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Abstract: Neurodegenerative diseases such as Parkinson’s disease affect motor symptoms with
abnormally increased or reduced movements. Symptoms such as tremor and hand movement
disorders can be subtle and vary daily such that the actual condition of the disease may not fully
present in clinical sessions. Health examination and monitoring, if available in the living space, can
capture comprehensive and quantitative information about a patient’s motor symptoms, allowing
physicians to make a precise diagnosis and devise a more personalized treatment. WiFi-based sensing
is a potential solution for passively detecting human motion in a contactless way that collects no
personally identifiable information. This study proposed an approach for human micromotion
detection using the WiFi channel state information, which can be realized in a regular-sized room
for home health monitoring and examination. Three types of motion were tested to evaluate the
proposed method in quantifying micromotion using single and multiple WiFi links. The results show
that micromotion could be captured at all distributed locations in the experimental environment
(4.2 m × 7.9 m). Our computer algorithm computed the frequency and duration of simulated hand
tremors with an average accuracy of 90.9% (single WiFi link)—95.7% (multiple WiFi links).

Keywords: channel state information; wireless sensor networks; health monitoring; motion detection;
movement disorders

1. Introduction

In the last two decades, wireless technology has achieved significant success in data
communication. Currently, WiFi connections exist in every houses due to their low cost and
easy-to-set-up features, which also make wireless sensing using commodity WiFi devices
a popular research field. In the past few years, human motion detection technologies
using WiFi have been developed for indoor applications, such as localization/tracking [1],
walking speed estimation [2], identity recognition [3], activity recognition [4], and fall
detection [5].

Neurodegenerative diseases such as Parkinson’s disease (PD) are a progressive disease
where patients’ motor symptoms develop slowly. As the global population ages, the preva-
lence of diseases is rapidly increasing. Unfortunately, there is no cure for the disease,
and patients can only relieve symptoms and get back into the rhythm of life by taking
drugs. Precise medication is critical to disease management but requires a comprehensive
evaluation of the patient’s condition. However, assessing the motor functions of patients
relies on the physician’s experience and subjective judgment; still, the disease’s actual
condition may not be fully present during clinical examination due to the motor fluctuation
or symptom variation in a day. Therefore, health monitoring is needed to detect motor
symptoms and provide quantitative data.
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At present, research on quantifying motor symptoms of PD mainly uses wearable de-
vices and computer-vision-based methods. Sensing motion via wearable devices [6–8] has
been well-established and is widely used owing to their high accuracy and low cost. How-
ever, wearing a device for long-term monitoring can be inconvenient or cause discomfort [9].
Patients should also be willing to wear such a device at any time. Although computer-
vision-based systems [10,11] can be device-free, the patient’s privacy is compromised as
recorded images need to contain facial and body features. Video filming is also restricted
by its hardware capability and environmental settings [12]. WiFi-based sensing can be both
device-free and private. Owing to the maturity of WiFi technology and its high-resolution
signal transmission, WiFi channel state information (CSI) has shown high potential for
developing wireless sensor networks [13–15]. Furthermore, the model-based WiFi CSI sens-
ing methods establish a mathematical relationship between the target motion and signal
fluctuations, which enhances data collection stability and environmental adaptability [16].

The main contribution of this paper is the realization and evaluation of the WiFi-based
detection of micromotion related to PD symptoms. Abnormal gait, bradykinesia, and hand-
resting tremor are typical symptoms of PD [17]. As studies have shown the capability of
WiFi CSI in detecting walking [1,2,18], we target hand symptoms, including tremor and
finger tapping, commonly observed/tested in the clinical examination. By taking advantage
of WiFi sensing, which is contactless, not sensitive to lighting conditions, and easy to deploy,
we aim to develop an assessment tool that can collect quantitative information on symptoms
for physicians to make more accurate diagnoses.

2. Related Works

Micromotion detection for health monitoring is a popular research topic. Existing
technologies are developed based on wearable- and smart-device-based computer vision
algorithms and wireless signal-based methods.

2.1. Wearable and Smart Devices

Wearable devices such as accelerometers [7,19], gyroscopes [20], and force-sensitive
resistors [6] are widely used owing to their low cost and high measurement accuracy.
An increasing number of studies use commercial off-the-shelf products such as Wii® Balance
Board [8], iPhone [21], and smart watches [22] because of their accessibility. However,
the device usually requires direct contact with the body for measurement, which can cause
inconvenience, discomfort, and skin allergy [23], particularly in aged patients.

2.2. Computer-Vision-Based Methods

With the advancement of image processing techniques, quantifying motor symptoms
based on computer vision has become increasingly popular [24–26]. Micromotion can be
captured and quantified from the footage recorded to acquire relevant patient informa-
tion [24,25]. However, the accuracy of these methods is extremely sensitive to lighting con-
ditions [12]. Moreover, these methods typically require external objects (checkerboards [27],
markers [28] on the body, etc. [29]) during video filming to achieve micromotion mea-
surements. The privacy of the patient is another concern. Filming videos can capture
personally identifiable information of a patient, such as facial and body features. In addi-
tion, professional assistance would be required to set up a computer-vision-based method
at home.

2.3. Wireless-Signal-Based Methods

Non-contact wireless sensor networks include ultrasound [30], infrared (IR) [31],
and radio frequency (RF) [32]. RF methods can be subdivided into frequency modulation
(FM) [33], ultra-wide band (UWB) [34], WiFi received signal strength indication (RSSI) [35],
and WiFi CSI [36]. The two WiFi-based methods (i.e., via RSSI and CSI) have low deploy-
ment costs, as their infrastructure exists in almost every home today. More importantly, no
device needs to be worn by the target person, and no personally identifiable information
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is acquired. Compared to RSSI, CSI can provide better granular information, leading to a
higher resolution of captured data.

The CSI tool for 802.11n NIC Intel 5300 was released in 2010 [37]. From that time, CSI
has been widely used for environmental detection and human activity recognition, includ-
ing large-scale movement (e.g., daily activities [38], falling [5], localization [39], and human
identification [40]) and subtle scale motion (e.g., gestures [41], shape of mouth [42], chewing
and swallowing [43], and breathing [44]).

Establishing a relationship between movements and CSI is the key to motion quantifi-
cation. In the early development of CSI-related research, pattern-based sensing methods [1]
were mostly used. For activity recognition, the pattern-based method collects CSI data,
extracts distinctive features of a target motion, and classifies activity types via manual anal-
ysis [5], machine learning, or deep learning methods [45]. However, these types of methods
lack adaptability to different environments, which means that the same algorithm may not
be applicable with changing environmental configurations. Consequently, researchers have
begun to develop model-based sensing methods that aim to interpret the mathematical
relationship between motion and signal fluctuations using a physical model; for example,
the Fresnel zone [46], angle of arrival (AOA) [47], CSI speed model [48], and CSI activ-
ity model [48]. To date, very few studies have investigated the quantification of motor
symptoms in Parkinson’s disease using WiFi CSI-based methods. Some pattern-based
sensing methods have been developed to study the freezing of gait [49] and pill-rolling
tremors [50]. However, no model-based method has thus far been found to quantify any of
these motor symptoms.

This paper proposes a WiFi-based method that utilizes the CSI and Fresnel zone
theory to quantify the most typical hand motor symptoms in PD, including resting tremor
and finger tapping, in Parkinson’s disease. The algorithm processes raw CSI data and
eliminates environmental interference to the signal, allowing the subtle motion to be
detected throughout the experimental environment. We also designed experiments in a
room with WiFi signal coverage to demonstrate the symmetric properties of single and
multiple Fresnel zones, which were used to derive the contour of the detection accuracy.
Finally, both settings of single and multiple WiFi links were evaluated to further our
understanding of the WiFi CSI sensing ability. The strategy for using multiple WiFi links in
a larger room was also discussed, moving the technology closer to a realistic application.

3. Materials and Methods
3.1. Overview

In this study, the physical layer CSI was utilized as a primary indicator for human
motion. When a WiFi signal propagates along multiple paths in an environment, a moving
target would affect a fraction of propagation paths and be depicted by CSI variations. We
considered symptoms related to hand movement as target motion and hypothesized that
such movement would cause temporal variations in CSI, which can be collected from
commodity WiFi devices.

To describe the basic model of CSI [48], the wireless channel in the frequency domain
should be defined first:

Y = H× X + N (1)

where H is the channel matrix of CSI; Y and X are the received and transmitted signal
vectors, respectively; N is an additive white Gaussian noise vector. Therefore,

H(i) = |H(i)|ejsin∠H(i) (2)

where H(i) represents the value of CSI for the i-th subcarrier and |H(i)| and ∠H(i) are the
amplitude and phase of the i-th subcarrier.

The proposed method detects the variations in CSI amplitude, phase, and phase
difference to quantify the target motion. The method was evaluated by four scenarios for
the basic signal selection, directional effect of motion, and sensing accuracy.
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3.2. Data Processing

We set up WiFi devices to collect CSI data when target motion was performed. The ex-
perimental settings and WiFi device configurations are explained in Section 3.4.1 and
Section 3.4.2, respectively. The collected CSI data were processed through several proce-
dures, as shown in Figure 1.

Figure 1. The proposed CSI data processing procedures.

Firstly, given an input raw CSI sequence P of amplitude, phase, or phase difference,
we performed Z-score normalization to obtain P′, as shown in Equation (3), where P̄ and σ
are the average and standard deviation of P, respectively.

P′ =
P− P̄

σ
(3)

We then used a third-order Butterworth filter [51] to remove undesired noise, which
could be due to the environment or hardware, from the normalized CSI sequence. A lower
cutoff frequency, fl , of 3 Hz and a higher cutoff frequency, fh, of 6 Hz [52] were used for
processing the resting tremor test data. The test data of steel ruler vibration and finger
tapping were processed by cutoff frequencies of [1, 10] Hz. The transfer function of the
third-order Butterworth bandpass filter is shown in Equation (4), where coefficients ai and
bi are determined by selected filtering parameters, including polynomial order and cutoff
frequencies. After filtering, the output CSI sequence A can be obtained (Equation (5)).

G(z) =
∑2n

i=0 bi · z−i

∑2n
i=0 ai · z−i

(4)

A(z) = P′(z) · G(z) (5)

Secondly, we performed principal component analysis (PCA) [48] to find the best
presentation of signal response to the target motion. The reason for this step was that
the CSI contained data in 180 subcarriers (this is explained in Section 3.4.1), but only
some of them provided useful information related to the target motion. Singular value
decomposition (Equation (6)) was used to decompose A into the principal components V,
and the best principal component V∗ was determined as the one with the largest variation in
the normalized amplitude of the data. Another normalization was applied to V∗ to yield V′∗

A = UΣVT (6)

Thirdly, the short-time energy threshold segmentation [53] was used to distinguish
between the active and rest states, as shown in Equation (7), where E represents energy of
the input data series (i.e., V′∗), w(n−m) is the window, n is the sample that the analysis
window is centered on, and N is the window length (set as 51 in this study). A sample
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result of energy calculation is illustrated in Figure 2, showing that the active state can be
easily identified from the energy plot by a basic thresholding technique to obtain the data
segment of the target motion (VW).

En =
n

∑
m=n−N+1

[V′∗(m)w(n−m)]2 (7)

Figure 2. A sample of CSI sequence and calculated energy.

Finally, a third-order Savitzky–Golay filter [54] with a window length of 101 was
used to smooth the data and remove fake peaks. The parameters of the Savitzky–Golay
filter were determined by experiments. We first confirmed that the third-order filter would
properly smooth out the data while best preserving true peaks. Then, four different window
lengths, 51, 101, 151, and 201, were evaluated. Within the range of these values, the results
showed that both window lengths 51 and 101 achieved the best accuracy. The accuracy
decreased when the window length increased from 101 to 201, and the decrease was 8%
when the window length reached 201. The equation of the third-order Savitzky–Golay
filtering is shown in Equation (8), where j is the index number of the input and output data
sequences (VW and Q), and the convolution coefficients, Ci, are determined by a given set
of polynomial order and window length m.

Q(j) =

1+m
2

∑
i= 1−m

2

CiVWj+i (8)

An input CSI sequence contained 20-s data in 180 subcarriers with a sampling rate of
1000 Hz (the details are explained in Section 3.4.1). The size of the output sequence in the
data processing remained the same until the segmentation (see Figure 1). The size of the
output sequence in the segmentation step, VW , depended on the start and end locations
identified for the target motion. The VW was then smoothed, and the output sequence
length was the same as VW . Table 1 shows a summary of all parameters used in the CSI
data processing.
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Table 1. Parameters used in the CSI data processing procedures for quantifying micromotion.

Data Processing Procedure Parameter

Butterworth filter

Finger tapping:
n = 3
fl = 1 Hz, fh = 10 Hz
b = [2.1378, 0, −6.4133, 0, 6.4133, 0, −2.1378] × 10−5

a = [1, −5.8858, 14.4363, −18.8875, 13.9021, −5.4582, 0.8931]
Rest tremor:
n = 3
fl = 3 Hz, fh = 6 Hz
b = [0.8216, 0, −2.4648, 0, 2.4659, 0, −0.8216] × 10−6

a = [1, −5.9602, 14.8038, −19.6133, 14.6189, −5.8123, 0.9630]

Short-time energy threshold segmentation N = 51

Savitzky–Golay smoothing filter n = 3
m = 101

3.3. Motion Quantification

The processed data would contain enhanced signal responses to the motion such
that the wave pattern induced by the hand movements or ruler vibration could be easily
identified. Thus, the movement quantity of motion, i.e., numbers of vibrations, finger taps,
and tremors, in a piece of recorded data could be computed from the number of wave
crests. The duration and frequency could also be calculated.

It is crucial to correctly identify peaks in the CSI sequence corresponding to the
motion. To ensure consistent and accurate quantification results, our method used three
main criteria for finding peaks: minimum separation between peaks, minimum peak
height, and minimum peak prominence. The minimum separation is the most important
criterion for excluding fake peaks that occur in too small intervals, which can be determined
according to the frequency range of the target motion and WiFi sampling rate. For example,
the upper frequencies of finger tapping and resting tremor were 10 and 6 Hz in our tests
(Table 1), and the sampling rate was 1000 Hz; therefore, the minimum separation was
calculated to be 100 data points for finger tapping and 166 data points for resting tremor.

Peaks that satisfy the minimum separation could still be fake ones, which occasionally
appear in the static status due to environmental noise. The minimum peak height and peak
prominence were used to avoid finding those fake peaks. The former eliminates extremely
low peaks; the latter measures how much a peak stands out due to its intrinsic height and
location relative to other peaks. By observing those peaks caused by the environmental
noise in the collected data, we set the minimum peak height as 0.2 max(Q) and the minimum
peak prominence as 0.3 max(Q). These empirically determined parameters helped to
improve the peak finding accuracy by 3–5% compared to the cases that only used the
minimum separation. With all criteria, although there were still true/fake peaks identified
incorrectly, the error rate of motion quantification was within 7% compared to the reference
data (explained in Section 3.4.2) for the most challenging case (resting tremor).

3.4. Experiments and Evaluation
3.4.1. Experimental Setup

Experiments were conducted using the Linux 802.11n CSI Tool [37] with commodity
devices, including a TP-link Archer C60 wireless router as transmitter (Tx) and a Dell E6440
laptop as receiver (Rx). The network interface controller operated at a 5 GHz frequency band
with a transmission rate of 1000 Hz. There were three antennas on Rx and two antennas
on Tx to obtain up to six CSI streams, and each stream contained 30 subcarriers. They all
record the environmental information. The experimental environment was an enclosed
university discussion room (4.2 m × 7.9 m) with existing desks and chairs (Figure 3).
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Figure 3. The university discussion room where the experiments were conducted. The photo
shows the experimental setting of a single WiFi link. The Tx and Rx are placed on separate desks
(0.75 m high).

3.4.2. Evaluation and Verification

The proposed method was evaluated using three types of motion: steel ruler vibration,
finger tapping, and resting tremor (Figure 4). The steel ruler vibration (Figure 4a) was used
to evaluate the sensing capability as gradual attenuation of motion is produced by the
damping oscillation of a cantilever beam. The ruler was given a 10 cm initial displacement
at the free end and released to vibrate until it returned to the static condition. The finger
tapping (Figure 4b) required a person, following the metronome sound, to tap the tip
of the index finger against the tip of the thumb using the right hand at a frequency of
approximately 1 Hz. The measured range of finger displacements was approximately
8 cm. To mimic the resting tremor (Figure 4c), a person’s palm moves back and forth about
the axis of the arm by rotating the wrist with random frequencies in the range of 3–6 Hz
(similar to the resting tremor of PD [52]) and a hand fluctuation of approximately 8–10 cm
radially. The total duration of each test was approximately 20 s. For the steel ruler vibration,
the ruler was stationary for the first 5 s and then was released to start the motion in the
6th second. For finger tapping and resting tremor, the person’s hand stayed stationary for
the first 5 s and started to move from the 6th second for 10 s. By default, a single WiFi link
was used, and the target motion took place 1 m away from the midpoint of the line of sight
(LoS) and as high as the Tx-Rx height (0.75 m).

(a) (b) (c)

(d) (e)

Figure 4. Experimental deployment of the three types of motion, including steel ruler vibration,
finger tapping, and hand resting tremor. (a) The steel ruler vibration perpendicular to LoS. (b) The
finger tapping perpendicular to LoS. (c) Hand resting tremor. (d) The steel ruler vibration parallel
to LoS. (e) The finger tapping parallel to LoS.
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Understanding the characteristics of target motion would help to capture correct wave
peaks in the signal and avoid false ones. The frequency and duration of the three types of
motion were described in Table 2, as these two parameters were of interest in this study.
The information was used to confirm that the signal of motion was received correctly; more
specifically, it was used to determine the minimum separation for identifying fake peaks.

Table 2. Descriptions of the three types of motion and features expected to see in their signals.

Target Motion Characteristics of Motion

Steel Ruler Vibration

The ruler with a sensor (MetaMotionC, MBIENTLAB Inc., San Francisco,
CA, USA) attached to one end oscillates with a 10 cm initial

displacement and decreases its amplitude over time until it returns to
the static condition. The signal of motion is a sine wave that gradually

decays until the motion becomes too small to be detectable.
The frequency of oscillation measured by the sensor was 3.46 Hz.

Finger Tapping

A person repeatedly taps the tip of the index finger against the tip of the
thumb at approximately 1 Hz. The signal of motion shows a strong

impulse at each tap, but lower responses during the movements
of fingers.

Hand Resting Tremor

A person moves the palm back and forth about the axis of the arm by
rotating the wrist with random frequencies in the range of 3–6 Hz.

The signal of motion is similar to oscillations with irregular intervals.
The signal strength should be higher than finger tapping as the motion

is larger.

The proposed method was evaluated in the following four scenarios.

a. Determine the basic signal for motion analysis: For the experimental deployment
shown in Figure 4a–c, we examined the responses of basic signals, such as amplitude,
phase, and phase difference, to determine which best captured the target motion.
This scenario used the default settings, i.e., the target motion took place 1 m away
from the midpoint of the LoS and was detected by a single WiFi link.

b. Understand the directional effect of motion: We changed the direction of motion
to be parallel to the LoS of the WiFi link (in such a case, the CSI variation would
be minimal according to the Fresnel zone theory) and evaluated the sensing perfor-
mance (Figure 4d,e). No change in the direction of motion was necessary for the
resting tremor test as it involved motion in all directions. This scenario also used the
default settings.

c. Evaluate the sensing accuracy of a single WiFi link: With a single WiFi link ar-
ranged as in Figure 5, a healthy person, the only one in the room, imitated the hand
resting tremor. By defining the midpoint of the LoS as the origin, the target mo-
tion was performed at 34 experimental points (gray dots) spread over the left-hand
side of the room. These points were arranged on a square grid with a 1 m interval.
The impact of X and Y distances between the location of motion and the origin on the
sensing accuracy was studied. The results were used to establish a sensing accuracy
model on the left-hand side of the room, which could be mapped to the other side of
the room based on the symmetric property of the Fresnel zone (about the centerline
of the LoS). To verify that, additional tests were performed at seven validation points
(black dots) on the right-hand side of the room, and the results were compared with
those obtained by the symmetric mapping. The test was repeated eight times at each
experimental/validation point.

d. Evaluate the sensing accuracy of multiple WiFi links: Similar to the scenario that
evaluated a single WiFi link, the arrangement of WiFi devices changed to one Rx
and three Txs at the four corners of the room (Figure 6). With the origin defined at
the same position in the room, the target motion was performed at 16 experimental
points (gray dots) spread over the lower-left triangle area of the room. Again, based
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on the symmetric property of the Fresnel zone, we created a sensing accuracy contour
over the entire room by mapping the accuracy model of the lower-left triangle area
to the upper-right triangle area. For verification purposes, additional tests were
performed at six validation points (black dots) in the upper-right triangle area, and the
results were compared with those obtained by the symmetric mapping. The test was
performed eight times at each experimental/validation point.

Figure 5. Experimental deployment for detecting the resting tremor using a single WiFi link.

Figure 6. Experimental deployment for detecting the resting tremor using a transmitter paired with
multiple receivers.

The detailed experimental settings and types of motion used in each scenario are
summarized in Table 3.
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Table 3. Detailed experimental settings and types of target motion used in each scenario.

a b c d

Tx-Rx arrangement Single link Single link Single link Multiple links

Tx/Rx (no. of devices, no. of
antennas for each device) (1,2)/(1,3) (1,2)/(1,3) (1,2)/(1,3) (1,2)/(3,1)

Carrier frequency 5 GHz 5 GHz 5 GHz 5 GHz

Bandwidth 20 MHz 20 MHz 20 MHz 20 MHz

Sampling rate 1000 Hz 1000 Hz 1000 Hz 1000 Hz

Number of CSI streams 6 6 6 6

Number of CSI subcarrier per
stream 30 30 30 30

Transmit/Receive mode Receive mode Receive mode Receive mode Receive mode

Target motion RV, FT, RT
Figure 4a–c

RV, FT
Figure 4a,b,d,e

RT
Figure 4c

RT
Figure 4c

Distance between target
motion and LoS 1 m 1 m X: 0–4 m,Y: 0–6 m X: 0–4 m,Y: 0–6 m

Length for each data sequence
of motion 20 s 20 s 20 s 20 s

Number of data samples in
each sequence of motion 1000 × 20 1000 × 20 1000 × 20 1000 × 20

Number of data sequences
collected for each type of target

motion
8 8 8 8

RV: steel ruler vibration, FT: finger tapping, RT: hand-resting tremor.

In all tests, a wearable sensor with a six-axis accelerometer and gyroscope (MetaMo-
tionC, MBIENTLAB Inc., San Francisco, CA, USA) was simultaneously used to capture
reference data at a sampling rate of 200 Hz. The sensor was attached to the free end of the
steel ruler to detect the vibration. For resting tremor, the person who performed the task
wore the sensor on the wrist. The sensor was not used in the finger-tapping test as the
person already followed the metronome sound at 1 Hz. The reference data served as the
basis of comparison for evaluating the accuracy of our WiFi-based sensing in terms of the
frequency and duration of motion. A sample reference data collected from a resting tremor
test is shown in Figure 7.

Figure 7. A sample reference data collected from a resting tremor test. The red circles indicate peaks
in the data identified by our algorithm and are used to count the number of movements.
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The absolute error was defined as the discrepancy between the frequency/duration of
motion quantified using the CSI data, q, and that quantified using the sensor measurements,
g. Therefore, the error percentage could be calculated by:

e =
1
N

N

∑
i=1

|qi − gi|
gi

× 100%, (9)

where N is the number of repetitions for a test item. The accuracy would be 1− e.

4. Results
4.1. Scenario a: Best Basic Signal for Motion Analysis

All basic signals, including amplitude, phase, and phase difference, clearly captured
the effects of steel ruler vibration, finger tapping, and resting tremor (Figure 8). These
results were further compared with the reference data. In the steel ruler vibration, the CSI
amplitude (Figure 8a) response calculated the number of vibrations with an accuracy of
96.2%, whereas the CSI phase (Figure 8b) and phase difference (Figure 8c) estimated with
100% accuracy. Regarding the finger tapping, all three basic signals perfectly captured the
same number of taps as those detected in the reference data. The amplitude (Figure 8d),
phase (Figure 8e), and phase difference (Figure 8f) data estimated the duration of motion
with 98.7%, 95.6%, and 95.3% accuracy, respectively. In resting tremors, the accuracy of
detecting the number of movements was 91.7% using either amplitude (Figure 8g) or
phase difference data (Figure 8i), and 79.2% using phase data (Figure 8h). Furthermore,
the accuracy of duration estimation was 97.3%, 99.9%, and 91.7% using amplitude, phase,
and phase difference, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. The processed CSI data of target motion from the three types of basic signals. The red
circles indicate peaks in the data identified by our algorithm and are used to count the number
of movements. (a) Steel ruler vibration—amplitude. (b) Steel ruler vibration—phase. (c) Steel ruler
vibration—phase difference. (d) Finger tapping—amplitude. (e) Finger tapping—phase. (f) Finger
tapping—phase difference. (g) Resting tremor—amplitude. (h) Resting tremor—phase. (i) Resting
tremor—phase difference.

The amplitude is a directly extracted measure of CSI, which is the most used basic
signal. The CSI amplitude represents the decay of the signal strength caused by the multi-
path effect. The CSI phase also records changes in the wireless signal to reflect activities
that occur in the environment. However, issues such as the carrier frequency offset and
sampling carrier frequency offset occurred because of force majeure [55]. The CSI phase
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difference contains information between adjacent antennas. Both phase and phase differ-
ences must be sanitized before signal processing. Our results showed that the amplitude,
phase, and phase difference could effectively sense steel ruler vibration, finger tapping,
and resting tremor with satisfactory accuracy in motion quantification. Therefore, we used
the CSI amplitude for motion quantification in the remaining experiments to optimize the
computational efficiency and sensing accuracy.

4.2. Scenario b: Directional Effect of Motion

Using the variation in the CSI amplitude, the directional effect of motion was investi-
gated by comparing the sensing performance in the five experimental settings shown in
Figure 4. For steel ruler vibration, the accuracy of frequency estimation was 96.2% when
the motion was perpendicular to the LoS (Figure 8a) and was 86.4% for the parallel case
(Figure 9a). As for finger tapping, the number of taps could only be counted correctly
when the direction of motion was perpendicular to the LoS, with an accuracy of duration
estimation of 98.7% (Figure 8d). When the direction of motion was parallel to the LoS,
the CSI variation became much smaller (Figure 9b), making it difficult to quantify the
number of taps. Our algorithm could only identify a rough time region with relatively
large magnitudes of CSI, which indicated the duration of motion (the accuracy of duration
estimation was 97.6%). The resting tremor involved hand movements in all directions.
Consequently, the motion was well quantified (Figure 8g), regardless of the arm orientation.
The accuracy of frequency and duration estimation was 91.7% and 97.3%, respectively.
Table 4 summarizes the sensing performance of the three types of motion perpendicular
and parallel to the LoS. The duration of steel ruler vibration was not detected, as the motion
would gradually decay to very small magnitudes that exceed the detectable range of WiFi
CSI. The main purpose of the steel ruler vibration test was to understand the ability of
the proposed approach in detecting small motion with known magnitudes. The sensing
performance was comprehensively evaluated for the two types of hand movements: finger
tapping and hand resting tremor. However, the frequency of finger tapping parallel to LoS
could not be quantified due to the directional effect.

(a) (b)

Figure 9. The processed CSI data of the target motion parallel to LoS demonstrates the directional
effect. The red circles in (a) indicate peaks in the data identified by our algorithm and are used to
count the number of movements. Peaks are not annotated in (b) as they are poorly found by the
algorithm due to the directional effect of motion. (a) Steel ruler vibration. (b) Finger tapping.

Table 4. Sensing accuracy of the proposed approach for detecting the three types of motion perpen-
dicular and parallel to LoS.

Motion Type Steel Ruler Vibration Finger Tapping Resting Tremor

Direction to LoS Perp. Hori. Perp. Hori.

Duration - - 98.7% 97.6% 97.3%
Frequency 96.2% 86.4% 98.7% - 91.7%
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4.3. Scenario c: Sensing Accuracy of a Single WiFi Link

Among the 34 experimental points in the test environment (Figure 5), the average
sensing accuracy of the motion frequency was 90.2%, with a standard deviation of 3.6%.
The first row of experimental points (1, 8, 21, and 28) obtained the best performance, with
the highest accuracy of 96.2% at Point 1. The last row of experimental points (7, 14, 20, 27,
34) exhibited the worst performance, with an accuracy of 84.0% at Point 34.

A filled contour of the sensing accuracy for the frequency of motion is shown in
Figure 10. The left half of the contour was plotted by interpolating the results of 34 ex-
perimental points (Figure 5) and is mapped to the right half under the assumption of the
symmetric property of the Fresnel zone. A single WiFi link formed only one Fresnel zone
in space such that the accuracy contour would be symmetric to the centerline of the LoS.
To verify the assumption, we evaluated the sensing accuracy at the seven validation points
and compared it with the symmetric model. The errors were within 1.5%, which proved
the symmetric property of the Fresnel zone for a single WiFi link.

The effect of distance between the target motion and the origin on the sensing accuracy
was much more clearly observed in the Y direction than in the X direction. Figure 11 shows
the correlation between the sensing accuracy for the frequency of motion (a) yielded at
the 34 experimental points and their distance to the origin in the Y direction (dy). We
calculated a linear relationship (Equation (10)) using the linear least-squares method [56],
which suggested that a decreases as dy increases by a coefficient of −1.72%/m.

a = −1.72dy + 95.82; R2 = 0.89 (10)

Figure 10. Accuracy contour (%) in detecting the frequency of resting tremor by a single WiFi link.
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Figure 11. The sensing accuracy for the frequency of motion yielded at the 34 experimental points
versus their distance to origin in the Y direction and the calculated linear relationship.

For the duration of motion, the highest sensing accuracy was 99.0% (Point 28), and the
lowest was 92.7% (Point 14), with an average of 95.2% and standard deviation of 1.75%.
Figure 12 illustrates the filled contour. Although the sensing accuracy dropped as the
detection point moved away from the LoS, the distance effect was less significant in both
the X and Y directions. In the test environment, the duration of motion was better identified
than the frequency.

Figure 12. Accuracy contour (%) in detecting the duration of resting tremor by a single WiFi link.

4.4. Scenario d: Sensing Accuracy of Multiple WiFi Links

In this setup, a Tx and three Rxs at the four corners of the room formed three WiFi
links. Compared to the single WiFi link, the average sensing accuracy for the frequency of
motion increased from 90.2% to 91.4% (standard deviation: 0.93%). The highest accuracy
was 93.2% at Point 6, and the lowest was 89.3% at Point 4. Figure 13 illustrates the filled
accuracy contours.
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Figure 13. Accuracy contour (%) in detecting the frequency of resting tremor by multiple WiFi links.

For the duration of motion, the highest sensing accuracy was 97.0% at Point 11,
the lowest was 93.5% at Point 13, and the average was 95.7%, with a standard deviation
of 0.86%. The filled accuracy contours are shown in Figure 14. Additionally, the sensing
accuracy improved by 1.8% on average.

Figure 14. Accuracy contour (%) in detecting the duration of resting tremor by multiple WiFi links.
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5. Discussion
5.1. Limitations of Sensing

For all three types of micromotion considered in this study, the proposed method
accurately detected their frequency and duration of motion. However, the comparison with
the reference indicated some limitations and errors.

Theoretically, the magnitude of the vibration of the steel ruler decreases gradually from
the initial 10 cm deflection at the free end. However, the variation in the CSI amplitude in
response to the vibration of the steel ruler did not represent the decay trend. By analyzing
the waveform changes in CSI, we detected the frequency and duration of the vibration
accurately, demonstrating the ability to quantify the motion on a centimeter scale. However,
it is challenging to determine the amplitude of the vibration. Wireless signals are subject to
complex multipath effects during their propagation. Even with the same type of movement
and amplitude, the signals cannot always reach the Rx with the same intensity.

In the finger-tapping tests, the number of taps was accurately counted when the direc-
tion of motion was perpendicular to the LoS. However, when the direction of motion was
parallel to the LoS, we could not obtain the number of taps, but could roughly distinguish
between the active and non-active states. This is because, according to the Fresnel zone
theory, only movements along the direction normal to the Fresnel zone affect the reflection
path, whereas those in the tangential direction would have no influence [57]. Interestingly,
in the steel ruler vibration test, we detected the number of vibrations in both the perpen-
dicular and parallel cases. This is likely because the ruler’s size and motion range were
relatively larger than those of the fingers. The entire ruler (40 cm) was in action during the
vibration and had more non-tangential movements than finger tapping. In contrast, finger
tapping only involved two fingers (shorter than 10 cm) in action with a centimeter-level
motion, which is small. Moreover, the steel material is more reflective of the WiFi signal
and has a larger reflective area than the fingers. Thus, the vibration is detectable despite a
small motion.

Errors were also caused by packet loss, the slow response of the wireless signal,
and the multipath effect. Packet loss commonly occurs during the transmission of wireless
signals, and is unavoidable. When packet loss occurred in our tests, the Rx still recorded
CSI at the specified rate (i.e., 1000 Hz) and only logged the same value as the previous
data point, leading to a horizontal line shown in the signal plot (Figure 15). In the figure,
the three spots marked by red Type 1 circles denote the situation of packet loss, which could
confuse the computer algorithm used for identifying peaks. The packet loss also caused
an overestimation of the motion duration (red Type 2 circle). The significance of errors
depends on the severity of the packet loss. However, packet loss is easy to detect due to its
feature of logging the same data value as the previous one. The algorithm should detect
packet loss and avoid using the data during its occurrence. Moreover, the communication
rate of the WiFi pair and CSI sampling rate can be optimized for the devices to find the best
match at the required data resolution.

A slow response indicates that the wireless signal does not immediately respond to
the impact of the motion at its start and end. As shown in Figure 16, two smaller waves
were produced at the start and end of the active state, as indicated by two red Type 1 circles.
Each of these smaller waves also represents a movement, which may not be recognized
by our algorithm, leading to the miscalculation of the number of movements. In addition,
the multipath effect resulted in two peaks in the same half wave, as shown by the red Type
2 circles. In this example, both peaks were miscounted as movements.
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Figure 15. Illustration of packet loss (red Type 1 circles) and overestimation of the motion duration
(red Type 2 circle).

Figure 16. Illustration of two types of errors: slow response (Type 1 circles) and two peaks in the
same half wave (Type 2 circles). The smaller red circles indicate peaks in the data identified by our
algorithm and are used to count the number of movements.

The input CSI sequence was controlled in the same length (20 s) for all scenarios used
to evaluate the proposed approach. Since the input CSI sequence length was short and
fixed, the data processing algorithm read it all at once to segment the target motion signal
without concerning the computation performance. However, in a real situation, target
motion can occur at any point in the received CSI data streams, which requires a method to
identify data frames in the CSI stream that contain motion signals. Future works should
develop a motion recognition method to identify target motion occurring at a random
time point and with an arbitrary time length. The block-processing method would be
more feasible and efficient for such an implementation than the sample-processing method.
For real-time applications, the delay due to block processing should be considered.

5.2. Performance of Sensing and Applicability

Overall, the accuracy of estimating the motion duration was much higher than that of
determining the motion frequency, and the standard deviation of the former was lower than
that of the latter. This can be explained by the error sources. As shown in Figure 16, both
types of errors affect the peak identification, causing an incorrect calculation of the motion
frequency. When these errors occur, more fake peaks are incorrectly calculated to cause an
overestimation. Moreover, only the Type 1 error produced a discrepancy in the estimation
of the motion duration. This is because the determination of motion duration only requires
distinguishing between the active and inactive states in the signal. While the Type 2 error
created additional peaks in the middle of the data, it did not extend or compress the total
time of the active state. Therefore, there were fewer types of error sources to create artifacts
in the motion duration estimation, leading to a better sensing performance.
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The frequency spectrum of the CSI data could contain useful information to help
improve the sensing performance. A fast Fourier transform of the resting tremor motion
(Figure 8g) indicated that major component frequencies were between 2 and 5 Hz, close
to the range of motion frequency (3–6 Hz) instructed to perform in the tests. Movement
disorders like tremors and bradykinesia have irregular patterns that differ between individ-
uals. The frequency domain analysis can provide additional information to help identify
the target motion and improve noise filtering to enhance the data quality.

A past study realized a system that can detect subtle motion, i.e., human respiration,
in a range of distances [44]. Instead of using basic signals of CSI, the system employed
the CSI ratio, the ratio of CSI readings from two antennas, to cancel out the noise and
enhance the sensing performance. We conducted the resting tremor test with six repetitions
(Figure 4c) to compare the sensing performance when using the CSI amplitude and CSI
ratio of amplitudes processed by our workflow. As shown in Table 5, either type of CSI
data could be used to achieve high accuracy in the sensing duration and frequency of
motion, but the CSI ratio needed data received from a WiFi device equipped with two
or more antennas. However, it should be noted that the comparison was not intended to
evaluate the performance of system [44] as its main purpose was to extend the range limit
of motion sensing.

Table 5. A comparison of sensing accuracy when detecting hand resting tremor using CSI amplitude
and CSI ratio.

CSI Amplitude CSI Ratio

Duration 98.7 ± 1.3% 96.5 ± 0.8%
Frequency 94.2 ± 3.3% 97.6 ± 2.1%

This study showed that different types of subtle hand motion, i.e., finger tapping
and resting tremor, could be accurately quantified, and their features of motion could be
captured in the CSI signal variation. After the data processing steps, the known range of
the target motion frequency could be used to calculate the minimum separation, which
was combined with the empirically determined minimum peak height and prominence to
accurately quantify the motion. The literature may have provided sufficient information
to make this scenario applicable to on-field detection for motor evaluation. Features of
different types of tremors (frequency, amplitude, pattern, and distribution) have been
studied [58]. Features of finger tapping, such as speed and tapping intervals, were found
to correlate well with standard rating scales such as MDS-UPDRS [59]. Therefore, these
known features and correlations can be used to establish patient-specific criteria for more
accurate motion quantification. However, the aforementioned scenario would require
pre-configuration when the proposed method is introduced to a new environment or
subject. For generalization purposes, it is critical to analytically define the features of
motion, making data collection with a variety of subjects and environments an important
future work.

The sensing accuracy decreased linearly when the motion moved away from the LoS
in the Y-direction. In the X-direction, the accuracy was much less sensitive to the change in
the distance to the LoS. Wireless signals fade during propagation owing to environmental
effects, phase interference, and phase time variability between signals. When the resting
tremor occurred farther away from the LoS, the received data were more disturbed by
the signal reflection. If environmental noise gradually dominates the signal presentation,
the effect of tremor motion becomes trivial, increasing the quantification error.

When three Rxs were paired with a Tx and arranged at the four corners of the room,
three Fresnel zones were formed. All experimental points were covered by at least one
Fresnel zone with good signal reception; thus, the average sensing accuracy was higher
than when using a single Rx. However, single-Rx detection reached a higher maximum
accuracy than multi-Rx detection. This can be attributed to the application of PCA in the
data processing. For multi-Rx detection, the data of all 180 subcarriers from three Rxs



Bioengineering 2023, 10, 228 19 of 22

were processed together through PCA, resulting in an averaged performance of the final
signal. In the future, a subcarrier selection process should be added before PCA to eliminate
unnecessary data interfering with the performance of PCA. Furthermore, the errors found
at the six validation points were all within 2.5%, confirming the symmetric property of the
sensing accuracy contour.

This study investigated two common Tx-Rx arrangements, and the sensing perfor-
mance could be understood from the accuracy contours (Figures 10–14). Based on the
Fresnel zone theory, the effect of WiFi link positioning and room size can be predicted.
When there was a single WiFi link in the room, a single elliptical Fresnel zone with Tx and
Rx located at the two focal points was formed [57]. Moving Tx and Rx in the direction
parallel to the LoS mainly changes the distance of the foci and ellipse profile, which is
expected to make a relatively small difference in the accuracy contour. When moving Tx
and Rx in the direction perpendicular to the LoS, e.g., to the middle of the room, the accu-
racy contour is expected to be symmetric to not only the centerline of LoS but also the LoS.
When changing to a wider or longer room, the sensing accuracy would reduce further at
locations closer to the four edges. A nonlinear reduction is expected as the Fresnel zone
is elliptical. When extending to multiple WiFi links, the contour of sensing accuracy is
a combined effect of their Fresnel zones, in which originally weak sensing spots of the
single WiFi link can be enhanced by the second or third link. Therefore, the reduction effect
should be less significant when using multiple WiFi links.

Signal disturbances are commonly found in healthcare environments. A comprehen-
sive evaluation is needed in the future to move the proposed approach closer to a real-life
application. A preliminary study was conducted to investigate the impact of static and
dynamic objects on the sensing performance. We placed an office partition wall constructed
from an aluminum frame and wood as a static barrier to block the LoS. Resting tremor tests
were performed with and without the barrier. To simulate dynamic disturbance, a person
was asked to walk back and forth near (approximately the same distance as the target
motion from the LoS but on the opposite side of LoS) and far (3 m) away from the LoS.
Another person performed resting tremor tests with and without dynamic disturbance.
The results showed that the sensing accuracy remained the same for the duration of motion
but reduced from 91.7% to 72.3% for the frequency of motion under the presence of the
static barrier. When the dynamic disturbance was introduced, human walking near the LoS
dominated the signal response, making the target motion not quantifiable; walking on the
far side of the LoS had a significantly reduced effect, so the sensing accuracy was around
the same for the duration of motion and reduced by 3.1% for the estimation of motion
frequency compared to the case without disturbance. In summary, the biggest challenge to
overcome is when a large motion occurs nearby the LoS to shield the target motion, which
is currently an open issue. For health monitoring applications, an alternative solution might
be to first recognize target motion from the CSI data and discard the unrecognizable data
segments. With an accurate recognition algorithm, the monitoring system should still be
able to collect a significant amount of reliable data for quantification. As an assessment tool,
clear instructions can be given to set up the environment to properly avoid disturbance.

6. Conclusions

This paper demonstrates a WiFi-based approach that enables the contactless detection
of micromotion related to hand movement disorders of PD. This approach accurately
quantifies the frequency and duration of the hand resting tremor and finger tapping, which
are critical indicators of the disease. Moreover, we confirmed that the micromotion could be
detected in a wide space by showing experimentally verified contours of sensing accuracy
for the arrangements of single and multiple links.

The proposed approach can be implemented as a clinical assessment tool to detect the
patient’s movements simultaneously when the doctor conducts a regular motor evalua-
tion. The doctor can review and compare the quantified movements with their evaluation.
The proposed approach could also be further developed for telemedicine applications to
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monitor a patient’s movements in daily life and track drug efficacy by providing quanti-
tative data on symptoms. Other than clinical applications, gesture recognition could be
benefited by analyzing the subtle features in the quantified hand and finger movements;
after some parameter tuning, other types of subtle motion, such as eating or breathing,
could be detected. WiFi-based motion detection is a device-free and passive sensing method
that allows for capturing long-term data under the patient’s natural condition to provide
doctors with a comprehensive insight into the disease status, leading to a more timely and
personalized treatment that will improve the quality of life and slow the disease progression
in a patient.
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