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Abstract: This paper proposes a wideband ultra-compact implantable antenna for a wireless body
area network (WBAN). The proposed patch antenna works in the industrial, scientific, and medical
(ISM) bands. The proposed patch antenna with an ultra-compact size (5 × 5 × 0.26 mm3) was
designed with 29% wide bandwidth (about 670 MHz). This wide bandwidth makes the antenna
unaffected by implantation in different human body parts. The miniaturization process passed many
steps by adding many slots with different shapes in the radiating element as well as in the ground
plane. A 50 Ω coaxial feeding excites the antenna to maintain matching and low power loss. The
specific absorption rate (SAR) was calculated for health considerations. The result was within the
standard limits of IEEE organizations and the International Commission on Non-Ionizing Radiation
Protection (ICNRP). The antenna was tested in tissues with multiple layers (up to seven layers)
and at various depths (up to 29 mm). The link margin was calculated, and the proposed antenna
enables 100 Kbps of data to be transferred over a distance of 20 m and approximately 1 Mbps over a
distance of 7 m. The proposed antenna was fabricated and tested. The measured S11 parameters and
the simulated results using the Computer Simulation Technology (CST Studio) simulator were in
good agreement.

Keywords: antenna for biomedical applications; implanted antenna; medical implant communication
service band (MICS); medical monitoring; wireless body area network (WBAN)

1. Introduction

Non-communicable diseases (NCDs) such as heart disease, cancer, chronic respiratory
diseases, and diabetes are among the leading causes of death worldwide. Approximately
60% of all deaths annually around the world are due to non-communicable diseases [1]. By
2025, the number of people over the age of 60 is expected to rise to 1.2 billion (approximately
15% of the world’s population) [2]. This will lead to an increase in the number of people
with non-communicable diseases, which will prompt the world to find new solutions to
detect NCDs early to contribute to the lower cost of treatment [3]. Collecting data from
remote patients will relieve pressure on healthcare systems due to the early detection of
any change in the body’s vital functions by placing sensors implanted inside the body or
worn by humans. Wearable/implantable sensors can be distributed around the body to
collect data and are linked together via a wireless link called the wireless body area network
(WBAN) [4]. The function of these sensors is to monitor the vital functions of the body
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around the clock. There is a rapid increase in the rate of WBAN usage, with an increasing
number of WBAN-based devices in use. Both wearable/implantable devices reached
nearly 18 million units in 2017, and the number is expected to be doubled by 2025 [3,4].
As shown in Figure 1, the configuration of an implantable/wearable WBAN consists of
wearable sensors and a set of implantable sensors. Implanted WBAN sensors are part of
an implanted medical device (IMD). Usually, the IMD consists of an ultra-miniaturized
antenna, data/power management unit, biosensor, and battery [5–7].
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The implanted devices collect data and send it to a wearable data display device or a
remote-controlled unit located outside the sensor and vice versa. Implanted devices can
communicate with each other, as found in glucose sensors and insulin injection devices [8].
Some specifications must be considered in the IMD devices, such as their small size [9,10],
which does not exceed 1 cm3 [11], low output power to avoid any health concerns to the
patient [12], and low power consumption to preserve the battery if possible [13]. One of
the biggest challenges that attracted the attention of researchers is to reduce the size of the
IMD to allow its manufacture in the form of a capsule [14,15], which required reducing the
size of all IMD components. Therefore, the design of an ultra-miniaturized antenna will
contribute to the accomplishment of this goal, and a microstrip patch antenna has recently
gained researchers’ attention [16].

The antenna of the IMD must operate on the following frequency bands: medical
implant communication service (MICS) (402–405 MHz) and industrial scientific and medical
(ISM) bands (902–928 MHz, 2.4–2.4835 GHz, and 5.725–5.875 GHz) [17,18]. The MICS band
is most commonly used, but it has a narrow band and a low data rate. Recently, ISM
bands have been preferred because of their wide band, high data rate, and small antenna
size [19,20].

One of the essential requirements of the implanted antenna is the stability of per-
formance within the layers of the human body (human tissue). The performance of
the implanted antenna directly depends on the dielectric properties of the surrounding
medium [21,22]. The layers of the human body are naturally heterogeneous (each layer
has different dielectric properties). Changing the properties of surrounding human tissues
affects the resonance frequency. It can cause an uncontrolled shift, which is called the
detuning effect, so the wideband antenna is demanded to mitigate this effect [23,24]. In [24],
the authors were interested in studying the detuning of the antennas implanted inside
the human body, so three stacked layers of the antenna were designed with a volume of
384 mm3. The antenna operated at 403 MHz with 66 MHz bandwidth. The results showed
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that a large frequency shifting occurred when the antenna was implanted in some parts of
the body, such as the eye and the ear. In [25], a robust parameter design was used to reduce
detuning effects with an antenna volume of 203 mm3. An ultra-wideband antenna with a
volume of 28.85 mm3 was designed to mitigate detuning effects, which was reported in [26]
with a maximum gain of −30 dB. There is still a significant challenge in designing this type
of antenna to overcome the detuning effect and achieve balance between the antenna size
and acceptable gain rate. Some research suggests different methods for designing a wide-
band antenna for biomedical applications, such as increasing the substrate thickness [27], a
meandered strip antenna [28], and different-shaped slots in patches and the ground [29,30].

This work proposes a new wideband ultra-compact implantable antenna (WUCIA)
for biomedical applications resonating over the ISM band of 2.45 GHz with a wideband
of about 29%. The proposed ultra-compact antenna has a 6.5 mm3 volume, achieved by
adding different-shaped slots in the radiator and a partial ground. The wide bandwidth
allows the antenna to overcome the frequency deviation (detuning effect) as a result of
implantation in different parts of the body. The antenna was tested in tissues with multiple
heterogeneous layers (up to seven layers) such as skin, kidney, muscle, liver, and brain at
various depths (up to 29 mm), with a maximum achieved gain −24 dBi (implanted under
the skin layer). The SAR was examined using CST studio to assure patient safety, and
it was discovered to be in compliance with IEEE and ICNRP safety criteria for various
implanted organs. The link budget was computed to assess the range of data transfer that
could be covered. The proposed antenna achieved up to 20 m at 100 kbps data transmission
and 6.5 m at 1 Mbps data transmission. The proposed antenna was able to achieve a
great balance between the antenna size (6.5 mm3), acceptable gain (−24 dBi), and large
bandwidth (670 MHz) to overcome the detuning effect.

2. Background
2.1. Size Reduction Techniques

Recently, reducing the size of the antenna implanted inside the human body is one
of the challenges facing researchers to make it suitable for use in IMD devices. Some
techniques can help reduce the size of the antenna, such as adding pins [31], which will
contribute to doubling the effective size of the antenna and reducing its physical size.
Additionally, adding slots in the ground leads to an increase in capacitance [32]. Similarly,
adding slots in the antenna radiator leads to an increase in the length of the current path [33].
Adding circular slots such as split-ring resonators (SRR) [34] or using a superstrate assists in
the miniaturization [35]. Additionally, using two or more radiating patches as the stack [36]
can greatly help in miniaturization. The medium surrounding the implanted antenna can
help in miniaturization. For example, at a frequency of 2.45 GHz, the wavelength in the
free space is about 122 mm, while it is only about 19 mm when the antenna is implanted
inside the skin layer with εr = 38, as recorded in Table 1.

2.2. Properties of Human Tissues

After the antenna is implanted inside the human body, human tissue becomes the
medium surrounding the implanted antenna. The performance of the implanted antenna
is affected by any change in the electrical properties of this medium. Additionally, the
properties of the medium can change with the age, weight, or gender of the patient. Due to
the heterogeneity of human tissue layers, the implanted antenna faces many challenges to
wireless transmission.

Human tissue consists of several layers (skin, fat, and muscle). The arrangement of
the layers varies according to where the antenna is implanted. Each of these layers has
different electrical properties that change with frequency. The dielectric constant (ε) and
conductivity (σ) of different layers of the human tissues at 2.45 GHz are mentioned in
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Table 1. The dielectric constant directly affects the wavelength of the implanted antenna.
The wavelength of the antenna in free space is calculated as:

λo =
C
f

(1)

The wavelength of the implanted antenna can be calculated [37]:

λg =
λo√

εr
(2)

So, the medium surrounding the implanted antenna can help in the miniaturization
process of the antenna [35].

Table 1. The dielectric properties of the different layers of the human body at 2.45 GHz [38,39].

Tissue Type Dielectric
Constant (εr)

Conductivity
σ (S/m)

Skin 38 1.44
Fat 5.28 0.1

Muscle 52.7 1.74
Kidney 52.9 2.37
Liver 43 1.69

Brain Layers
Bone 11.41 0.394
CSF 66.3 3.46
Dura 42.1 1.67

Grey Matter 49 1.81
White Matter 36.2 1.21

3. Antenna Design and Simulations
3.1. Proposed Antenna Configuration

The configuration with the overall dimensions of the proposed wideband ultra-
compact implanted antenna (WUCIA) is illustrated in Figure 1. The proposed WUCIA
consisted of a meandered radiator patch with different-shaped slots and a partial ground
as shown in Figure 2a,b. A Roger RO3003 with a dielectric constant equal to 3 was used as
a substrate and superstrate with dimensions 5 × 5 mm2 and a thickness of 0.13 mm.
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The superstrate assists in the miniaturization process as well as prevents direct contact
between the radiating element and human tissues. The antenna was covered with ceramic
alumina (Al2O3) of 0.02 mm thickness with a dielectric constant of 9.8 and a loss tangent of
0.008 to guarantee patient safety and avoid a short circuit [40]. A 50 Ω coaxial cable was
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used to feed the antenna. The excitation was placed at x = −1.75 mm and y = −1.75 mm
from the center. The optimized parameters of the proposed WUCIA are tabulated in Table 2.

Table 2. The optimized parameters of the proposed WUCIA.

Parameters Values
(mm) Parameters Values

(mm)

W 5 S6 2.2
L 5 S7 0.3
S1 4.2 S8 0.3
S2 0.3 S9 2.25
S3 1.5 S10 1.8
S4 1.15 S11 2.55
S5 0.3 G 1

3.2. Size Reduction Steps

Figure 3 describes the antenna design steps and the corresponding current distribu-
tions. To obtain the desired resonant frequency, horizontal and vertical slots were added to
the square patch to obtain a meandered antenna radiating surface, which helps to extend
the current path and helps in the antenna miniaturization process. The design started in the
first step with a conventional square patch antenna based on Balanis equations [27] with
two vertical slots (S6 & S9), and the result was a very weak resonance of less than −5 dB, as
shown in Figure 4 (step 1). In the second step, two horizontal slots (S1 & S12) were added
to lengthen the current path, and the result was a 2.8 GHz resonant frequency. In the third
step, more than one slot was added, resulting in the resonant frequency being decreased to
2 GHz. Step four was to improve the impedance matching, hence an additional slot was
added near the feeding point, as well as a partial ground to improve the bandwidth.

3.3. Sensitivity Analysis and Parametric Study

As mentioned before, the implanted antenna is affected by the electrical properties
of the surrounding medium, so the antenna was tested in different mediums to evaluate
its performance in a precise manner. For this purpose, the values of εr and σ of the
antenna-surrounding tissues (muscle) changed from 60% to 120% from its original values
at 2.45 GHz, i.e, the εr of the surrounding tissues varied from 31 to 64 and the σ of muscle
changed from 1 to 2.1, as shown in Figure 6. As shown in Figure 6a, the value of the
dielectric constant of the tissues changed from 60% to 120% of its value at 2.45 GHz, and
the resonant frequency shifted towards a lower frequency as εr increases, and vice versa;
this agrees with Equation (3) that there is an inverse relationship between fr and εr [45].

fr =
c

λg
√

εeff
(3)

3.4. Analysis and Discussion

Usually, the antenna is implanted in the muscle layer (under the fat layer) [41–43], so
the proposed WUMA was designed in the muscle layer using CST studio package. Human
body tissue consists of skin, fat, and muscle [44]. The electrical properties of each layer
are mentioned in Table 1. The proposed WUMA was tested in the three-layer phantom to
imitate typical human tissue, as shown in Figure 5a. The implanted antenna was placed
at a 2 mm distance from the surface of the muscle layer and at a 9 mm distance from the
air. As illustrated in Figure 5b, the proposed WUCIA operates at 2.29 GHz with a −10 dB
impedance bandwidth of 22%. The proposed WUCIA has a gain of −26 dBi, which is a
negative gain due to the losses caused by the surrounding human lossy tissue.
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Figure 6. Sensitivity analysis: (a) S11 in terms of relative permittivity of muscle, εr, which changed
from 60% to 120% from its values at 2.45 GHz, and (b) S11 in terms of conductivity of muscle, σ,
which changed from 60% to 120% from its values at 2.45 GHz.

As shown in Figure 6b, σ had a negligible effect on the resonant frequency. According
to Equation (3), σ does not directly affect the frequency. The variations in σ as well as
in εr of the tissues could affect the impedance matching of the antenna [46], as shown in
Figure 6a,b. Additionally, the variation in the values of εr and σ could affect the loss tangent
(tan δ), which is calculated by:

tan δ =
σ

ε0εrω
(4)

Some parameters had to be studied due to the different natures of human bodies. For
example, the thickness of the fat layer varies from person to person and from one area to
another area within the body. For example, the fat layer may reach a thickness of 30 mm in
the abdominal area [47]. Therefore, our proposed implanted antenna was tested at different
fat layer thicknesses, as shown in Figure 7.
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Figure 7. (a) S11 parameter versus fat layer thickness; (b) gain (dB) versus fat layer thickness.

The antenna showed good stability in the reflection coefficient response despite chang-
ing the thickness of the fat layer from 4 up to 25 mm, as illustrated in Figure 7a. The antenna
gain changed, as depicted in Figure 7b, but it was still in the range that did not impede
the data transmission. Again, the implanted antenna was tested at different implantation
depths from 4 up to 30 mm from the surface of the muscle tissue. The result was quite
stable in terms of S11, as illustrated in Figure 8a. Additionally, the gain changed a little, but
it was within the acceptable range, which did not affect the transmission of data, as shown
in Figure 8b.

Figure 8. (a) S11 parameter versus implanting depth; (b) gain (in dB) versus implanting depth.

A parametric study of some parameters of the antenna is essential for assisting in
selecting the optimal dimensions of the antenna and determining the main parameters
affecting the antenna performance. The parametric study was carried out on the human
model built on Microwave Studio CST, as mentioned before in Figure 5, to test the influence
of these parameters on the S11 of the proposed antenna. The impact of the variations of the
antenna’s parameters S10, S6, S12, and partial ground length (G) on the reflection coefficient
(S11) is illustrated in Figure 9. Some of the parameters used directly affected the resonant
frequency, such as “S10” and “S12”, while other parameters such as “S6” and “G” affected
the bandwidth and matching impedance of the antenna.
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Figure 9. Impact of variation of (a) S10, (b) S6, (c) S12, and (d) G (partial ground length).

3.5. Model Integrity Analysis

To evaluate the antenna’s performance and its response to different environmental
surroundings and to consider a more realistic scenario, the antenna was implanted in
different areas of the human body model, such as the liver, kidney, brain, and under the
skin layer, as demonstrated in Figure 10. To appropriately implant the antenna in the
desired part of the body, we should know the anatomy of the layers of the body at each
area where the implanted antenna is going to be placed. For example, when the antenna
was implanted inside the human kidneys, it was found that the kidneys were located on
the posterior abdominal wall consisting of a musculoskeletal structure [47]. So, the body
tissue at the kidney consists of skin, fat, muscle, and kidney, in that order. The proposed
antenna was placed 2 mm from the kidney layer surface and 29 mm from the air, as shown
in Figure 11a.

In the case of implanting the antenna in the liver, the simulation model consisted of
four layers (skin, fat, muscle, and liver) [47]. The proposed antenna was placed 2 mm
from the liver layer surface and 29 mm from the air, as shown in Figure 11b. The brain
model consisted of seven layers (skin, fat, bone, dura, cerebrospinal fluid (CSF), and grey
and white matter); the layer dimensions and implanting depth were mentioned in [48].
The proposed antenna was placed 1 mm from the dura layer surface and 11 mm from the
air, as shown in Figure 11c,d. The human tissue consisted of three layers: skin, fat, and
muscle [44]. The proposed antenna was placed 2 mm from the skin layer surface. The
simulation model of the human tissue was built on the CST EM simulator. The thickness of
each layer was chosen as an average value because the thickness of the layers differs from
one person to another and depends on where the antenna is implanted in the human body.
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The simulated S11 parameter, gain, total efficiency, and input impedance of the pro-
posed WUCIA for different implementation scenarios are illustrated in Figure 12. The
proposed antenna for different scenarios attained a good response in terms of the re-
flection coefficient (S11), as depicted in Figure 12a. The achieved −10 dB impedance
bandwidths were 22% (510 MHz), 29% (670 MHz), 24.8% (610 MHz), 26% (654 MHz), and
20% (520 MHz). The accomplished gains were −26 dBi, −30 dBi, −31 dBi, −25 dBi, and
−24 dBi for muscle, kidney, liver, brain, and skin, respectively.

Figure 12. Simulated (a) S11 parameter, (b) gain, (c) total efficiency, and (d) input impedance of the
proposed antenna.

The simulated E- and H-plane radiation pattern was calculated at 2.45 GHz of the
UMPA in the different implementation scenarios that are illustrated in Figure 13, where the
antenna was placed in the x–y plane. The shape of the radiation pattern depends on the
implantation sites. The radiation patterns are almost omni-directional when the antenna is
implanted in muscle, kidney, and skin, while the E- and H-planes resemble a circle in the
case of the antenna implanted in the liver and brain. The achieved radiation pattern was
accepted as a good candidate for biomedical applications in all scenarios.
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4. Specific Absorption Rate Calculations

The specific absorption rate (SAR) is the rate of RF energy absorbed by the body from
the antenna. To ensure no harm can be caused by the radiated electromagnetic field of the
implanted antenna to patients wearing IMD, the SAR should not exceed the standard limits
set by the approved organizations. The ICNRP limits the peak average SAR for 1 g of tissue
as 2 W/Kg, and the IEEE C95.1-1999 limit for 10 g of tissue is 1.6 W/kg [49]. The SAR can
be calculated by:

SAR = σ|E|2/ρden (5)

where σ is the conductivity of human tissue, E is the intensity of the electric field, and ρden
is the density of human tissue. The maximum SAR and the maximum allowed input power



Bioengineering 2023, 10, 216 13 of 19

for 1 g/10 g body tissue are tabulated in Table 3. The SAR was determined in different
body sites (muscle, kidney, liver, brain, and skin). The input power to the antenna was set
as 1 W at 2.45 GHz. As shown in Table 3, the SAR values depend on where the antenna is
implanted due to the difference in the electrical properties of such medium.

Table 3. Max SAR and maximum allowed power for 1 g/10 g human tissue.

Human Tissue
Max. SAR (W/Kg) Max. Allowed Input Power (mW)

1 g 10 g 1 g 10 g

Muscle 712.2 78.86 2.8 20.28
Kidney 771.4 82.98 2.59 19.28
Liver 758.2 83.4 2.64 19.18
Brain 788.7 85.24 2.535 18.77
Skin 715.7 77.6 2.79 20.6

Muscle 712.2 78.86 2.8 20.28

5. Link Budget

The evaluation of the telemetry range between implanted and external devices is an
important issue. The implanted devices transfer the biological information of the patient to
an external monitor device. The external device may be located several meters from the
patient’s body, and the implanted antenna should be able to communicate with the external
device, so the link margin (LM) needs to be calculated [41].

LM (dB) = CL (dB)− RL (dB) (6)

To guarantee a stable link, the current link (CL) must be higher than the required link
(RL), i.e., LM should be greater than zero dB (+ve value). The current link (CL) is given by:

CL (dB) = Pt + Gt − L f − La + Gr − 2L f eed − No (7)

where Pt is the Tx power, Lfeed is the feeding loss, Gt is the gain of the transmitter’s antenna,
Lf is the free space propagation loss, La is the air propagation loss, Gr is the gain of the
receiver’s antenna, and No is the noise power density. The current link is significantly
affected by the distance between the implanted device and the external device because Lf
depends on this distance (d):

L f (dB) =
2πd

λ
(8)

The required link (RL) is given by:

RL (dB) = Eb/No + 10 log (Br)− Gc + Gd(dB) =
2πd

λ
(9)

Eb/No is the normalized signal-to-noise ratio, Br is the bit rate, Gc is the coding gain,
and Gd is the fixing deterioration. The key parameters of this calculation are tabulated in
Table 4 [50].

In our calculations, the maximum value for polarization losses was considered due
to the use of a linear polarized antenna that can change its orientation in response to
the patient’s motion. Assuming a linear dipole antenna with a gain of 2.15 dB is placed
in the receiver, the input power of the antenna is restricted to 25 µW by the European
Research Council [31]. As demonstrated in Figure 14, the LM of the implanted antenna
was calculated in different scenarios. There was an inverse relationship between Br and the
distance between the implanted antenna and the external monitor. The implanted antenna
could send and receive up to 20 m with stability at 100 Kbps. This distance decreased to
approximately 6.5 m at 1 Mbps data transfer, which allows the antenna implanted in the
endoscope to send images captured inside the body.
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Table 4. Absorption rate calculation parameters.

Transmission Receiver

Frequency (GHz) 2.45 Rx antennae gain Gr
(dBi) 2.15

Tx power (dBm) −40 PLF (dB) 1

Tx antenna gain, Gt
(dBi) Scenario dependent Temperature T0 (K) 293

Boltzmann constant (K) 1.38 × 10−23

Signal quality
Bit rate Br (Kb/s) 100/1000

Bit error rate 1 × 10−5

Eb/N0 (ideal PSK) (dB) 9.6
Coding gain Gc (dB) 0
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6. Fabrication and Measurements

The measurement and fabrication of the designed antenna are essential steps in
verifying the validation of the numerical calculations. So, the proposed antenna was
fabricated using the photolithography technique and measured using a vector network
analyzer (VNA Rohde & Schwarz “ZVB20”) in the Electronics Research Institute’s Labs.
The images of the prototype proposed antenna are displayed in Figure 15 (top and bottom
views) as well as the antenna joint of the connector used. The antenna was tested and
measured using fresh beef steak meat, kidney, and liver because it is difficult to experiment
using the human body. The dielectric property of beef muscle is εr = 53.69, fat is εr = 3.6 at
2.45 GHz [51–53], kidney εr is 51, and liver εr is 46.6 [54,55]. The piece of meat was selected
as closely as possible to that used in the simulations in terms of skin, fat, muscle, liver, and
kidney dimensions.
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Photos for the experimental setup are displayed in Figure 16. The muscle model
consisted of three layers (skin, fat, muscle), as shown in Figure 16a, the liver model consisted
of four layers (skin, fat, muscle, liver), as shown in Figure 16b, and the kidney model
consisted of four layers (skin, fat, muscle, kidney), as shown in Figure 16c. The simulated
and measured reflection coefficients of the implanted antenna in beef muscle, liver, and
kidney are illustrated in Figure 17. The measurements showed a good agreement between
the simulated and measured results. Additionally, the antenna had good bandwidth
stability while changing the medium. A minor shift in the resonant frequency as well as
slight degradation in the matching S11 values may be caused by unexpected fabrication
tolerance or soldering roughness.

Figure 16. The measurement setup. (a) Muscle phantom; (b) Liver phantom; (c) Kidney phantom.

Figure 17. Simulated and measured reflection coefficients of the implanted antenna in different
scenarios: (a) muscle; (b) liver; (c) kidney.

Comparison of proposed antenna and similar prior studies in recent years in terms of
frequency, volume, gain, BW, SAR, implementation scenario, depth, and conditions have
been tabulated in Table 5.



Bioengineering 2023, 10, 216 16 of 19

Table 5. Comparison of proposed antenna and similar prior studies in recent years.

Ref. Freq.
(GHz)

Volume
mm3 BW (MHz) Gain

(dBi)
SAR
W/kg

Implantation
Scenario

Depth
(mm)

Operation
Condition

[56] 2.45 99.75 520 −26.4 712 (1 g) skin 4 homogeneous

[57] 2.6 37 400 −19.7 0.7 (10 g) skin 4 homogeneous

[58] 2.45 17.15 219 −18.2 305 (1 g) scalp 3 homogeneous

[59] 1.42 and
2.42 GHz 91.4 140/240 −29.4

−21.2
500 (1 g)
686 (1 g) skin 4 homogeneous

[60] 2.45 2.11 152.8 −24.5 233 (1 g) muscle 50 homogeneous

Current
work 2.45 6.5

520,
510,
656,
610,
664

−24,
−26,
−25,
−31,
−30

715.7
712.2
788.7
758.2

771.39

Skin,
muscle,
brain,
liver,

kidney

2
9

11
29
29

heterogeneous

7. Conclusions

This article discussed the design of a wideband ultra-compact antenna for an ISM band
wireless body area network for health monitoring with an overall volume of 5 × 5 × 0.26 mm3.
The proposed WUCIA was optimized to operate over the ISM band with a wide bandwidth
of about 670 MHz at 2.45 GHz. The proposed WUCIA was designed mainly to address
the detuning effect that may be caused by the heterogeneity of human tissue or changes in
tissue properties with aging, and was embedded with IMD circuitry. The optimization of
the designed antenna parameters was performed by parametric analysis using Microwave
Studio CST. The link budget was computed to assess the range of data transfer that could
be covered. The proposed antenna achieved up to 20 m at 100 kbps data transmission and
6.5 m at 1 Mbps data transmission. The SAR was calculated and compared to standards to
be within safety limits. To verify and confirm the numerical calculations and simulated
result, the designed antenna was fabricated and tested. Due to the difficulty of testing it
using the human body, the antenna was tested and measured in some organs of cows, due
to the closeness of their characteristics to the organs of the human body, such as muscles,
kidneys, and liver, and the result was good. The measured S11 parameters and the simulated
results using the Computer Simulation Technology (CST Studio) simulator were in good
agreement. The measured bandwidth was wide enough to cover the whole ISM band and
overcome any unexpected shift in frequency due to losses of human tissue materials. The
achieved gains were −26 dB, −30 dB, −31 dB, −25 dB, and −24 dB for muscle, kidney,
liver, brain, and skin, respectively. The gain was acceptable for such an antenna size, but
needs more improvement in the future. The proposed WUCIA demonstrated a strong
potential for use as an implanted antenna for WBAN applications in the ISM band for
health monitoring.
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