the parameter η on one of the subjects to have the best visual image quality.
Then, we keep η the same for all datasets.
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4.2. Phantom Used for the Validation of T1 Maps

We use a commercially available (Caliber MR, Boulder, CO, USA) Essential System
Phantom containing NIST traceable human tissue mimic solutions measured with landmark
accuracy and precision to determine the accuracy of the T1 maps. The phantom is built
with 14 NiCl2 samples, 14 MnCl2 samples, 14 proton density samples, and 1 CuSO4 fiducial
sample. In this study, we image the 14 NiCl2 samples with different known T1 values.

We use the proposed inversion recovery sequence with three different settings to
determine the dependence of the T1 maps on the flip angle and the delay time used for
recovery. In setting I, we use flip angle α = 3◦ with a delay time of 500 ms. In setting II,
we set flip angle α = 14◦ with a delay time of 500 ms. In setting III, we use flip angle
α = 14◦ with a delay time of 5000 ms. The conventional 2D peripheral pulse gating (PPG)-
triggered MOLLI [5(3)3] data [6] are also acquired for comparison purposes. Except for
the sequence parameters shown in Figure 1C, some other imaging parameters are set as
follows for the proposed inversion recovery sequence: slice thickness = 8 mm, TR = 8 ms.
Sequence parameters for MOLLI are: TR/TE = 2.55/1.056 ms, flip angle = 35◦, readout
bandwidth = 868 Hz.

4.3. Acquisition Scheme and Pre-Processing for In Vivo Data

An in vivo study is performed using the short-axis orientation without contrast.
Considering that flip angle 3◦ will give us a poor contrast between myocardium and
blood pool, we use setting II in the phantom study for the in vivo data acquisition. In
particular, we use the flip angle α = 14◦ and delay time = 500 ms for the data acquisition
in a free-breathing and ungated fashion. The TR for the acquisition is 8 ms, and the
acquisition time for one slice is 34 s. All the datasets are acquired using the AIR coil
developed by GE HealthCare (Waukesha, WI, USA). For comparison purposes, we also
acquire the breath-hold cine using the 2D SSFP sequence and the 2D conventional MOLLI
images for T1 mapping estimation. The parameters for the breath-hold SSFP sequence are:
TR/TE = 3.48/1.52 ms, flip angle = 49◦ and readout bandwidth = 488 Hz. Six subjects
(four healthy volunteers and two patients; 21 to 51 years old; four females) are involved
in this study. The public information for the six subjects is summarized in Table 1. The
Institutional Review Board at the University of Iowa approved the acquisition of the data,
and written consents were obtained from all subjects.

Table 1. Information for the six subjects involved in this study.

Gender Age Health Condition

Subject 1 M 21 Low LVEF

Subject 2 F 24 Low heart rate

Subject 3 F 27 Healthy

Subject 4 M 51 Healthy

Subject 5 F 49 Healthy

Subject 6 F 29 Healthy

We use an algorithm developed in-house to pre-select the coils that provide the
best signal-to-noise ratio in the region of interest. We then estimate the coil sensitivity
maps using ESPIRiT [30]. A total of 4000 spirals are acquired for each slice. During the
reconstructions, we bin every five spirals corresponding to 40 ms temporal resolution for
each frame in the time series. We omit the data from the first inversion time to eliminate
the impact of transients during the reconstruction.
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5. Results
5.1. Estimation of the Latent Vectors

In Figure 4, we show the estimated latent vectors using the dense auto-encoder. We
note from Figure 4c that the VAE output closely matches the k-t space navigators, which
shows the modulation resulting from the inversion pulses. The estimated cardiac and
respiratory signals are shown in Figure 4a,b, while their Fourier coefficients are shown in
Figure 4d,e. We note that the `1 norm minimization resulted in relatively sparse Fourier
coefficients. The abrupt jumps in the cardiac latent vector result from the delays added for
magnetization recovery, when no data are acquired.

(a) (b) (c)

(d) (e)

Figure 4. (a) Respiratory latent vector. (b) Cardiac latent vector. (c) VAE training comparison.
(d) Respiratory rate (bpm). (e) Heart rate (bpm). Estimated latent vectors from subject #2, who has
bradycardia. (a,b) are the respiratory and cardiac latent vectors obtained from the encoder. The x-axis
is the time in seconds. (c) shows the comparison between the output of the decoder and the central
k-t space data from one of the coils. (d,e) correspond to the Fourier transform of the respiratory and
cardiac latent vectors. The bandlimited constraint, together with the sparsity penalty, enables us to
recover the cardiac and respiratory signals reliably, even in the presence of strong signal modulations.
From (e), we see that the estimated heart rate from the dense VAE is 53 bpm, which is roughly the
same as the average heart rate of 55 bpm, which was obtained on the scanner.

5.2. Retrospective Binning

In Figure 5, we show the retrospectively binned images from one of the subjects. Here,
we pick frames with similar cardiac and respiratory phases, but with different inversion
times and hence different contrasts. These images are directly involved in the loss function
specified by (10) and hence are data-consistent. Similarly, one can identify cardiac phases
closer to a specific inversion time to obtain cine-like movies, which can be used for the
estimation of quantitative parameters. However, it is often challenging to find segments
with matching respiratory phases and contrasts with the retrospective binning strategy. By
contrast, the generation of the synthetic images discussed below is easier.

5.3. Generation of Synthetic Images

The proposed scheme learns a generative model from the measured k-t space data.
Hence, one can excite the generator with arbitrary combinations of latent vectors and inver-
sion signals to generate synthetic images on demand. We now illustrate two important modes.
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Figure 5. Illustration of learned CNN generator and latent vectors. The 2D latent vectors are learned
from the dense-auto-encoder, and we also have the 1D conditioning vector involving the inversion
time. The 3D latent vectors are then fed into the trained CNN generator, and the generator then
generates the desired image frames in the time-series. We showed four generated images in this
figure. The latent vectors corresponding to these four images are also marked in the figure.

5.3.1. Synthetic Breath-Hold Cine Data with Different Contrasts

We fix the inversion signal and respiratory phase, and only vary the cardiac phase
to generate synthetic breath-held cine images. The inversion times may also be varied
to generate cine data with different contrasts as shown in Figure 3. In Figure 3, three
representative T1-weighted breath-hold cine images are shown for two subjects. We showed
the bright blood cine, black blood cine, and black myocardium cine obtained from the
proposed scheme. For better visualization purposes, we chose a small region of interest,
which contains the heart, to show in the image. Additionally, we scaled the color map to
better display the images. The corresponding time points for the generation of the three
T1-weighted breath-hold cine images are visible as dashed lines in the signal evolution
curves, also shown in Figure 3. From Figure 3, we see that both the black blood and bright
blood cine images resolve the contrast between myocardium and blood pool well.

5.3.2. Images with Different Inversion Times

Similarly, the latent phase signals can be fixed to desired phases (e.g., diastole at
end inspiration), and the inversion signal can be varied to generate images with arbitrary
inversion times. We illustrate this in Figure 6. We note that during the short acquisition,
each phase may not experience all possible inversion times. The SToRM learns to interpolate
the signal from the available measurements.

5.4. Accuracy of the T1 Maps

Results of the phantom study are shown in Figure 7 and Table 2. In Figure 7c, the T1
mappings were generated for the three settings and compared to the 2D MOLLI result. In
Figure 7b, we computed the mean T1 values in each of the 14 NiCl2 regions for different
settings and compared them to the reference T1 values of these 14 NiCl2 samples.

Our experiments also show that all of the estimates are more reliable than the MOLLI
results. In particular, the MOLLI scheme will significantly underestimate the values for T1
values greater than 1200 ms. The correlation analyses between the estimated T1 values and
the reference T1 values for different settings are shown in Table 2. The R-squared value [31]
and the intraclass correlation coefficient (ICC) [32] metrics are used for the correlation
analysis. For ICC, we computed ICC(A,1), which gives an estimate of the reliability of the
method if an absolute agreement between different measurements is desired. From the
quantitative results, we see that the results obtained from the proposed inversion recovery
scheme show a strong positive correlation relationship (R2 > 0.99 and ICC(A,1) > 0.99)
with the reference results, as well as slightly better estimation than the MOLLI scheme. We
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note that the 2D MOLLI is unable to measure small T1 values; it failed to estimate the T1
values of the first three NiCl2 samples (with reference T1 values 21.94 ms∼43.79 ms). We
note that the most consistent results over the entire range of T1 values are yielded by setting
III, which corresponds to the five-second delay time. Settings I and II, which correspond
to FA = 3◦ and FA = 14◦, show a mild underestimation at the high T1 values, which are
significantly smaller than that exhibited by MOLLI. Both of these settings are comparable,
indicating that the flip angle has minimal impact on the T1 estimates.

Table 2. The correlation analysis between the estimated T1 values and the reference T1 values for
different settings for phantom study.

Setting (I) Setting (II) Setting (III) MOLLI

R2 0.999 0.997 0.998 0.986

ICC(A,1) 0.996 0.994 0.998 0.971

(a) (b)

(c)

Figure 6. (a) Signal evolutions of myocardium. (b) Signal evolutions of blood. (c) Signal evolutions
of blood. Generation of synthetic images with different inversion times. We fix the latent phase
signals to the desired phases: diastole at end inspiration. We only vary the inversion signal and then
generate the images in the time-series. We then plot the signal evolutions based on the generated
image frames. In (a,b), we show the plots of the signal evolutions of the myocardium and blood
pool at four different positions, respectively. In the top row of (c), six generated image frames at six
different inversion times are shown. In the bottom row of (c), we show six similar images we picked
from the original reconstructed (i.e., feed the learned phase latent vectors and inversion time signal
into the learned CNN generator) time-series, and the corresponding inversion time is also shown at
the bottom of each image.
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(a) (b)

(c)

Figure 7. (a) Image of 14 NiCl2 samples. (b) Comparison of the T1 values. (c) T1 mappings for different
cases. Results of the phantom study. (a) shows the 14 NiCl2 samples used in the phantom study.
The T1 mappings from MOLLI and three different settings based on the proposed inversion recovery
sequence are shown in (b). The comparison between the mean T1 values in each of the 14 NiCl2
regions for different settings and the reference T1 values of these 14 NiCl2 samples is shown in (c).

5.5. T1 Estimation from Free-Breathing and Ungated MRI

This section shows the results of the T1 maps estimated using the proposed scheme.
Specifically, we trained the generators for each subject. We use the generative approach
described in Section 3.4.1 to estimate the images, where we fixed the cardiac phase as
the diastole phase. The T1 mappings obtained from the proposed generative approach
and retrospective binning are compared to the 2D MOLLI results, based on one subject,
in Figure 8. From the comparison, we see that retrospective binning and the generative
approach yield comparable results. Because the generative approach is simpler to use, we
used this scheme for the remaining experiments.

The average T1 values for myocardium, left blood pool, and right blood pool estimated
from MOLLI and the proposed scheme are shown in Table 3. Over all six subjects, the
average T1 values for the myocardium between the proposed scheme and MOLLI have no
significant difference (p = 0.7844). However, for the T1 value of the blood, the estimation
from the proposed scheme is consistently higher than the estimation from MOLLI. This
mismatch is explained by the phantom study, where MOLLI underestimated the T1 values
when the T1 values are around 1500 ms∼2000 ms. Based on the existing studies [33,34], the
native T1 value of the blood on the 3T scanner is around 1500 ms∼1800 ms. We suppose
that one of the reasons for the underestimation of large T1 values with MOLLI in this study
comes from imperfect gating. In this work, peripheral pulse gating is used for the 2D
MOLLI sequence.
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Table 3. The average T1 values for myocardium, left blood pool, and right blood pool estimated from
MOLLI and the proposed scheme. Results from six subjects are shown in the table.

Subject No. Methods Myocardium Left Blood Pool Right Blood Pool

Subject 1
MOLLI 1012.8 1369.6 1427.2

Proposed 1052.3 1643.2 1610.8

Subject 2
MOLLI 1103.9 1547.3 1455.0

Proposed 1009.9 1638.6 1684.7

Subject 3
MOLLI 1069.2 1498.2 1509.3

Proposed 1063.3 1717.3 1714.3

Subject 4
MOLLI 1080.1 1447.4 1443.6

Proposed 1104.1 1718.5 1679.0

Subject 5
MOLLI 1049.7 1423.8 1447.6

Proposed 1089.2 1617.8 1618.9

Subject 6
MOLLI 1048.8 1573.6 1535.3

Proposed 1082.4 1770.7 1789.0

Figure 8. Comparisons of the T1 mappings obtained from both retrospective binning and the genera-
tive approach, and the 2D MOLLI [5(3)3] based on subject #1. From this, we can see that retrospective
binning and the generative approach can provide comparable results.

5.6. Cardiac Function Analysis

We generated synthetic breath-hold cine data using the proposed scheme, which are
then used to estimate the cardiac function analysis. We compare the left ventricle (LV) wall
analysis results with the 2D conventional gated Cartesian cine images acquired using the
2D conventional gated Cartesian balanced SSFP cine sequence in Figure 9. We divided the
myocardium into six sectors and calculated the area of each sector for both the diastole phase
and the systole phase, and we then compared the areas obtained from both the generated
breath-hold cine and the 2D conventional gated Cartesian cine. The LV wall analysis was
performed using the commercial software Segment (Medviso). We assume that the border
of the endocardium and the epicardium account for 20 percent of the LV wall. From the
quantitative results, we can see that the results from the generated breath-hold cine are
consistent with the results obtained from the 2D conventional gated Cartesian cine.
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(a) (b)

Figure 9. (a) The six sectors of the myocardium. (b) Comparison of the area of each sectors from
FB and BH (cm2). Left ventricle wall analysis. We compared the areas of the six sectors of the
myocardium obtained from the generated cine and the breath-hold cine. From the quantitative results
in the table, we can see that the generated cine using the proposed scheme is able to provide results
similar to those of the breath-hold cine.

6. Discussion and Conclusions

In this study, we proposed a manifold-based recovery scheme for the joint recovery
of inversion recovery prepared free-breathing and ungated cardiac MRI. We represent
each image in the time-series as a non-linear function of three variables: the cardiac and
respiratory phases and inversion time. The non-linear function is realized using a CNN
generator, while the CNN parameters and the phase information are estimated from the
measured k-t space data. The data were acquired using a spiral GRE sequence with
intermittent inversion pulses. We use a two-step strategy to realize a computationally
efficient algorithm. In particular, we use a dense conditional auto-encoder to estimate the
cardiac and respiratory phases from the central multi-channel k-space samples acquired
at each frame. The latent vectors of the auto-encoder are constrained to be bandlimited
functions with appropriate frequency bands, which enables the disentanglement of the
latent vectors into cardiac and respiratory phases even when the data are acquired with
intermittent inversion pulses. Once the phases are estimated, we pose the image recovery
as the learning of the parameters of the CNN generator from the measured k-t space data.
The learned CNN generator is used to generate synthetic data on demand by feeding it
with appropriate latent vectors. The framework enables the generation of cine movies with
different inversion contrasts as well as the estimation of the T1 maps with specific phases.

Phantom studies demonstrate that the proposed scheme is able to provide T1 estima-
tion with good accuracy and precision, comparable to MOLLI. The phantom experiments
show that the proposed T1 estimates are not sensitive to the specific choice of flip angles.
The experiments also show that the proposed scheme is less biased than MOLLI at higher
T1 values. We note that the results from the proposed scheme are slightly biased when the
delay used for magnetization recovery is short. We attribute this slight bias to transient
effects; even though we omitted the data from the first inversion block, there may be
residual transient effects in the first several inversion blocks, especially when the delay
time for magnetization recovery is small. By contrast, the longer delays will ensure that
the transient effects are minimal. In the future, we will explore magnetization preparation
strategies to further minimize the slight bias. The in vivo studies on six subjects also show
good agreements between the cardiac T1 mapping estimation from the proposed scheme
and MOLLI [33,34]. We note that there is an inconsistency between the T1 values of blood
between MOLLI and the proposed scheme. This discrepancy can be explained by the
higher bias of MOLLI, especially in the range 1500 ms∼2000 ms.

The proposed framework also offers the ability to measure cardiac function using a
synthetic breath-hold cine. The experimental results show that the synthetic cine is able
to provide comparable cardiac function analysis results compared to the results from the
2D conventional gated Cartesian cine. A benefit with the proposed scheme is its ability
to generate multiple contrasts, some of which offer improved visualization of myocardial
borders and may facilitate improved analysis.
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The proposed reconstruction algorithm is general enough to be applied to other
sequences, including the free-running transient balanced SSFP acquisition with variable
flip angles and inversion pulses as in [15], as well as the sequence proposed in [17]; we will
consider such extensions in the future, on a larger patient cohort, to compare the proposed
method with the methods proposed in [15,17]. We also plan to study the clinical feasibility
of the proposed methods on a larger patient cohort. In this work, we used the spoiled
gradient echo (SPGR) with the spiral trajectories for the data acquisition on a 3T scanner. A
benefit of this sequence is its robustness to banding artifacts, compared to balanced SSFP,
especially at high field strengths. The longer spiral readouts provide an improved inflow
contrast between the myocardium and the blood pool. We did not observe significant
blurring from B0 inhomogeneities and gradient imperfections in this study.
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