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Abstract: Diabetic foot ulcers cause great suffering and are costly for the healthcare system. Normal
wound healing involves hemostasis, inflammation, proliferation, and remodeling. However, the
negative factors associated with diabetes, such as bacterial biofilms, persistent inflammation, impaired
angiogenesis, inhibited cell proliferation, and pathological scarring, greatly interfere with the smooth
progress of the entire healing process. It is this impaired wound healing that leads to diabetic foot
ulcers and even amputations. Therefore, drug screening is challenging due to the complexity of
damaged healing mechanisms. The establishment of a scientific and reasonable animal experimental
model contributes significantly to the in-depth research of diabetic wound pathology, prevention,
diagnosis, and treatment. In addition to the low cost and transparency of the embryo (for imaging
transgene applications), zebrafish have a discrete wound healing process for the separate study of each
stage, resulting in their potential as the ideal model animal for diabetic wound healing in the future.
In this review, we examine the reasons behind the delayed healing of diabetic wounds, systematically
review various studies using zebrafish as a diabetic wound model by different induction methods,
as well as summarize the challenges and improvement strategies which provide references for
establishing a more reasonable diabetic wound zebrafish model.

Keywords: adult zebrafish; zebrafish larvae; diabetic wound; delayed wound healing; model animal

1. Introduction

Diabetes is a debilitating disease that has a significant economic impact on global
health systems [1]. According to the International Diabetes Federation, 463 million adults
had diabetes in 2019 and this number is expected to reach 700 million by 2045 [2,3]. The
healing of a normal wound generally happens in four stages: hemostasis, inflammation,
proliferation, and remodeling [4]. However, diabetic hyperglycemia leads to various
systemic complications, resulting in a series of local lesions in the wound microenviron-
ment, including chronic inflammation, angiogenesis, hypoxia-induced oxidative stress,
neuropathy, impaired signal transduction of advanced glycation end products (AGEs)
and neuropeptides. Eventually, diabetic wounds are characterized by impaired healing,
prolonged inflammation, and reduced epithelialization dynamics [5–10]. In addition, even
when blood glucose control is achieved medically, diabetes complications progress unhin-
dered through metabolic memory phenomena, including delayed wound healing [11]. In
accordance with N. Graves et al. it was epidemiologically concluded that more than 80%

Bioengineering 2023, 10, 330. https://doi.org/10.3390/bioengineering10030330 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10030330
https://doi.org/10.3390/bioengineering10030330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0003-3900-5135
https://orcid.org/0000-0001-7747-9951
https://doi.org/10.3390/bioengineering10030330
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10030330?type=check_update&version=1


Bioengineering 2023, 10, 330 2 of 17

of amputations caused by diabetic foot ulcers (DFUs), often need to extend the time of
hospitalization which aggravates the amputation patients’ economic burden. The global
prevalence of DFU has reached 6.3%, about 50% of people in the event of a DFU within
five years of death [12,13]. A better understanding of the pathological processes and mech-
anisms contributing to ulcers in diabetic patients and the influence on wound healing is
therefore urgently needed to improve treatment strategies. Based on the available studies,
the known mechanisms of delayed diabetic wound healing are listed in Table 1.

Table 1. Factors and mechanisms of action causing delayed healing of diabetic wounds.

Inducement Occurrence Stage Mechanism References

Persistent bacterial infection and
biofilm

The whole process

Low CD4+ T cell counts; [6]
insufficient blood perfusion; [14]

abnormal pH (slightly alkaline); [15]
Abnormal function of mast cells. [16]

Massive infiltration of neutrophils Inflammation

Excessive neutrophil extracellular traps (NETs); [7]
Weak scavenging effect of macrophages; [17]

high pro-inflammatory factors levels; reactive oxygen
species (ROS) vicious circle. [18]

More pro-inflammatory
macrophages and insufficient
activity of anti-inflammatory

macrophages

Inflammation
Impaired phagocytosis; decreased ability to polarize to

anti-inflammatory state; excessive accumulation of
AGEs.

[19–22]

Hyperkeratosis and insufficiency
of wound margin; Stagnant

reepithelialization
Proliferation

Weak migration ability of keratinocytes;
Weak induction of regulated growth factors;

Weak keratinocyte growth factors and fibroblast
growth factors (FGFs) in wound;
abnormal expression of miRNA.

[23],
[24]

Defect of angiogenesis and local
oxygen deficiency Proliferation

Low expression of insulin-like growth factors-1 (IGF-1)
and abnormal function of vascular endothelial cells; [7]

low vascular endothelial growth factor (VEGF) and
VEGF receptor-2 (VEGFR-2) levels; [25]

fibrin restricts angiogenesis. [26]

Delayed production of ECM and
limited wound contraction

Proliferation and
remodeling

Fibroblasts senescence; no response to growth factors
such as FGF; less transformation to myofibroblasts.

[7],
[27]

Delayed maturation of scar tissue Remodeling
High level of matrix metalloproteinases (MMPs); low
level of tissue inhibitor of matrix metalloproteinase-1

(TIMP-1); influence of microbial community.

[5],
[7],
[23]

For preclinical studies of diabetic wound therapy, appropriate animal models are
essential; after all, studies in vitro cannot fully capture the complexity of the diabetic
wound environment [28]. Mice and rats have loose skin and high hair density. Pigs
have high cost, thick dermis, and slow passage speed. Rabbit genetic susceptibility is
limited. Monkey ethics are very demanding. Guinea pigs are generally limited to the
therapeutic effects of vitamin C [29–32]. In recent years, zebrafish (Danio rerio) have become
increasingly popular as animal models in biomedical, toxicological, and pharmacological
research [33,34], much of which has to do with the highly conserved nature of pathways
and genes, good genetic susceptibility, low cost, and rapid passage [35–38]. As opposed to
other wound healing models listed above, zebrafish and mammals utilize a very similar
principle to close their epidermis; their caudal fin wounds re-epithelialize rapidly, making
them an ideal model for studying wound healing—the healing process of caudal fin injury
is shown in Figure 1. The discrete phases of the healing process for separate research,
as well as the development of gene editing technology (such as CRISPR-Cas9), allow for
the understanding of the mechanism at great convenience and accuracy [39]. Further,
researchers are increasingly paying attention to wound healing in zebrafish due to the
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construction of zebrafish diabetes models that are rapidly progressing [40,41]. This review
introduces the specific mechanism of diabetic wound healing delay and zebrafish model
in the study of diabetic wounds, showing the advantage of, and systematically summing
up the model in different stages of the development of the diabetic wound application
progress. The challenges and potential improvement strategies, and the future trend of the
model are also discussed.
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Figure 1. The role of participating in a zebrafish caudal fin regenerative wound healing model. Within
1–3 h-post-amputation (hpa), epithelial cells migrate to cover and close the wound. By 18–24 hpa,
an apical epidermal cap is formed, and a mass of undifferentiated mesenchymal cells called the
blastema accumulates underneath the apical epidermal cap. At 24 hpa the blastema cells segregate
into two morphologically indistinct compartments: a slowly proliferating distal blastema and a
rapidly proliferating proximal blastema. After 48 hpa the regeneration program is installed and the
regenerative outgrowth continues until the original tissue architecture is reconstituted.

2. Mechanism of Delayed Healing of Diabetic Wounds

Usually, the healing process begins with hemostasis to prevent blood loss and microbial
invasion of the wound. This phase follows and overlaps with the inflammatory stage, in
which proinflammatory neutrophils are up-regulated initially, and then macrophages clean
up fragments and pathogens as well as growth factors, other cytokines, and cells. The
proliferative phase overlaps with the inflammatory phase, during which new tissues, new
blood vessels (angiogenesis), and matrix structures are activated to fill the wound [42,43].
The final remodeling stage increases the tensile strength of the extracellular matrix (ECM)
and reduces the blood supply to the damaged area [21,44,45].

Diabetes is the most common heterogeneous metabolic disorder, which is associated
with disorders of glucose, lipid, and protein metabolism [46], characterized by elevated
blood glucose or insulin response to tissue, which can lead to many complications, includ-
ing diabetic skin wounds or ulcers [47]. Diabetic skin ulcers are characterized by painful
ulcers with disintegration of dermis (including epidermis, dermis and, in many cases, sub-
cutaneous tissue) [48]. At present, the research on the pathology of DFU is mainly focused
on immune dysfunction, microbial invasion, impaired cell proliferation, angiogenesis, and
pathological scar [49–53]. The molecular and cellular mechanisms in delayed diabetic skin
wound healing are shown in Figure 2.

2.1. Immune Dysfunction

The inflammatory phase of the wound can last for weeks or even months under the
influence of diabetes [54,55]. The repair process (bacterial defense, cell proliferation, and
collagen synthesis) requires energy, and the strictly oxygen-dependent NADPH-linked
oxygenase will produce ROS during this period. Many pathways (polyol pathway, hex-
osamine pathway, etc.) related to oxidative stress of AGEs are maladjusted, resulting in
NADPH depletion, decreased glutathione production, activation of protein kinase C and
NADPH oxidases, and excessive production of oxygen free radicals and ROS, which further
magnify the inflammatory response under high glucose conditions [7,56]. The functional
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impairment of neutrophils and macrophages was manifested in the continuous activa-
tion of citrulline histone H3, NETosis, and irregular release of NETs in diabetic wounds.
Macrophages were affected by increased secretion of prostaglandin E2/D2 and excessive
accumulation of AGEs, resulting in weakening of burial and phagocytosis of polymor-
phonuclear leukocytes such as apoptotic neutrophils, which remained in the M1 phenotype
for a long time [17,21,57]. Moreover, the low number of primordial T cells and the poor
range of T cell receptor (TcR-V β) in diabetic patients lead to the accumulation of effector
T cells, which, together with high levels of AGEs, result in the increase of proinflamma-
tory cytokines such as IL-6 and TNF-α, which cause the interruption of the inflammatory
cascade, excessive inflammation, and insulin resistance. There are also other disorders
of pro-inflammatory factors, such as abnormal expression of macrophage inflammatory
protein (MIP)1α, MIP2, CX3C chemokine ligand 1, DNA methyltransferases (DNMTs),
IL-12, NLRP3 [58], reduced level sof human β-defensin 1, 2 and 3 and Setdb2, irregular
activation of signal transducer and activator of transcription 3 (STAT3), and decline in
the activation of AKT/serine/threonine protein kinase B and NF-κB [21,22]. All these
collectively contribute to interruption of healing in diabetic wounds. The RNA expression
of macrophage migration inhibitory factor (MIF) gene is decreased in diabetic patients, and
the decrease of MIF level may be the reason for the damage of the endothelial progenitor
cell production and the healing process [21,59,60]. Hyperglycemia and oxidative stress can
also cause abnormal glycosylation of nerve cell proteins and abnormal activation of protein
kinase C, leading to neurological dysfunction and ischemia, while peripheral neuropathy
leads to weakening of motor and foot sensory structures. This increases the risk of ulcers
caused by repeated mechanical stress [59].
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2.2. Microbial Invasion

The ability of diabetic patients to stimulate immune response is limited, and toll-
like receptors (TLRs) are down-regulated in diabetic wounds, which can damage the
innate immune system and inflammatory response, decrease the number of CD4+ T cells,
and reduce chemotaxis. This delays the recruitment and immune response of various
inflammatory cells, resulting in bacterial susceptibility, bacterial connection, and biofilm
formation in the wound. These biofilms protect microorganisms from antimicrobial agents
and immune systems, and disrupt the healing process [15,21]. The minimum inhibitory
concentration and minimum bactericidal concentration of bacteria in biofilm may be as high
as 10–1000 times compared with planktonic bacteria [61]. The pH of the wound becomes
alkaline under persistent infection, inhibiting physiological processes such as angiogenesis,



Bioengineering 2023, 10, 330 5 of 17

epithelial hyperplasia, oxygen release, and bacteriostasis [14]. It is the most common cause
of lower limb amputation in diabetic wounds.

2.3. Impaired Cell Proliferation and Angiogenesis

In the proliferative stage, the cascade mediated by different matrix metalloproteinases,
cytokines, inflammatory cells, keratinocytes, fibroblasts, and endothelial cells is the basis
of successful wound healing [62–65]. On the one hand, keratinocyte and fibroblast prolif-
eration and migration provide basic conditions for ECM and re-epithelialization [66–68].
On the other hand, a continuous supply of blood provides adequate oxygen and cytokines,
which are necessary for tissue regeneration. Wound areas with active proliferating fibrob-
lasts can only be seen when pO2 is above 15 mm Hg [7,23]. Further, keratinocyte, fibroblast
proliferation and migration provide basic conditions for ECM and re-epithelialization of
ECM [69]. Decreased levels of heat shock proteins (HSPs) (HSP90, HSP70, HSP47, and
HSP27) and their downstream molecules TLR4 and p38-mitogen-activated protein kinases
affect procollagen synthesis and protein homeostasis [21,70]. Irregular pro-inflammatory
response can activate the irrational upregulation of activating transcription factor-3 and
inducible nitric oxide synthase (iNOS), accompanied by the increasing level of free radicals
and the upgradulating activities of caspase-3, -8 and -9. High oxidative stress results
in the down-regulation of nuclear factor E2-related factor 2 (affecting the expression of
MMP-9, transforming growth factor-beta (TGF-β), migration and proliferation-related
genes). Impaired cell differentiation and remodeling are associated with abnormal Bcl2,
keratin K16, notch junction protein 43, and platelet reactive protein- 1 expression. In ad-
dition, the expression of angiopoietin-like 4, one of the stromal cell proteins, is difficult
to up-regulate in diabetic wounds as occurs in normal wounds. The activation of the
JAK1/STAT3/iNOS signaling pathway is blocked, and the production of NO is inhibited,
hinting to angiogenesis and re-epithelialization [21,23]. High glucose concentration change
the level and the expression of MMPs, directly through the activation of inflammatory cells,
induce sustained high levels of proinflammatory cytokines, promote fibrosis, and reduce
the influence of the expression of TIMPs, as well as through the formation of the advanced
glycosylation product indirect influence of MMPs. A study stated that metalloproteinases
levels in chronic wound fluid are almost 60 times that of an acute wound. This substantially
eliminates growth factors, receptors, and matrix proteins at the wound site [23].

2.4. Pathological Scar

The remodeling phase requires the synthesis of new collagen and concurrent collagen
degradation, a process mediated by MMPs. Type III collagen is gradually replaced by
type I collagen with greater tensile strength. The presence of myofibroblasts also causes
wound contraction, contributing to potential scar formation [23]. However, premature
senescence of fibroblasts occurs under high glucose conditions, which is associated with
persistent oxidative stress and inflammation [42]. At the same time, pathological skin
scarring exhibits excessive accumulation of fibroblasts and ECM (mainly type I collagen).
The vertical growth of pathological scars generally subsides after a few years; however, the
joint site can lead to contracture, severely limiting function, requiring surgical treatment,
and seriously affecting appearance and normal life [42]. Several lines of evidence suggest
that inflammatory bodies in local fibroblasts are involved in skin fibrosis by inducing
these normally stationary cells to differentiate into pathogenic myofibroblasts, resulting
in high levels of ECM. This inflammasome activation in these non-immune cells triggers
skin fibrosis, and subsequent inflammasome activation in immune cells amplifies the local
inflammatory response [58].

The pancreas of zebrafish and some insulin-sensitive peripheral tissues, such as
liver and muscle, are evolutionally conservative. Some important genes related to sugar
metabolisms, such as hexokinase and glucose transporter genes, are actively expressed in
zebrafish, and the deletion of these genes causes a series of severe neurological defects in
zebrafish embryos. In addition, some of the key mechanisms involved in the regulation
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of sugar metabolism are very similar to those in other mammals, and studies have shown
that NF-κB-inducing kinase level in juvenile zebrafish was induced by drugs, while the
NF-κB bypass signaling pathway was exogenously activated. The blood glucose level
of juvenile zebrafish was significantly increased, and β-cell function was abnormal after
6 h. Although intracellular insulin production was normal, its secretion was obviously
blocked [11,71–74]. Therefore, zebrafish as a model animal object for the exploration of
diabetic wound mechanisms and drug screening will likely be the mainstream direction in
the future.

3. The Advantages of Zebrafish for Diabetic Wound Healing

Zebrafish as a model for studying diabetic wound healing has many unique advan-
tages (Figure 3): Zebrafish larvae are only subject to animal experimentation regulations
upon reaching 120 h post fertilization and starting to live free, as stipulated by the directive
of the European Union on the Protection of Animals used for scientific purposes. As the
volume is small, whole-organism imaging can be performed in a multiwell plate; the cost is
low; the reproduction ability is strong (about 200 eggs per female per week) [75]; the gener-
ation time is short, generally 3–4 months. Thus, selection experiments can be conducted;
larvae developed rapidly, and fully developed juveniles can be obtained 48 h after hatching.
The embryonic and juvenile stages are transparent throughout the body, making real-time
imaging of target organs possible, giving ease of embryonic manipulation, and the possibil-
ity of screening therapeutic agents at a low cost [76–78]. All of the above contribute to their
increasing popularity for high-throughput and high-content assays. On the other hand,
as a result of the zebrafish genome sequence, 71% of human proteins and 82% of disease-
causing human proteins have been found to be orthologous in zebrafish, with significant
homology to human proteins. The mechanisms of infection and inflammation caused by
innate immune responses can be isolated and studied in the early stages of development
without the complications associated with adaptive immune responses. It is suitable for
the study of gene expression regulation by gene specific knockout technique or by mRNA
or plasmid overexpression of protein. There is good genetic control and in the embryonic
and larval stages, the skin of zebrafish is already composed of a superficial peritrind, a
middle epidermal double layer, and a basal layer attached to the basal membrane, while its
multilayer epidermis is formed during the metamorphosis on the 25th day after fertilization.
At the same time, fibroblasts penetrate the dermis, take over the collagen produced by
keratinocytes in the basal layer, form locally thickened dermal papillae, and begin to scale.
In short, the skin structure of zebrafish is very similar to that of human beings, and the basic
principle of the wound healing mechanism is conservative between human and zebrafish:
there are discrete stages of healing, allowing specific processes to be studied separately; a
remarkable ability to regenerate new fin tissue after amputation is retained, and its caudal
fin has a relatively simple but symmetrical structure, including epidermis, blood vessels,
nerves, pigment cells, and fibroblasts [39,79–83]. Since genetic engineering technology has
developed rapidly, especially in CRISPR-Case9 (efficient multiple gene targeting, zebrafish
mutant strain breeding, etc.), it has been possible to produce all kinds of simple alternative
cell spontaneous fluorescence zebrafish varieties (with fluorescent markers of neutrophils
and macrophages of transgenic zebrafish, and the development of reporter cell lines that
tag specific tissues, including epithelial tissues) [84–87], as well as other manipulation
techniques, such as mRNA injection and morpholine injection [88], and their intact immune
systems. Moreover, it is convenient to obtain specific mutant zebrafish such as the rag1−/−

mutant zebrafish, which is the only animal model that can be used for the study of T-cell
and B-cell immune response defects [40]; The glucose metabolism of adult zebrafish and
its development during embryonic development are closely related to that of humans and
other mammals. Under physiological conditions, the blood glucose level of zebrafish is
approximately 60 mg/dL (3.3 mmol/L), which is dynamically regulated by feeding and
fasting. The model was also extended to include factors associated with patients with
diabetes mellitus or other metabolic disorders such as cholesterol and triglycerides, body
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weight, body mass index (BMI), and lean body mass; in zebrafish, it took only 2 days
to induce hyperglycemia after injection of pdx1 morpholine. It took weeks for scientists
to observe changes in the kidneys caused by hyperglycemia in mice and rats. Zebrafish,
however, showed kidney changes within two days. Since diabetic zebrafish cells can easily
be transplanted into healthy zebrafish for subsequent tracking and analysis, zebrafish
are also excellent models to study glucose memory effects. Meanwhile, in the high fat
diet (HFD)-induced type 2 diabetes model, zebrafish demonstrated HFD-induced changes
in a much shorter period of time, such as liver changes after two months. Furthermore,
when experimental hyperglycemia was determined by streptozotocin injection, a distinct
impairment of caudal fin regeneration was observed [89]. It is worth mentioning that
pressure sores caused by long-term bed rest are often associated with the hospitalization of
diabetic patients for foot ulcers. These pressure sores are closely related to moisture and are
more difficult to heal under the influence of diabetes [90,91]. The zebrafish wound model
has always maintained a high humidity environment, which is favorable for the degree of
reduction of the diabetic pressure sores model.
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4. Construction and Application of Zebrafish Diabetic Wound Model

Zebrafish have been applied as ideal model animals for diabetic wound studies. These
construction and application are described in Figure 4.
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men, with more distinct and clean regeneration modes [93]. Intine et al. injected 0.35 mg/g 
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tank temperature maintained at 22–24 °C, as well as amputating the caudal fin in a straight 
line using a sterile size 10 scalpel, proximal to the first lepidotrichia branching point to 
obtain an adult zebrafish wound model of type I diabetes bearing an average blood glu-
cose of more than 300 mg/dL, impaired caudal fin regeneration, accumulation of AGEs, 
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jection of STZ, and restore normal blood insulin and glucose control through pancreas 
regeneration, and obtain the metabolic memory (MM) fish, whose limb regeneration was 
still the same as the state of acute diabetes damage, even at 30, 60, 90 days, and this affects 
the genetic to daughter cells [11], as well as bnormal DNA methylation was also retained, 
but AGEs did not accumulate and ROS induced stress signals did not increase. In conclu-
sion, restoring physiologically normal glycemic control may not save altered target tissue 
from diabetes-induced changes [94]. Microarray transcript analysis was also performed 
applying this model and revealed abnormal expression of the following genes in T0: (1) 
developmental transcription factors (such as SOX3, emx2, dlx4a, etc.), (2) DNA modifica-
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Figure 4. Application of zebrafish and their larvae in diabetic wounds.
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4.1. STZ-Induced Caudal Fin Regeneration Model of Zebrafish with Type 1 Diabetes

Zebrafish respond efficiently and rapidly to streptozotocin (STZ) injection induced
diabetes, and hypercholesterolemia caused by high cholesterol diet (HCD)—associated with
a high risk of DFUs) Cho et al. [92] injected 30 µL 5 mM citrate buffer containing 0.3% STZ
into the subcutaneous tissue adjacent to the abdomen for eight consecutive days utilizing a
26-needle micro-syringe. Prior to that, they were given a 4% cholesterol high cholesterol
diet (HCD) for 4 weeks, consisting of normal diet (ND) alone group, ND+STZ group, HCD
alone group. and HCD+STZ group. Finally, patients were treated with Heberprot-P75®,
Easyef® (two commercial epidermal growth factor (EGF) products, intraperitoneal injection
of 10 µL, 50 µg/mL) and PBS on day 3, 5 and 7, respectively. As a result of treatment
with PBS in the ND+STZ and HCD+STZ groups, adult fish showed serious delays in
healing, as well as multiple cracks which is the typical damage pattern induced by STZ
injection in diabetic zebrafish on their caudal fins. However, no cracks appeared in the
HCD alone group [93]. Heberprot-P75® showed caudal fin regeneration activity 2.1 times
higher than Easyef® (ND+STZ group) and 1.7 and 1.5 times higher than the Easyef® group
and PBS group (HCD+STZ group) under the same injection and amputation regimen, with
more distinct and clean regeneration modes [93]. Intine et al. injected 0.35 mg/g of STZ
intraperitoneally for 1, 3, and 5 days and maintained the injection weekly with the tank
temperature maintained at 22–24 ◦C, as well as amputating the caudal fin in a straight line
using a sterile size 10 scalpel, proximal to the first lepidotrichia branching point to obtain an
adult zebrafish wound model of type I diabetes bearing an average blood glucose of more
than 300 mg/dL, impaired caudal fin regeneration, accumulation of AGEs, and epigenetic
changes including genome-wide demethylation. At 21 days to stop the injection of STZ,
and restore normal blood insulin and glucose control through pancreas regeneration, and
obtain the metabolic memory (MM) fish, whose limb regeneration was still the same as
the state of acute diabetes damage, even at 30, 60, 90 days, and this affects the genetic to
daughter cells [11], as well as bnormal DNA methylation was also retained, but AGEs did
not accumulate and ROS induced stress signals did not increase. In conclusion, restoring
physiologically normal glycemic control may not save altered target tissue from diabetes-
induced changes [94]. Microarray transcript analysis was also performed applying this
model and revealed abnormal expression of the following genes in T0: (1) developmental
transcription factors (such as SOX3, emx2, dlx4a, etc.), (2) DNA modification related genes
(DNMT1, apex1, MCM2, uhrf1, etc.), and (3) stress response/trauma repair genes (HSP70,
hspd1, MMP13, etc.). Some genes in the earliest stage of fin regeneration (T12) overlap with
genes that are abnormally expressed at the T0 time point (ets1a, mmp13, and inhbaa), while
there are others, namely: (1) development-related transcription factors such as homeobox
genes, (2) signal transduction molecules such as inhibin (inhbaa), EGF-like protein (hbegf )
and jag1b of notch pathway, and (3) ECM-related genes, For example, at MMP13, vcanb and
chst11, WNT ligand (wnt2) and a canonical wnt receptor (fzd9) are also found to change at
the T24 time point. A connective tissue growth factor (ctgf ) was down-regulated (−1.8 in
diabetes mellitus (DM) and –1.7 in MM) and FGF10a was up-regulated. At T48, BMP
inhibitor bambi and the notch inhibitor lunatic fringe (lfng) were up-regulated (8.6 fold
in DM and 1.7 fold in MM). The range of gene expression change in the DM state was
almost always significantly greater than that in the MM state—mean multiples change
of up-regulated genes: 7.0 (DM): 2.0 (MM), mean multiples change of down-regulated
genes: 2.4 (DM): 1.9 (MM)—but altered expression in the MM state was still sufficient
to alter normal signaling pathways. In addition, CpG islands were identified for 61 of
the 71 genes with abnormal expression associated with DNA methylation, and seven of
them were found to have at least a two-fold reduction in methylation status within their
promoter region. In the follow-up study of Sarras et al., the Tg (fli1a:nEGPF) zebrafish
line20 was used to monitor in vivo angiogenesis. The wound angiogenesis induced by
hyperglycemia was impaired in adult zebrafish, and this damage continued even after the
fish returned to normal blood glucose state. Inhibition of poly (ADP-ribose) polymerase
(PARP) activity can effectively prevent demethylation events and prevent angiogenesis
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defects [94,95]. Thus, this model has the following attributes: avoids the complex peaks
and troughs of glycemic control that might occur in animals requiring exogenous insulin in
terms of examining metabolic memory; eliminates background stimuli of the prior diabetic
state and examines the pure epigenetic factors of metabolic memory; only takes about 80
days from diabetes induction to metabolic memory examination; allows easy genetic and
experimental manipulation; allows for future drug discovery [11,71]. At the same time,
it was shown that high blood glucose did not seem to result in an increase in cell death,
but reduced the proliferative ability of regenerated limbs with a similar treatment [96].
Another study applying transgenic zebrafish Tg (fli1:EGFP) demonstrated an increase in
the percentage of GFP-positive endothelial cells accumulated at the S and G2/M stages
after treatment of simplified 2-herb formula (NF3) embryos, a significant increase in the
mRNA of VEGF, VEGFR2 (Flk-1), fgf1 and bRaf expression levels, and an upregulation trend
of VEGFR1 (Flt-1), fgfr2, cpl2 and mknk2b expression, which provides a scientific basis to
support NF3 as a potential therapy for the treatment of DFU [97].

4.2. Caudal Fin Model of Type II Diabetes in Adult Zebrafish Induced by Alloxan and Glucose
Combined with Aqueous Solution Exposure

Aquaporin (AQP) and GLUT1, both present in the gill and skin epithelium, are thought
to be responsible for the production of HG zebrafish following the application of alloxan
and glucose in water. Wibowo et al. combined 0.4% Alloxan and glucose (E-Merck) %
solution, and placed adult zebrafish aged from 3 to 6 months in 100 mL Alloxan solution
for 1 h a day for 5 days, and then transferred 2L 2% glucose solution for 24 h for 6 days, as
well as amputating using a lancet (Aesculap Scalpel Handle No. 3 and Aesculap Scalpel
Blade No. 10 of B BRAUN) at the first or the second segment below the level of the first
ray bifurcation. The expressions of shha, igf2a, bmp2b, and col1a2 were down-regulated in
the experimental group, which may be related to the glucose metabolism inducing the
generation of superoxide or ROS, the inhibition of GAPDH, the accumulation of methyl
glyoxal, and the disruption of hypoxia inducible factor-1α transcription factor stability,
leading to the transcriptional inhibition of some of the above target genes. The percentage
of caudal fin regeneration and the expression of shha, igf2a, bmp2b, and col1a2 were increased
after treatment with 15 ppm propolis ethanol extract [98].

4.3. Caudal Fin Regeneration Model of Zebrafish Juvenile Type II Diabetes Induced by Single
Immersion or Injection of Glucose

With zebrafish, each process can be studied separately, which allows us to observe
wound healing more directly. Morris et al. studied the wound model of hyperglycemic trans-
genic Tg (mfap4:turquoise)xt27 induced by immersion (5% glucose) and injection (15 nmol).
Macrophages of transgenic Tg (mfap4:turquoise)xt27 juveniles were labeled with turquoise
fluorescent protein, neutrophils of Tg (lyzC:DsRed)nz50 juveniles were labeled with DsRed
fluorescent protein, and reduced neutrophils were found in the juveniles injected with
glucose. That is, innate immune cell development is affected. Tg (itga2b:gfp)LA2 juvenile
tail fin transection was observed to stop bleeding, while injection and immersion showed
reduced platelet accumulation. At the same time, the accumulation of fibrin was reduced by
using Tg (fabp10a:fgb-gfp)mi4001, which expresses fluorescently tagged fibrinogen and allows
visualization of clots. Finally, the infusion of glucose at 0 day post fertilization (dpf) and the
feeding of a HFD at 5 dpf found a significant acceleration of lipid accumulation after only
one day of feeding, providing a more rapid model for studying lipid accumulation [99].

Besides the above-mentioned diabetes peripheral neuropathy caused by the adverse
effects of wound healing, there was the application of the zebrafish larvae percutaneous
absorption ability to extend the study of high blood glucose. D-glucose treatment for five
days in 60 mM, axon desquamation, neural glial sheath surrounding obstacles, sports
axon myelin formation decreases, sensory neuron localization error [100], that provide a
new research model for in-depth understanding of peripheral nerve structural changes
following induction of hyperglycemia and for applying therapeutic measures to provide
joint solutions for the healing of diabetic wounds.
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4.4. Skin Wound Model of Adult Zebrafish Type I Diabetes Induced by STZ Injection

The full-layer wound healing mechanism of zebrafish is very similar to that of humans.
On the one hand, in the embryonic and larval stages, the skin of zebrafish is already
composed of the outer layer of peritrind, the middle layer of epidermis, and the basal
layer attached to the basal membrane. In the process of metamorphosis on the 25th day
after fertilization, multiple layers of epidermis are formed. At the same time, fibroblasts
penetrate the dermis and take over collagen produced by basal keratinocytes to form locally
thickened dermal papilla and scale, which is very similar to human skin structure. On the
other hand, skin healing of zebrafish involves activation of signal transduction pathways
downstream of hydrogen peroxide, including epidermal growth factor EGF, forkhead
box-1, and IkappaB kinase-alpha. EGF regulates TGF-β through ERK1/2 and EGFR signal
transduction. Damaged cells bind to EGFR to trigger cascades (such as TGF-β/integrin
and ROCK/JNK pathways) to induce DNA synthesis and cell proliferation at the wound
site. In addition, Wnt/β-catenin is upregulated to promote healing. These pathways all
overlap with human wound-healing mechanisms [83], so the research object of wound
healing based on zebrafish skin is increasingly extensive. Laser has been used to form a
single wound on the side of zebrafish for drug screening, and the method of soaking and
exposing to vibrio parahaemolyticus and mycobacterium marine infection on the back
after skin bruising has been used to establish a chronic wound model to study the healing
mechanism [101–103]. At the same time, combined with the characteristics of delayed
wound healing in zebrafish after diabetes similar to that in humans [83], the zebrafish skin
diabetic wound model will be a promising research model in the future. A circular wound
with a diameter of 1 mm was created on the posterior lateral side of the body wall of the
proximal tail fin of zebrafish with induced diabetes by a skin biopsy needle. Comparing the
remaining open wound area (24 h after injury) with the original wound area, it was proved
that the wound healing speed of DM zebrafish was slower than that of normal zebrafish.
This reduction remained the same in 60-day MM fish. These data clearly indicate that
skin wound healing remains impaired and affected by MM after glycemic homeostasis is
achieved [71]. In the field of diabetic wounds, however, the application of the zebrafish skin
model is still in its infancy. Future studies focusing on this modeling method will provide a
great basis and convenience for the mechanism exploration of diabetic wounds and drug
screening. In conclusion, the zebrafish diabetic wound model has been widely applied, and
it will be very promising to conduct in-depth research on pathological mechanisms and
drug screening and evaluation through this model in the future.

5. Challenge and Improving Strategies

Diabetic zebrafish are currently constructed primarily through water-soluble exposure
and injection (Figure 5). Modeling with this method may lead to irreversible damage,
abnormal swimming and gill function, or even death for zebrafish because of their limited
tolerance [104–106]. Wang Lei et al. incubated 20 g fairy shrimp eggs in a 2 L incubator
(1.5 L DDH2O, 8 g salt for incubation), and added 500 mL 80% glucose 16 h later to ensure
a final concentration of 20%, as well as collecting the fairy shrimp after 24 h of incubation,
rinsed them twice with DDH2O, immediately placed them in liquid nitrogen, and then
freeze-dried them for 36–48 h. Finally, high-glucose fairy shrimp were obtained. The high
glucose fairy shrimp were fed 40 g/kg every day, and a diabetic zebrafish model with
100% survival rate was established [107]. As well, despite the convenience of water-soluble
exposure, glucose and drugs will not be effectively absorbed quantitatively. In addition, the
physical and physiological characteristics of the drugs themselves may also adversely affect
the skin of zebrafish, causing inflammatory damage, for instance [108]. Thus, zebrafish
gavage is considered an effective method in the future for quantifying experimental doses
of zebrafish [109].

At the same time, current zebrafish diabetic wound research focuses on caudal fin
regeneration. This method, however, is difficult for observation of the reconstructed
structure (epidermis and dermis) in a more detailed way under the microscopic field of
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view, which is unfavorable to the restoration of the human skin repair process. Much
literature has been reported through the application of laser full-thickness wounds that
can be quickly and reproducibly introduced on the flank of adult zebrafish [39,110,111].
In addition to simulating wound healing to the greatest extent possible, this model is
a great choice for studying diabetic wounds in zebrafish, since it could be utilized not
only to study wound healing, but also evaluate fibroblast and keratinocyte growth and
ECM reconstruction utilizing H&E staining and other methods [103]. Importantly, the size,
diameter, and depth of the wound established by mechanical equipment can be carefully
controlled, which is extremely advantageous for the study of screening specific drugs with
different degrees of injury [39].
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6. Conclusions

Delayed wound healing induced by diabetes results in a heavy burden on patients
physically, mentally, and economically. To discover specific drugs with excellent efficacy,
it is essential to investigate the specific mechanism behind the delayed feature utilizing
appropriate preclinical research models. Zebrafish are characterized by high throughput,
small ethical disputes, larval body transparency, quick development, fast and efficient
establishment of a model of diabetes, convenient caudal fin regeneration of wound repair
evaluation, and are the height of human gene homology, etc. In addition, quantitative
gavage and feeding shrimp with high glucose can solve restrictions such as water-soluble
exposure and potential damage by injection. Zebrafish will become an ideal model for dia-
betic wound model organisms in the future, bringing a new dawn for the screening of rapid
healing treatment for diabetic wounds and the exploration of the underlying mechanism.
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Abbreviations

AGEs Advanced glycation endproducts
AQP Aquaporin
BMI Body mass index
DFUs Diabetic foot ulcers
hpa Hours-post-amputation
dpf Day post fertilization
DM Diabetes mellitus
DNMTs DNA methyl transferases
EGF Epidermal growth factor
ECM Extracellular matrix
FGFs Fibroblast growth factors
HSPs Heat shock proteins
HCD High cholesterol diet
HFD High fat diet
iNOS Inducible nitricoxidesynthase
IGF-1 Insulin-like growth factors-1
MIF Macrophagemigration inhibitory factor
MIP Macrophage inflammatory protein
MMPs Matrix metallo proteinases
MM Metabolic memory
NETs Neutrophil extracellular traps
ND Normal diet
PARP Poly (ADP-ribose) polymerase
ROS Reactive oxygen species
STAT3 Signal transducer and activator of transcription 3
STZ Streptozotocin
TIMP-1 Tissue inhibitor of matrixmetallo proteinase-1
TLRs Toll-like receptors
TGF-β Transforming growth factor-beta
VEGF Vascular endothelial growth factor
VEGFR-2 VEGF receptor-2
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