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Abstract: Due to rapidly developing technology and new research innovations, privacy and data
preservation are paramount, especially in the healthcare industry. At the same time, the storage of
large volumes of data in medical records should be minimized. Recently, several types of research on
lossless medically significant data compression and various steganography methods have been con-
ducted. This research develops a hybrid approach with advanced steganography, wavelet transform
(WT), and lossless compression to ensure privacy and storage. This research focuses on preserving
patient data through enhanced security and optimized storage of large data images that allow a
pharmacologist to store twice as much information in the same storage space in an extensive data
repository. Safe storage, fast image service, and minimum computing power are the main objectives
of this research. This work uses a fast and smooth knight tour (KT) algorithm to embed patient data
into medical images and a discrete WT (DWT) to protect shield images. In addition, lossless packet
compression is used to minimize memory footprints and maximize memory efficiency. JPEG formats’
compression ratio percentages are slightly higher than those of PNG formats. When image size
increases, that is, for high-resolution images, the compression ratio lies between 7% and 7.5%, and
the compression percentage lies between 30% and 37%. The proposed model increases the expected
compression ratio and percentage compared to other models. The average compression ratio lies
between 7.8% and 8.6%, and the expected compression ratio lies between 35% and 60%. Compared
to state-of-the-art methods, this research results in greater data security without compromising
image quality. Reducing images makes them easier to process and allows many images to be saved
in archives.

Keywords: big data; data security; knight tour; steganography; wavelet transform; lossless compression

1. Introduction

In recent years, there has been a need for extensive medical data information security
in all research fields. One such field where information security is crucial in medicine and
pharmacology. Today, the number of diseases and people affected by them has increased,
posing a potential challenge in storing various medically significant data in limited storage
spaces. In addition, data security cannot be compromised. Over the years, steganography
techniques have proven to be one set of effective methods to maintain the privacy of big
medical data. This method uses an overlay image to embed and retrieve data algorithmi-
cally. There are several options for entering information into big medical data. One such
variation used in this paper is the knight tour (KT) traversal technique combined with least
significant bit (LSB) substitution to preserve data. The big data of the patient are added
to the medical image, which is the cover image of this steganography technique. The KT
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performs the embedding, and the binary information is embedded in the LSB position of
the medical big data image pixels placed in the KT path. To increase security, the discrete
wavelet transform (DWT) is applied to the cover image to make it unreadable, and lossless
wavelet compression is used to efficiently store the transformed image in an extensive
medical data repository. This hybrid approach ensures the security of patient information
and the efficient storage of information in a medical database using as little storage space
as possible.

Initial attempts to implement communications, photo archiving systems and telera-
diology applications have encountered significant obstacles. Large picture files present
problems for both transmission and storage due to the high cost of the equipment required
to manage them. Lossless compression techniques only accomplish 2:1 to 3:1 reductions
for medical photos by using redundancy within an image to transfer image information
more effectively while permitting flawless reconstruction. Images can be reduced by arbi-
trarily huge ratios using irreversible or “lossy” processes, but the original pictures are not
fully replicated. However, the reproduction quality could be sufficient to prevent visible
picture deterioration and diminished diagnostic usefulness. This paper examines wavelet
compression in a new light. We compare the method to the famous Joint Photographic Ex-
perts Group (JPEG) approach. We review methods for measuring compression algorithms’
effectiveness and look at new developments in wavelet compression.

The motivations behind this research work, along with the significant contributions
respecting processes, are as follows:

� Compressing the image—Apply wavelet analysis to separate and approximate the
image information based on the sub-images and sub-signals.

� Pixel approximation for compression—Apply the images’ horizontal, vertical, and
diagonal features and approximate the sub-signals for better pixel approximation.

� Frequency and time localization—Apply WT effectively to reduce computational
complexity.

� Signal-features-based compression—Apply WT to distinguish between the minute
signal features during the compression.

� Quantization and lossless compression—Apply the hybrid transformation to quantize
the coefficients to optimize the lossless image compression during the transmission.

Wavelet compression and JPEG fall under the “transform-based lossy compression
algorithms” umbrella category. Transformation, quantization, and encoding are the three
processes that make up these approaches. A picture is converted from grayscale values
in the spatial domain to coefficients in another domain in a lossless procedure known
as transformation. The Fourier transform, used to recreate magnetic resonance (MR)
pictures, is one well-known transform. The DCT and WT are two more transformations
more often employed in compression. The transformation phase does not result in any
information loss. Information is lost during the quantization process. While less significant
coefficients are loosely approximated, frequently as zero, efforts are made to preserve the
more significant coefficients. Converting floating points to decimals might be enough to
perform quantization: values are converted to integers. The quantized coefficients are
finally encoded. The quantized coefficients are compactly represented in this step, which is
also lossless, to allow for adequate image storage or transmission.

The paper is organized as follows. Section 2 presents a literature survey, Section 3
discusses the proposed model, and Section 4 focuses on the results and analysis. The
conclusions and a consideration of future enhancements are drawn in Section 5.

2. Literature Survey and Critiques

Various steganography methods and standard guidelines have recently been proposed
that provide valuable recommendations and suggest using object-oriented mechanisms [1].
A three-layer technique, including pixel statistics preservation, Moore space-filling curves,
and Hilbert space-filling curves, increases and improves security [2]. A detailed compar-
ative analysis was made of different digital steganography techniques, and performance
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was evaluated in terms of peak signal-to-noise ratio (PSNR) and mean square error (MSE)
values [3]. Image compression of black and white images using a wavelet transform that
uses the LGB algorithm and an error-correction method to minimize distortion has been
presented. The compression result was compared with other techniques for encoding DWT-
coupled map grid (CML) data [4]. The results show that the proposed encryption algorithm
has the advantage of large key space, high security, and fast encryption or decryption
speed [5]. A recently developed generic codec supporting JPEG 2000 with volumetric
extension (JP3D) was used to investigate how to optimally compress volumetric medical
images using JP3D. Various directional WTs and a general in-group prediction mode pro-
vide guidelines and settings for optimal compression of medical volumetric images at an
acceptable level of complexity [6].

A low-complexity 2D image compression method was tested using Haar waves, and
compressed image quality was obtained. Some factors, such as compression ratio (CR),
PSNR, mean opinion score (MOS), picture quality scale (PQS), etc., have been used to
evaluate the quality of compressed images [7]. The work used a simple LSB substitution
technique for data hiding. The MSE is calculated, and the resulting image has no significant
changes from the original image [8]. An advanced steganography technique that includes
side information to calculate the correlations between neighboring pixels and estimate
degrees of smoothness has been used. The results showed that the technology provides a
high delivery capacity with less distortion [9]. Steganography was used by adjusting the
LSB value of the color pixel intensity by simple binary addition. The results showed that the
embedding power was twice that of the traditional technique [10]. The methods used were
DWT for medical image compression. Research shows that correlation and redundancy are
reduced in the DWT domain, while random permutation of pixels with an encryption key
leads to confusion and dispersion [11]. Information hiding was developed with multi-pixel
difference (MPD) and LSB (least significant bit) replacement to improve image quality and
increase information storage capacity. The results showed that the improved image and
resolution were undistorted [12]. Concatenative singular value decomposition (SVD) and
optimized DWT were used. Huffman encoding and decoding were also performed.

The results were compared with other image compression methods based on CR,
PSNR, SSIM, and MSE [13]. The various scenography and digital watermarking techniques
for beginners were explored and acted as a guide to help understand the concepts and
apply them very easily [14]. The coefficients of the applied 2-D orthogonal WT and the
transformed image were coded and quantified according to the local estimated noise
sensitivity. The human visual system offers a high degree of compression [15]. In image
compression, fusion, and encryption, big medical data CS, chaos, and fractional Fourier
transforms were used simultaneously. The technique was developed to reduce data and
simplify the keys [16]. Secure and lossless digital image watermarking was developed based
on DWT and DCT databases to preserve patient privacy in a medical database. Performance
development factors include PSNR measurements and their correlations with overall image
degradation [17]. DWT was used for the fast and secure transmission of primary images
online. The results showed that the algorithms quickly and securely send essential images
in a group [18]. A wavelet-based approach was developed to compress and encrypt fused
images by selecting salient and less salient information. Fusion is performed by error
measurement with compression, and encryption methods use pseudo-random number
sequences and Huffman coding. The results showed that the proposed method was better
than all others [19]. DWT was used for medical big data image compression. The results
showed that the proposed algorithm has better security and performance than previous
works [20]. This research used DCT, DWT, and watermark methods to store patient data.
The results showed that the proposed system performs better un-detectability [21]. The
modulation function was applied, and many advantages were achieved regarding good
resolution, overcoming LSB compensation, and creating large storage space to achieve a
sizeable hidden volume [22]. The Embedded Zero tree Wavelet (EZW) algorithm provides
an efficient technique for low bit rates and high compression and advanced EZW techniques
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for lossless and lossless grayscale and color image compression [23]. The simple and
optimized LSB replacement method and genetic algorithm were developed for image
embedding. The results showed that the embedded image was not significantly affected,
and the hiding strategy was improved [24]. The new type of steganography using the LSB
replacement and pixel value difference (PVD) methods was developed to improve image
quality and maximize the hidden space [25–28].

The entropy, run length, and dictionary-based compression techniques were developed
to achieve lossless compression [29–33]. The DNN and principal component analysis
strategies were applied to predict data compression using entropy values. The images were
divided into blocks, and then applied compression [34].

3. Proposed Methodology

The proposed method mainly focuses on KT steganography, WTs, and compression.
Today, image and audio file sizes are drastically compressed in a new mathematical way.
Lossless compression is an old technology, but JPEG and MP3 now use lossless compres-
sion and are essentially required in the new environment. The original document was
extensively searched using a mathematical model. Typically, compression up to a tenth of
the original image length is possible. The quality and accuracy never deteriorate. Record
compression and image compression must not allow images to be lost. The length of the
original image must match the load image after it is translated.

The fast KT approach is designed to move only in the L direction, i.e., three down
and one to the right, starting at the first pixel of the image. The cover image is converted
using DWT, and the “wpdencmp” lossless wavelet packet based on the “Haar” wavelet
is used to compress the transformed image. The complete methodology is described in
the architecture diagram (Figure 1). DWT has wide applications in technological under-
standing, engineering, mathematics, and computer engineering knowledge. In particular, it
encodes characters to symbolize separate records in an extra-redundant format, often as a
prerequisite for fast compression. Both strategies have their advantages and disadvantages.
Like DWT, it offers a higher compression ratio of 1:3 without losing photos but still requires
more processing power. DCT can perform electrical processing, and artifact blocks are like
losing some statistics’ continuous WTs.
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3.1. Architecture Diagram

Image compression is a method used to reduce image space. In decompression, a
small part of the image is first removed and scaled to the large image. The primary purpose
of image compression is to reduce minor images and noise because images are removed.
Image redundancy is squared to make the image effective. This technique reduces the bit
size of an image without affecting image quality. Reducing the image quality does not
affect the image quality of any account. The shorter the length, the more images can be
stored under the archive. The disk space required to store images is small or large.

3.2. Proposed Algorithm

The clinical data repository combines statistics from various clinical resources, includ-
ing EMR or laboratory systems, to provide a complete picture of a patient’s care. These
archives are characterized as databases containing scientific statistics. Healthcare extensive
records is a term used to describe the large number of records created by adopting digital
technologies that collect patient statistics and help manage healthcare services that are
otherwise too large and complex for classic technologies. Clinical repositories can provide
a rich overview of patients, their clinical conditions, and outcomes. The database can
provide a way to explore associations and capacity styles between disease progression and
treatment. The proposed algorithm with improved embedding is sketched in Algorithm 1.

The DWT coefficients were first tested (approximate and detail coefficients are pro-
cessed separately) by inserting zeros between each coefficient, doubling each length exactly.
Just as the concept of filter financial institutions can determine DWT, so can IDWT recon-
struction be performed by taking the real first N/2-1 coefficients of the DWT coefficients
and adding them to the transfer. RMSE suggests that square deviation is one of the most
typically used measures for comparing excellent predictions. It shows how some distance
predictions fall from measured actual values using Euclidean distance. To compute RMSE,
calculate the residual (the distinction between prediction and fact) for each statistical fac-
tor, compute the residual norm for every information factor, compute the suggestion of
residuals, and take the square root of that mean. RMSE is typically utilized in super-
vised mastering applications, as RMSE uses and requires accurate measurements for each
predicted record factor.

Algorithm 1: Improved Embedding

1: Load the medical image and the patient data as X←medical image and D← patient data.
2: Adjust the matrix dimensions such that the rows are multiples of 3 and the columns of 2.
3: Pad the extra row or column with the value ‘256′ as the pixel ranges between 0 and 255.
4: Extract the ASCII value of D and convert it to its equivalent binary value as D→ ASCII (D)→
Binary(D).
5: Apply KT for pixel traversing the image in the ‘L’ path, and change the LSB bit of each pixel
with each bit of the binary value from D.
6: Delete the extra padded row or column.
7: Extract the red, green, and blue components from X.
8: Apply forward DWT for the red, green, and blue components using the formula

IDWT(a, b) = 2−a/2
∫ +∞

−∞
i(t)ψ

(
2−at− b

)
dt (1)

ψa,b(t) = 2−a/2ψ
(
2−at− b

)
(2)

where ψ(t) is the mother wavelet.
9: Combine the individual transformed components into one matrix.
trans = combine (red, blue, and green)
10: Compute lossless wavelet packet compression using ‘wpdencmp’ function with ‘haar’ wavelet
packet and store it in the repository.
Z = compress (wpdencmp, trans, haar)
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The extraction algorithm is defined in Algorithm 2 as follows.

Algorithm 2: Extraction

1: Retrieve the compressed image from the medical database and perform wavelet decompression.
trans = decompress (Z)
2: Apply Inverse DWT (IDWT).

i(t) = ∑a ∑b IDWT(a, b)
[
2−a/2ψ

(
2−at− b

)]
(3)

3: Extract the red, blue, and green components from the reconstructed image, and combine them.
4: Make the image matrix traversable by adding an extra row or column and pad with the
value ‘256′.
5: Apply the KT to extract the LSB values from the pixels of the image traversing in an ‘L’ pattern.
6: Delete the extra padded row or column.
7: Convert the obtained binary bits to ASCII values and the character.
Binary (D) = ASCII (D) = char (D) = D
8: Update the patient data = D and medical image = X.

The proposed image compression is defined in Algorithm 3.

3.3. Computational Performance of Wavelet Transform

The size of the filter set and the number of pixels in the image impact how quickly
wavelet compression works. Although JPEG speed is related to the number of pixels, the
DWT has substantially higher memory needs since the entire image must be changed
simultaneously. In light of this, wavelet compression speed on a particular platform will
be equivalent to JPEG compression speed for small pictures that can be stored entirely in
memory but slower for bigger images. As an electronic file, the number of radiologic tests
varies little between treatment techniques. A computed tomographic (CT) picture is 189
MB in size. A study with 40 images takes up roughly 16 MB for a two-view radiographic
study and 20 MB for a study with 40 images. A typical MR picture is 8 MB; however,
because many images are often collected, MR imaging examinations typically consume
10–15 MB. A cross-sectional picture may be decompressed using Windows NT 4.0 software
(Microsoft, Redmond, Wash) in nanoseconds on a 200 MHz Pentium Pro computer with 64
MB of random access memory. A 10 MB radiograph may be decompressed using wavelet
compression in around 9 s, compared to 7 s using the JPEG method. Standard modems
may often operate via telephone lines at 28.8 kbit/sec rates. A 15 MB file would take
roughly 90 min to transfer. A 10:1 compression ratio would cut the transmission time to
9 min, and a 33:1 ratio would lower it to 3 min. The improvement in transmission time
is directly proportionate to the compression ratio employed. The compression ratio also
linearly reduces the storage needed; for example, a 15:1 compression ratio would reduce
the 15 MB research to just 1 MB [25–32].
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Algorithm 3: Proposed Image Compression

1: Apply the improved embedding to the medical image.
2: Perform the extraction operation.
3: Apply the hard threshold using

yhard(t) = x(t) when abs(x(t)) > T

yhard(t) = 0, when abs(x(t)) ≤ T

4: Perform the soft threshold using

yso f t(t) = x(t)− T when abs(x(t)) > T

yso f t(t) = 0, when abs(x(t)) ≤ T

5: Find the entropy encoding h(s).

h(s) = −
q

∑
j=1

p(si)log p(si)

6: Determine the Shannon entropy M(C(b))).
7: Apply the wavelets based multi resolution analysis.
8: Define the Haar transform
Ik, n = [k2−n, (k + 1)2−n]
9: Perform the dilation using

∅(x) =
√

2 ∑
k∈z

∅(−k + 2x)h(k)

10: Apply the wavelet operation using

ϕ(x) =
√

2 ∑
k∈z

g(−k + 2x)g(k)

11: Perform filtering operations using orthogonal quadrature.

h(i) =
∞

∑
j=−∞

u(j).h(−j + 2i)

g(i) =
∞

∑
j=−∞

u(j).g(−j + 2i)

12: Apply the filters using bi-orthogonal quadrature.
13: Decompose the image using wavelets and apply the color conversion. Y

Cb
Cr

 =

 0.3 0.6 0.1
−0.2 −0.3 0.5
0.5 −0.4 −0.1

R
G
B


14: Find RGB using R

G
B

 =

1 0.1 1.3
1 0.3 −0.5
1 1.8 −0.1

 Y
Cb
Cr


15: Apply the lossless compression throughYr

Vr
Ur

 =

(2G + R + B)/4
R− G
B− G


G

R
Br

 =

Yr − (Vr + Ur)/4
G + Vr
G + Ur
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4. Simulation and Analysis

The overall methodology of this research includes KT steganography, DWTs, and
lossless wavelet packet compression of medical images for privacy, preservation, and
efficient storage. The steganography technique uses the LSB replacement technique, which
replaces LSB bits of pixels with patient data in binary form.

4.1. Datasets

The proposed model was simulated using datasets from http://www.aylward.org/
notes/open-access-medical-image-repositories, accessed on 1 January 2023 [20–24]. The
proposed model was tested using 43,752 chest radiographs from the National Institutes of
Health Clinical Center (NIHCC) database. This comprises 1,00,000 images with relevant
details, diagnostic information, and other publicly available datasets. The model was tested
for various image sizes. The expected results were obtained with various data fixes and
changes, which challenged the embedding algorithm, and additional data were included
to verify the effectiveness of the compression algorithm.

4.2. Results and Analysis

The results of the steganography technique are shown in Figure 2; the changes in both
the cover image and the steganography image cannot be distinguished. This demonstrates
the superiority of the LSB replacement method in the field of steganography. The resulting
steganography image is then transformed to render the image unreadable, and compression
techniques are used to store the medical image in a database properly. This scenario
is illustrated in Figure 3. This diagram shows the order of conversion, compression,
decompression, and inverse conversion processes. To realize this methodology, we took as
input cerebral hemorrhage steganography images already embedded in patient data and
applied the DWT to obtain the transformed images.

The “dwt2” method is used for the conversion. In the DWT process, the original
image is decomposed into up to two levels using the “Haar” wavelet. This decomposition
produces horizontal, vertical, diagonal, and proximity components. The decomposed
components are reconstructed using the DIWT to recover the original image. This strategy
is illustrated in Figure 2, and the compression method takes a decomposed image as input
and compresses it using a wavelet packet compression technique using “Haar” wavelet
packets. The compression method, “wpdencmp,” uses a soft thresholding technique that
uses wavelet packets to compress the image and compute the threshold. This compression
concept is illustrated in Figure 3, along with histograms of the original and compressed
images. A step-by-step compaction process is shown in Figure 4. At each level, the images
are refined, and the differences between levels are visible. The higher the number of coding
levels of compression, the higher the image’s compression ratio and recovered energy. The
compressed image is decompressed by wavelet packet reconstruction using the accounting
matrix values of the decomposed image. Horizontal, vertical, diagonal, and proximity
components are extracted from the decompressed image, and an IDWT is applied to recover
the original image. A title image embedded in the patient data is visualized.

In Figure 3, the steganography image of the brain hemorrhage is taken, and DWT is
applied. After compression, the compressed image is displayed as a bar graph. The wavelet
reconstruction method recovers the compressed image from the compressed image. The
target image is retrieved from the decompressed image by applying the IDWT method to
the previous step. Figure 4 represents the DWT and IDWT of the brain hemorrhage image.
A sample segmentation of the transformed image is also displayed.

Figure 5 represents the histograms of the steganography and decomposed and com-
pressed images in red, blue, and pink colors, respectively. The obtained outcome shows
that the adopted methodology is efficient regarding high-resolution lossless compression
of medical images. In the resultant images, the novelty of the work is apparent; it can be
seen that the proposed methodology enables excellent elaboration and enhancement using
improved WTs and lossless compressions. Figure 6 represents the transition steps of the

http://www.aylward.org/notes/open-access-medical-image-repositories
http://www.aylward.org/notes/open-access-medical-image-repositories
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wavelet packet compression technique, where the images are clearly distinguished from
one another.
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As shown in Figure 7, the complete process of wavelet photograph compresion is
carried out and explored as follows. The laptop takes an entered image, before which
wavelet redecoration has been finished for the digital image, thresholding has been executed
on the digital picture as shown in Figure 8, and entropy coding has been completed for the
photograph, all of which are essential. Wavelet compression is a technique that lets one
minimize the dimensions of files at the same time as the equal time, improving them via
the elimination of high-frequency noise additives. The documents can, without problems,
be decreased beneath 1% of their actual length. Wavelet radically change, used to look up a
sign into high-quality frequency factors at incredible choice scales, allows a picture’s spatial
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and frequency attributes to be concurrently revealed. In addition, competencies that could
be undetected at one decision point might be easy to spot at another. One of the most vital
blessings of wavelets is that they provide simultaneous localization in time and frequency
areas. The most requirement in acquiring wavelets is that fast wavelet remodeling is
computationally very speedy. Wavelets have the great advantage of being successful in
isolating sign information. Lossless compression is more significant for programs where
maintaining extraordinary files is essential. The drawback of this compression method is
that it calls for massive archives to hold files after compression.
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4.3. Comparative Analysis

The decompressed images of different sizes were compared with the original image.
Several image measures—mean square error (MSE), signal-to-noise ratio (SNR), peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and bit error rate
(BER)—were evaluated. The results are shown in Table 1. The performance of the proposed
model was compared with those of other models—steganography, WT, segmentation,
encryption and fusion, DCT, DWT, and classification [1–4,8,9,14–17,19,21,23,24].

Table 1. Comparative analysis.

Measures Original Image Decompressed
Image 1

Decompressed
Image 2

MSE 41.89 41.88 41.88
SNR 25.79 25.79 25.79
PSNR 31.92 31.91 31.91
SSIM 0.99 0.99 0.99
BER (number, ratio) 1548, 7.38% 1548, 7.37% 1548, 7.37%

This research proves that the evaluation parameters do not change significantly as
the size of the information increases and gives the insight that, regardless of size, the error
rate is low enough that the steganography or decompressed image will not be distorted.
Regardless of changes to the input data, the embedding and compression algorithms do
not deviate from expected results, proving robustness and accuracy to any dataset and the
tricky challenges introduced. The compression ratios of all images also exceeded the 80%
benchmark, demonstrating high compression ratios for lossless images. From the original
17.63 GB of the significant medical dataset, the total compression achieved was 8.62 GB,
which is very efficient for medical repository storage. These proven results give a clear



Bioengineering 2023, 10, 333 13 of 17

insight into how well the hybridization and fusion of these techniques have yielded results
and give us a significant boost and inspiration to use this well-constructed technology.

4.4. Compression Analysis

The process of image steganography, transformation, and compression can be per-
formed on any platform using any method. However, it is essential to have higher security
and minimal storage space. Therefore, choosing an efficient and effective method will give
the best results. Choosing a fast KT optimized for steganography and DWTs, along with
wavelet packet compression of images, gives better results. To demonstrate the success of
the proposed method, experiments were performed in MATLAB version R2017b, in which
the data embedding, transformation, and compression work was carried out. MATLAB
software is a tool that can be used to perform all mathematical operations, providing highly
accurate results at every step. Windows 10 OS provides excellent support for productive
and skillful research. KT lends an innovative flavor to steganography techniques, and
transformations help protect steganography images. Additionally, the transformed image
is compressed using lossless compression and decompressed again at the receiving end to
the exact same resolution as the original image. The compressed images are stored in the
database in less space, which helps in efficient storage.

4.5. Comparative Results and Statistical Analysis

The performance of the proposed method was also evaluated for various JPEG and
PNG image formats to obtain compression ratios with percentages of compression. The
image sizes considered for the simulation were 128 × 128, 256 × 256, 512 × 512, and
1024 × 1024. The performance measures of the proposed model are shown in Table 2.
The expected performance in terms of compression ratios to other models is detailed in
Table 3. The expected performance in terms of compression percentages to other models is
shown in Table 4. The expected performance in terms of computing times for the proposed
model to other models is shown in Table 5. The expected compression and decompression
computing times for the benchmark datasets for the proposed model in relation to those of
the other models are shown in Tables 6 and 7, respectively.

Table 2. JPEG and PNG format comparisons.

Size Features JPEG PNG

128 × 128 Image 1 Compression ratio 8.9% 8.7%
128 × 128 Image 1 Compression % 52.5% 46.6%
128 × 128 Image 2 Compression ratio 8.5% 8.2%
128 × 128 Image 2 Compression % 53.5% 41.5%
256 × 256 Image 1 Compression ratio 8.1% 8.0%
256 × 256 Image 1 Compression % 42.5% 41.2%
256 × 256 Image 2 Compression ratio 7.5% 7.2%
256 × 256 Image 2 Compression % 36.2% 33.5%

Table 3. Expected performance—compression ratios compared with those of other models.

Size Proposed Model Other Models

128 × 128 8.6% 8.1–8.5%
256 × 256 8.4% 8.1–8.3%
512 × 512 7.9% 7.5–7.8%
1024 × 1024 7.8% 7.7–7.8%
Public datasets 8.5% 7.8–8.4%



Bioengineering 2023, 10, 333 14 of 17

Table 4. Expected performance—compression percentages compared with those of other models.

Size Proposed Model Other Models

128 × 128 58.6% 58.1–58.3%
256 × 256 48.4% 48.1–48.3%
512 × 512 57.2% 47.5–47.9%
1024 × 1024 37.8% 35.7–36.4%
Public datasets 58.4% 45.5–55.8%

Table 5. Expected performance—computing times (in ms) compared with those of other models.

Size Proposed Model Other Models

128 × 128 3.5 5.7
256 × 256 3.8 6.2
512 × 512 4.2 6.4
1024 × 1024 4.7 7.5
Public datasets 35.2 48.4

Table 6. Expected performance—compression computing times (in ms) compared with those of other
models.

Size Proposed Model Other Models

128 × 128 2.7 3.8
256 × 256 3.2 5.9
512 × 512 4.1 5.4
1024 × 1024 4.2 5.5
Public datasets 12.56 21.78

Table 7. Expected performance—decompression computing times (in ms) compared with those of
other models.

Size Proposed Model Other Models

128 × 128 3.8 4.7
256 × 256 4.3 5.2
512 × 512 4.3 6.2
1024 × 1024 4.5 7.8
Public datasets 15.23 25.35

The following significant inferences were drawn based on the simulation.

� JPEG formats’ compression ratio percentages were slightly higher than PNG formats.
When the image size increases, that is, for high-resolution images, the compression
ratio lies between 7% and 7.5%, and the compression percentage lies between 30%
and 37%.

� The proposed model increases the expected compression ratio and percentage com-
pared to other models. The average compression ratio lies between 7.8% and 8.6%,
and the expected compression ratio lies between 35% and 60%.

� Computing time is reduced with the proposed method relative to other methods. For
high-resolution images, the expected computing time lies between 4 ms and 5 ms
compared to other approaches.

The limitations of the proposed model are as follows:

� The memory requirement through DWT is higher since it processes the complete
image.

� Training and inference can be achieved by designing an optimal neural network to
reduce complexity.
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5. Conclusions and Future Work

In this research, a picture of a brain hemorrhage was taken and entered into the
patient’s records. The input image was transformed using a DWT “branch” wavelet.
The transformed image was then compressed using “Haar” wavelet compression. The
image was compressed to 83.3333% and decompressed and reconstructed to obtain the
embedded brace image. This downloaded brace image was then used to extract patient
information from the original image. After decompression, the resolution of the studied
image was never disturbed, and since the brace image was lossless, the extracted patient
data were unchanged. The optimization obtained from the test significantly contributed
to the preservation and long-term archiving of the medical image without compromising
the patient’s privacy. The compression technology produced an amazing lossless image
after decompression, which was useful for retrieving patient information. The method
developed in this research ensured that medical images were archived optimally and
increased privacy. JPEG formats’ compression ratio percentages were slightly higher than
those of PNG formats. When image size increases, that is, for high-resolution images,
the compression ratio lies between 7% and 7.5%, and the compression percentage lies
between 30% and 37%. The proposed model increases the expected compression ratio
and percentage compared to other models. The average compression ratio lies between
7.8% and 8.6%, and the expected compression ratio lies between 35% and 60%. Computing
time is reduced with the proposed method relative to other methods. For high-resolution
images, the expected computing time lies between 4 ms and 5 ms.

In the future, the Internet of Medical Things, medical imaging strategies, soft com-
puting with evolutionary operators, and other hybrid image processing strategies will be
applied further to reduce the complexity of the proposed model and to develop better
recommender systems for large-scale, high-quality medical images.
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