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Abstract: Fracture is a common traumatic injury that is mostly caused by traffic accidents, falls,
and falls from height. Fracture healing is a long-term and complex process, and the mode of
repair and rate of healing are influenced by a variety of factors. The prevention, treatment, and
rehabilitation of fractures are issues that urgently need to be addressed. The preparation of the right
animal model can accurately simulate the occurrence of fractures, identify and observe normal and
abnormal healing processes, study disease mechanisms, and optimize and develop specific treatment
methods. We summarize the current status of fracture healing research, the characteristics of different
animal models and the modeling methods for different fracture types, analyze their advantages and
disadvantages, and provide a reference basis for basic experimental fracture modeling.
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1. Introduction

Fractures are a common and serious traumatic injury. Fracture healing is a long-term
and sophisticated process, and its osteogenesis and healing time are influenced by a variety
of factors (such as blood supply, stability, and inflammation), with 5–10% of fractures failing
to heal [1,2]. The main sites of fracture are the hip and the spine, with the former being
the most serious. Because most hip fractures are fragility fractures, they tend to occur in
elderly people with osteoporosis and are one of the main causes of disability among them.
It was found that 22% of women and 33% of men died in the first year after hip fracture [3].
According to epidemiological data, more than 1.6 million patients worldwide suffer hip
fractures annually [4]. In 2019, more than 67,000 hip fractures occurred in England, Wales,
and Northern Ireland, costing the National Health Service (NHS) hospitals approximately
1.1 billion GBP a year [5]. In addition, the annual incidence of spinal fractures was 29.3/1000
for women and 13.6/1000 for men aged 75–79 years [6]. These patients frequently suffer
from pain [7,8], spinal deformities [9], reduced pulmonary function [8,10], and restricted
activities of daily living [11], all of which severely impact their quality of life. Overall,
fractures represent a major cause of disability and a heavy burden on global health care.
Therefore, it is of great importance to study how to accelerate fracture healing, reduce
fracture complications, and decrease the disability rate.

Currently, with the use of omics increasing and multidisciplinary integration deep-
ening, there is a shift in fracture research toward gene therapy and molecular therapy;
the development of novel materials, adjuvants, and biologicals; and the exploration of
intelligent drug delivery systems [12–14]. However, there is still a gap between clinical
application and mechanistic studies, and the potential adverse effects and unestablished
indications impede the optimization of clinical treatment. To bridge this gap and therefore
improve overall patient prognosis, improved treatments must be translated into clinical
practice. Preclinical fracture studies, i.e., animal-based fracture studies, are a necessary step.
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The selection of suitable animal models can maximally simulate the occurrence of
fractures and induce normal or abnormal healing processes, which facilitates the study of
bone healing mechanisms (especially Haversian system-mediated biomechanical functional
reconstruction), promotes the development of treatment methods, and ultimately guides
clinical practice. Here, we summarize the current status of research on fracture healing,
the characteristics of different animal models, the latest modeling methods and details for
fracture models at different sites, and pathological fracture models (such as osteoporotic
fractures and nonunion fractures). The aim of our study is to assist investigators in se-
lecting the most appropriate animal model and to increase the validity and reliability of
preclinical studies.

2. Search Strategy

We searched PubMed, Embase, and the Cochrane Library for articles and reviews
published in English between 2000 and 2022; although, older references were also used as
appropriate.

We used the keywords “fractures” in combination with “mice”, “mouse”, “murine”,
“rats”, “dogs”, “canine”, “rabbits”, “cows”, “sheep”, “goat”, “ovine” and “caprine”, “pigs”,
“monkeys”, “rodents”, and “primates” and limited the search to animal studies. In addition,
conference abstracts and books were also manually searched, and references included in
articles and reviews were screened.

3. Mechanism of Fracture Healing
3.1. Three Key Elements in Fracture Healing

The repair of fractures is a process of calcification of bone tissue, which contains three
interdependent elements: cells, organic matrix, and inorganic substances [15].

The cells existing in bone tissue are predominantly osteoblasts, osteocytes, osteoclasts,
and osteogenic precursor cells (mesenchymal osteoprogenitor cells) [16]. Osteoblasts are
responsible for laying down collagen, after which the calcification process begins and
induces the formation of a solid, stable, crystalline inorganic phase in the organic phase [17].
Osteoblasts are transformed into osteocytes after being embedded by the matrix they
produce, which has a sensory effect on mechanical stress [18]. Osteoclasts are involved
in bone resorption and play an important role in clearing excess bone matrix and bone
remodeling [19]. Osteogenic precursor cells are able to differentiate directly into osteoblasts
in response to specific growth factors, or into chondrocytes to participate in endochondral
ossification [20] (details in Section 3.2).

The organic bone matrix is dominated by type I collagen fibers and contains small
amounts of collagen type III and collagen type V [16]. They have structural properties that
form scaffolds for inorganic components and control the alignment, assembly, integrity,
and mechanical properties in bone tissue [21]. Non-collagenous components include
proteoglycans, decorin, glycoproteins, osteopontin, osteocalcin, bone sialoprotein, byglican,
osteonectin, thrombospondin, fibronectin, and phospholipids [15,16,22]. Although the
percentage is small (approximately 10%), they are important in compact bone because they
affect the rate of bone formation and collagen bundle spacing [15].

The inorganic bone matrix is composed mainly of crystalline mineral salts and calcium
in the form of hydroxyapatite, including 85% tricalcium phosphate, 10% calcium carbonate,
and 5% fluorinated derivatives such as calcium fluoride and magnesium fluoride [16,23],
whose functions are related to tensile strain transfer and mechanical support.

3.2. The Process of Indirect Fracture Healing

Indirect fracture healing (also known as secondary healing) occurs when the fracture
site fails to meet rigid anatomic reduction with no gap formation, and is the repair modality
for most fractures [24]. There are three phases of indirect fracture healing: the inflammatory
phase, proliferative phase, and remodeling phase [1]. In addition, two mechanisms of
fracture repair occur during indirect fracture healing, namely, endochondral ossification
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and intramembranous ossification [25]. The crucial difference between endochondral
ossification and intramembranous ossification is the presence or absence of the chondro-
genic phase [25]. Moreover, intramembranous ossification occurs usually at the distal
and proximal ends of the fracture, or bone defects (e.g., tibial or calvarial defects), while
endochondral ossification usually occurs in long bone fractures (e.g., the middle femur
fracture) [26,27].

During endochondral ossification, osteogenic precursor cells migrate to the wound
site in response to elevated levels of growth factors and cytokines, where they proliferate
and differentiate into chondrocytes and produce cartilage matrix, followed by calcification
and formation of woven bone [20]. Woven bone is a temporary structure composed of
irregularly arranged collagen fibers and randomly dispersed crystals [16]. In the remodeling
phase, woven bone is gradually transformed into lamellar bone, restoring the mechanical
integrity of the healing site [1] (Figure 1).
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Figure 1. The process of endochondral ossification. Fracture repair begins with the inflammatory
phase, where the hematoma at broken end of fracture is replaced first by granulation tissue and
subsequently by fibrous callus. During the proliferative phase, proliferation of blood vessels and
osteoprogenitor cells occurs, leading to the formation of fibrocartilage tissue. Next, the fibrocartilage
callus is gradually replaced by woven bone and the excess callus is resorbed by osteoclasts. At last,
the transformation of woven bone to lamellar bone is accomplished by remodeling (reconstruction of
the Haversian system).

In contrast, during intramembranous ossification, cells in the inner periosteal os-
teogenic layer contribute to osteogenesis instead of cartilaginous tissue. Specifically, avail-
able skeletal stem cells and osteoprogenitor cells begin to proliferate during the early prolif-
erative phase [28,29]. Subsequently, the adjacent osteoprogenitor cells form an ossification
center and initiate the osteogenesis process [30] (Figure 2). Notably, the biomechanical
strength of bone formed by intramembranous ossification is inferior to that of endochondral
osteogenesis [16,30] (Figure 2).
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Figure 2. The process of intramembranous ossification. A small group of adjacent mesenchymal
cells form a small cluster of cells and undergo morphological changes to form osteogenic progenitor
cells. These cells gradually differentiate into osteoblasts and secrete extracellular matrix (osteoid) and
mineralize, resulting in spicules formation. As the secretion of osteoid increases, the spicules increase
in size and fuse with each other, leading to the formation of trabeculae. As growth continues, the
trabeculae interconnect and then form spongy bone. Finally, the mesenchyme at the periphery of the
trabeculae forms the periosteum.

Various factors affect fracture healing. Internal factors include the nature and degree of
trauma, local soft tissue damage, blood supply, differentiation potential of bone progenitor
cells, cell microenvironment, etc. Extrinsic factors include the stability of fracture fixation,
fracture end spacing, inflammation, external stimulation, etc. Even social habits, such as
smoking and alcohol consumption, can lead to impaired fracture healing [31].

3.3. Reconstruction of the Haversian System

The basic functional unit of cortical bone is the Haversian system, which is character-
ized by cylindrical structures [32]. Repair of the Haversian system provides the basis for
mechanical reconstruction of the long bone cortex.

Bone remodeling with the primary purpose of repairing the Haversian system occurs
in a special vascular structure called the bone remodeling compartment (BRC), which
consists of a basic multicellular unit (BMU) [33]. The BRC is a structure with a three-
dimensional pyramidal tunnel, with a cutting cone of osteoclasts, a resting zone (containing
a capillary ring and supporting connective tissue in the center), and a closing cone of
osteoblasts in an orderly fashion from anterior to posterior [32]. As osteoblasts deposit
bone matrix to fill the cavity, vascular invagination diminishes, and the Haversian canal
gradually shapes up [1,2].

During the reconstruction of the Harvesian system, the size and shape of the Haver-
sian canal are determined by osteoclasts and osteoblasts. The cross-sectional area and
circumference of a Haversian canal are positively related to the area of an osteon and
the number of osteocytes within the osteon [32,34]. All of the above are the result of the
osteocyte and the lacunocanalicular network (LCN) sensing and conduction system against
external mechanical stress, which largely determines the size and shape of the Haversian
system [35,36].
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Although human and other animal bone tissues have many characteristics in common,
studies have demonstrated differences between human bone and that of other mammals.
For instance, humans and rabbits [37], dogs [38], sheep [39], calves [40], and monkeys [41]
all exhibit secondary osteon remodeling dominated by the Haversian system, which is
absent in rats and mice [15].

4. Animal Characteristics of Fracture Healing Models

Animal fracture studies are used to predict and explain the fracture healing process
in humans, while different animal species vary in growth cycles, skeletal characteristics
(including biochemical composition, bone density, mechanical strength, bone microstruc-
ture, etc.), biochemistry, and gene expression [42,43]. Fortunately, based on the consistency
between the results of animal models and human clinical studies [44,45], every animal
species has some specific questions that are appropriate to answer. The characteristics
of commonly used experimental animals are summarized in Table 1. Figure 3 illustrates
the proportion of animal species that commonly used in fracture healing models in the
last decade.
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Bone healing mechanisms and healing rates differ between animals; small animals
(mice, rats, and rabbits) are characterized by faster growth cycles, shorter bone metabolic
cycles, and quicker bone healing rates than larger animals. Especially in mice and rats,
intramembranous ossification with a short healing time is the main mode of repair after
fracture. Stable femoral fracture healing was reported to take only 4 weeks in sexually
mature rats [46]; whereas, in rabbits, dogs, and nonhuman primates, healing involves more
medullary healing tissue, thus requiring a longer period [47–49].

The histological morphology of bone varies widely among species, with different
microstructures of the periosteum, vascular distribution, and arrangement of primary
and secondary osteoproteins. The details can be obtained in Brits’ review [50]. Contrary
to popular belief, the skeletal structure of nonhuman primates is not similar to that of
humans because the microscopic appearance of the long bones in nonhuman primates
consists of avascular bone combined with irregular Haversian bone; whereas, the long
bones of humans are primary vascular longitudinal bone combined with irregular or
dense Haversian bone, which is similar to the skeletal structure of dogs [50]. The physical
composition and fracture strength of the dog skeleton are most similar to those of the
human skeleton [51], so the dog fracture model is highly applicable. Murine species do not



Bioengineering 2023, 10, 201 6 of 18

have the Haversian system [50], so experimental studies associated with the repair of the
Haversian system are not applicable.

The ideal animal fracture model should try to meet the following conditions: feasibility,
reproducibility, and similarity. Feasibility refers to, first, objective feasibility: experimental
animals should first be authorized ethically, and the investigator’s experimental conditions
(e.g., funding, experimental period, testing conditions, etc.) should meet their needs; second,
operational feasibility, the selected animals should be able to withstand the modeling
measures and meet the requirements for sampling (e.g., in vivo sampling).

Reproducibility is positively related to the degree of standardization of the experimen-
tal model. The standardized ideal model can be built repeatedly without strict restrictions
on the investigator, date, or study site [52,53]. Mice are difficult to standardize because of
their small size, high surgical precision, and susceptibility to investigator skills.

Similarity refers to the similarity to human fractures. Specifically, the animals selected
for modeling are expected to imitate the occurrence of clinical fractures as much as possible.
The symptoms, signs, and examinations exhibited after modeling should be similar to those
of humans. The changes in bone microstructure and bone metabolic processes in the animal
model before and after modeling are comparable to those in humans as much as possible.

5. Classification of Fracture Healing Model Applications
5.1. Traumatic Bone Fracture Animal Model

Most clinical fractures are caused by trauma, such as traffic accidents, falls, and falls
from height, with a large proportion of long bone diaphysis fractures [54]. At this stage,
animal models for traumatic fracture healing are mainly conducted for both the femur and
tibia, including open fracture and closed fracture models.

5.1.1. Closed Fracture Model

A closed fracture is one in which the skin or mucosa is intact outside the fracture, and
the fractured end is not in contact with the outside [55]. The closed fracture model mainly
uses the principle of three-point force to simulate the force during a long bone stem fracture
caused by a special fracture modeling device [56,57]. After the animal was anesthetized
and fixed on the animal table, a blunt guillotine with a heavy object was dropped from a
height to break the tibia or femur, and the model was successfully created. Closed fracture
models are generally studied in smaller animals, such as rats and mice. Compared to
mice, rats can tolerate certain surgical blows and have a larger volume of bone and serum
specimens than mice, and are increasingly chosen for studies. In Einhorn’s study, a closed
fracture model was made with 40 male mice; the fracture apparatus consisted of four main
parts, including the overall frame, the animal fixation device, the cutting device, and a
500 g weight [58]. Since then, Einhorn’s modeling method has been refined to make it
more streamlined. Subsequent studies have focused on adjusting the spring size to reduce
tissue damage, adapting the device to the size of the mice, and making the device more
precise in terms of impact [59,60]. In a rat model, Bonnarens and Einhorn first established a
closed femur fracture model using 40 male Sprague-Dawley rats with minimal soft tissue
damage from histology [61]. This model has since been refined by Simon et al., and the
process is as follows: The left femur of the anesthetized rat was secured between two lower
supports and an upper impactor head. A guillotine-like effect was created by dropping a
rod-guided 411-g weight from a height of 20 cm onto the spring-loaded upper impactor
head, creating a femoral fracture. Immediately after fracture, rats were radiographed to
ensure localization of a mid-diaphyseal fracture [62,63]. Compared with open fractures,
closed fracture models are easy to operate and have less impact on the surrounding soft
tissues and blood flow conditions, but they cannot precisely control the fracture angle and
the direction of the force line, which may have different effects on fracture healing.
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5.1.2. Open Fracture Model

An open fracture is one in which the skin or mucosa near the fracture is broken and
the fracture end is directly or indirectly exposed [64]. The procedure for an open femur
fracture is as follows: The animal is anesthetized, and an incision is made on the lateral
aspect of the femur or tibia. After the skin is cut, the inner layer of the fascia and muscles
are bluntly separated to fully expose the femur or tibial tuberosity; subsequently, the
osteotomy is operated at different angles and positions using wire saws, electric swing
saws, and other tools according to the experimental requirements to complete the fracture
modeling [65,66]. For surgical procedures and outcome analysis, rabbits are most widely
used in open fracture model studies because of their larger joint volume compared to
rodents. Rats are also increasingly used in open fracture model studies because of the ease
of husbandry, ease of purchase, relatively low cost, and tenacity of life.

The advantage of the open fracture model is that the angle and position of the fracture
can be controlled, but due to the destruction of the periosteum, soft tissues, and bone
marrow cavity, resulting in damage to bone cells and bone marrow stromal stem cells,
blood circulation is significantly reduced, and the whole fracture healing process becomes
very slow or even nonhealing.

5.2. Osteoporotic Fracture Model

Osteoporosis (OP) is a common systemic skeletal metabolic disease that occurs in
elderly individuals and is characterized by low bone mass and destruction of bone tissue
microarchitecture [67]. Osteoporotic fracture is the most common and serious complication
of osteoporosis and is the most common form of fracture in elderly individuals.

5.2.1. Animal Model of Osteoporosis

OP is divided into two main categories, primary and secondary, with primary OP
accounting for approximately 80% of cases. Primary OP mainly includes postmenopausal
and geriatric OP [68]. A common cause of secondary osteoporosis is hormone overuse.
Depending on the clinical classification of osteoporosis, the establishment of animal mod-
els of osteoporosis mainly includes ovariectomy, geriatric animal models, and hormone
induction [69]. The common study subjects of animal models of osteoporosis include rats,
mice, rabbits, sheep, pigs, and dogs.

1. Postmenopausal osteoporosis model

Ovariectomy can cause a rapid decrease in estrogen levels in animals, which sub-
sequently brings about bone loss in animals, and can well mimic the clinical features of
postmenopausal osteoporosis. Ovariectomy is usually performed by making an incision on
the back of the animal after anesthesia, followed by blunt separation of the superficial mus-
cles from the peritoneum, incision of the peritoneum to expose the ovaries and fallopian
tubes, ligation of the adipose tissue attached near the uterus out, clipping of the ovaries
and part of the fallopian tubes, and subsequent release of the remaining adipose tissue
back into the abdominal cavity for suturing.

Jilka et al. found that bone loss associated with decreased estrogen occurred soon after
ovariectomy in mice, with a more pronounced decrease in cancellous bone mass [70]. The
bone volume of the tibial epiphysis, vertebral body, and femoral neck will be significantly
decreased 60 days after ovariectomy in rats [71]. In large animals, Chavassieux et al. found
that OVX increased cortical bone porosity and surface invasion but did not affect cancellous
bone in 8 ± 1-year-old sheep [72]. The rat is usually the preferred small animal model for
ovariectomy because it is reproducible and simulates the decrease in estrogen levels well; it
is also large enough to perform certain orthopedic surgical procedures and is better suited
to assess the mechanical properties of bone [69,73].

2. Geriatric osteoporosis model

Aged animal models have been used for the study of geriatric osteoporosis. Rats over
1 year of age and sheep over 9 years of age exhibit age-related osteoporosis [74]. Mice
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typically survive 2–3 years with peak bone mass at 4–8 months, followed by age-related
bone loss. C57BL/L and BALB/c mice can develop a geriatric osteoporosis-like bone
phenotype-reduced bone mass and quality [75,76]. However, animal models of natural
aging are time-consuming, and can greatly increase the cost of animal husbandry while
limiting the speed of research. Accelerated aging animal models are becoming a hot topic of
research in animal models of geriatric osteoporosis. The SAMP6 mouse model, a commonly
used animal model for accelerated aging, shows a distinct aging phenotype at 6–8 months of
age and has the potential to become a subject for the study of geriatric osteoporosis [77,78].

3. Secondary osteoporosis model

There are many causes of secondary osteoporosis, including adverse reactions to
medication, endocrine disorders, eating disorders, limb wasting, kidney disease, and
cancer [79]. In the current study, animal models of secondary osteoporosis mainly included
hormone-induced osteoporosis and disuse osteoporosis.

Glucocorticoid induction is the most common method of modeling secondary osteo-
porosis. Clinically, bone density in glucocorticoid-treated patients decreases rapidly in the
early phase of treatment due to enhanced bone resorption, followed by a slow decrease
in bone density. Glucocorticoid-induced osteoporosis modeling is commonly used in
mice, rats, rabbits, and dogs. In glucocorticoid-induced models, the age of the animal, the
dose of glucocorticoid, and the duration of administration are crucial to the experimental
results. Administration of weekly injections of methylprednisolone (7 mg/kg/week) to
32-week-old male Wistar rats reduced cancellous and cortical bone [80]; administration
of different doses of prednisone to male rats for 90 days resulted in reduced cortical bone
in the epiphysis and reduced cancellous bone formation and bone resorption [81]. In
larger animals, oral administration of prednisolone (0.7 mg/kg/day) for 5 months in 6- to
7-month-old female white rabbits reduced cancellous and cortical bone [82]. Prednisolone
(0.6 mg/kg/day, five times a week) injected into sheep for 7 months reduced cancellous
bone volume in vertebrae and was a marker of bone formation [83]. The timing of dosing
in large animal models in glucocorticoid-induced models is much closer to that in the
clinical setting.

The disuse osteoporosis model is another common model of secondary osteoporosis.
Disposable osteoporosis is caused by non-weight bearing, immobilization, or prolonged
bed rest, and its incidence is rapidly increasing due to the increase in patients with bed-
ridden disease. Disuse osteoporosis models are commonly studied in mice and are mainly
modeled by tail or hind limb suspension [84]. Moriishi et al. found that 2 weeks of tail
suspension experiments resulted in mild inhibition of bone formation and significantly
enhanced bone resorption in C57BL/6 mice [85].

5.2.2. Osteoporotic Fracture Modeling

Animal models of osteoporotic fractures are generally performed using a combination
of osteoporosis and fracture models. The animals are first modeled for osteoporosis,
and after determining the success of osteoporosis modeling, the corresponding fracture
modeling is performed according to the purpose of the study. The most common site
of osteoporotic fractures is the epiphysis. Epiphyseal fractures refer to fractures of the
epiphysis at both ends of the long bones or intra-articular fractures when the fracture
line spreads to the articular surface [86]. Clinically, the most common sites for epiphyseal
fractures are the distal radius, proximal humerus, and proximal femur. As mentioned
earlier, the rat is the most common model of osteoporosis, and it is also the most common
model for epiphyseal fractures. The distal femur and proximal tibia are generally used
as study sites in rat models of epiphyseal fractures. The fracture modeling procedure is
usually performed by anesthetizing the animal, making an incision at the knee joint, bluntly
separating the inner fascia and muscles to fully expose the distal femur or proximal tibia,
and performing a vertical, transverse, or wedge osteotomy at the epiphysis to complete the
fracture modeling. Alt et al. performed a 3 mm or 5 mm wedge osteotomy of the distal
femoral metaphyseal region in rats 3 months after OVX to study the healing process of
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osteoporotic fractures [87]. The molding method of Alt has been continuously improved
to make it more standardized, and the fracture gap size is adjustable to suit the needs of
material-related research [88–90]. Nozaka et al. established a vertical osteotomy model in
the proximal tibia of osteoporotic rats after OVX, with a truncated midsagittal osteotomy
from the articular surface to the tibial diaphysis [91]. In large animals such as dogs and
rabbits, similar to rats, epiphyseal wedge and vertical osteotomies are the most common
means of modeling [47,92,93].

5.3. Bone Defect Model

Bone defects are an atypical type of fracture in which there is a shortage of bone due to
trauma or surgery. In recent years, with the rapid development of bone tissue engineering,
artificially prepared biomaterials have gradually become novel bone tissue replacements,
and there are many animal bone defect models used to assess the regenerative capacity of
bone replacement biomaterials [94]. Compared with the fracture model, the bone defect
model is simple to operate and avoids the influence of the compensatory effect of the
adjacent bone on the experiment [94]. However, the bone defect model differs greatly from
the clinical reality. The animals commonly used for making bone defect models are mice,
rats, rabbits, and dogs [95]. In principle, the larger the animal is, the better it matches the
healing mechanism of human bone. However, the experimental cost of large animals is
too high, and the number of samples is difficult to guarantee. Furthermore, the larger the
animal is, the weaker its self-recovery ability, which tends to cause a long experimental
cycle. The mouse model is economical and has a strong ability to resist infection and
tolerate surgery, and the repair cycle is shorter and easier to manage, so the mouse model
has certain advantages. The greatest advantage of rabbits over rats is that they are larger in
size, more convenient to operate than rats, and within an acceptable economic range, so
they are also the more commonly used animal models.

As far as the defect site is concerned, the bones used to prepare bone defect models are
limb bone, cranial bone, and mandible. Cranial bones are not weight-bearing and require
materials with low mechanical properties, so they are mostly used for the preparation of
bone defect models with filler-type bone graft materials. Small rodents, such as mice and
rats, are preferred. In rats, for example, researchers mostly use a low-speed (≤1500 rpm)
sterile annular drill to create circular defects on the skull surface of rats without disturbing
the dura mater. Defects ≤ 6 mm in diameter are generally drilled bilaterally at the parietal
bone; defects > 6 mm in diameter are generally drilled with the sagittal suture as the
center [96]. The site of bone defect preparation in the limb bone model is generally chosen
as the long bone stem and bone end. The long bone trunk has a regular bone shape
and is often used to prepare segmental bone defects; the long bone ends, such as the
femoral condyles, the greater tuberosity of the humerus and the proximal medial tibia have
cancellous bone structures and are relatively thick and blood-rich, and are often used to
prepare cylindrical bone defects that do not require fixation [95].

5.4. Bone Nonunion

The bone nonunion model is a special kind of fracture healing model. Bone nonunion
generally refers to a fracture that has been treated beyond the usual healing time and
then extended again (typically 8 months after the fracture), and still fails to achieve bony
healing. A variety of factors can lead to osteonecrosis, and these factors become the basis
and method of osteonecrosis mapping, including bone loss at the fracture end, instability,
tissue insertion, impaired blood circulation, and infection. Animal experiments and clinical
studies have shown that too large a gap at the fracture end can lead to delayed healing
or even nonhealing of the fracture. Claes et al. performed fracture end gap method
modeling in goats and found that the larger the gap was, the slower the fracture healing [97].
Stabilization is an extremely important step in the fracture healing process, and poor
stability of the fracture end tends to cause sliding of the two fracture ends, affecting
tissue and vascular regeneration and osteoblast activity [98]. Volpon formed a bone defect
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in the middle segment of the radial shaft in adult dogs and did not use any internal
or external fixation, which allowed the two broken ends to produce arbitrary rotation
or sliding, destabilizing the broken ends and causing both models of hyperplastic and
atrophic osteonecrosis [99]. In addition, there are other methods for modeling osteochondral
nonunion, such as periostectomy and drug-induced methods. The selection of a model of
osteogenesis imperfecta is based mainly on the purpose of the study.

5.5. Fracture Fixation Types

Fracture fixation types include intramedullary fixation and external fixation.

1. Intramedullary fixation

Intramedullary fixation involves the use of an intramedullary fixation pin, which is
threaded into the medullary cavity of the bone stem to be fixed to control the position of
that stem fracture. Studies have shown that intramedullary implants do not affect fracture
healing [100,101], but inserting steel pins into the bone marrow cavity inevitably causes
tissue breakdown within the cavity [102,103]. The elasticity, smoothness, diameter, and
ratio of the intramedullary pin to the internal diameter of the bone marrow cavity will affect
fracture healing [104–106]. The common method of intramedullary fixation is to insert a
steel pin into the bone marrow cavity, but due to the presence of rotational torsional forces
exerted on the femur by the surrounding skeletal muscles, the common intramedullary pin
does not provide good stability of the femur against rotation [107]. Holstein et al. used an
intramedullary pin with threads in a fracture model with 16 adult rats [105]. The surface
of a normal intramedullary pin is smooth, which does not hold the bone stem axially
stable and rotates the fracture part of the bone stem with the animal’s activity, which is not
conducive to healing, whereas a threaded intramedullary pin provides axial stability and
prevents rotation of the fracture part. Wang et al. concluded that intramedullary pins are
most effective in promoting fracture healing when their modulus of elasticity is 20% to 50%
of the normal femoral stiffness [106]. Intramedullary pin molding is more widely used due
to the advantages of small incision and low bleeding produced in animals. In addition, the
materials used for intramedullary fixation pins have become more diverse in recent years
as research has progressed, including new alloy materials and biodegradable materials,
etc. [108–110].

2. External fixation

External fixation refers to the technique of inserting steel pins into the proximal
and distal ends of the diaphysis and connecting the pins with metal or high-strength
nonmetallic rods and connecting devices outside the body to achieve the effect of fracture
treatment, correction of diaphysis and joint deformity, and limb lengthening through
fixation, compression, and traction. External fixation molds provide greater resistance to
rotational torque and do not cause significant damage to the tissue within the bone marrow
cavity [111,112]. The disadvantage is that the external fixation molding process is more
complicated, the molding time is longer, the bleeding is high, and it is likely to lead to the
death of the animal. In addition, external fixation molds are similar to putting a pair of
shackles on the animal, and the more weight it has, the more it affects the animal [57]. The
steel pin used for external fixation directly connects the bone tissue to the outside world,
which can easily cause infection inside the bone tissue [113].
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Table 1. The characteristics of commonly used experimental animals.

Animal
Species

Sexual Maturity
Time

Epiphyseal
Plate

Haversian
System * Advantages Disadvantages Applicable Models

Mouse 6 weeks Existence For a
Lifetime None

• Low price, easy feeding, short
growth cycle.

• Detailed genome map.
• Plenty of monoclonal antibodies

are available.

• Small size, high surgical
technique requirements,
difficult to standardize, and
poor reproducibility.

• Hard to evaluate
biomechanical indicators and
serum indicators.

• Cannot be implied in
Haversian system research.

• Model of delayed healing and
nonunion [114].

• Closed and open
fractures [58,115].

• Epiphyseal fractures [116].
• Bone defects [117].

Rat 8 weeks Thinning with
age Rare

• Low price, easy feeding.
• Strong vitality, withstand surgery.
• Easy to evaluate biomechanical

indicators and serum indicators.
• Thymus-free rats can be used for

bone transplantation studies.

• Their bone differs greatly from
human bones in biochemical
composition, density, and
mechanical capacity.

• Hard to implied in Haversian
system research.

• Closed and open fracture
model [61,118].

• Epiphyseal fractures [83].
• Bone defects [119].

Rabbit 4–6 months Closure after
sexual maturity

Existence after
sexual maturity

• Gentle temperament, easy feeding.
• Low surgical technique

requirements.
• Easy to do biomechanical analysis.
• Easy to draw blood.
• Haversian system similar to that

of humans [120].
• Rapid skeletal

transformation [120].

• Biomechanical aspects differ
greatly from that of human
bones.

• Femoral head necrosis
model [121].

• Fatigue fractures model [122].
• Open fracture model [123].
• Epiphyseal fractures [124].
• Bone defects [125].

Dog 8–10 months Closure after
sexual maturity Existence

• Sexually mature dogs’ bones are
largely similar to those of humans
in physical properties,
physiological characteristics, and
fracture strength [51].

• Biomechanical reconstruction
is different from that of
humans.

• Model of delayed healing and
nonunion [99].

• Open fractures [126].
• Epiphyseal fractures [127].
• Bone defects [128].
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Table 1. Cont.

Animal
Species

Sexual Maturity
Time

Epiphyseal
Plate

Haversian
System * Advantages Disadvantages Applicable Models

Sheep and
goat 10–12 months Closure after

sexual maturity Existence

• Docile, easy to handle, relatively
inexpensive, spontaneously
ovulate.

• The hormone profiles are similar
to that of women [129].

• Lack of natural menopause,
that normal estrus cycles are
restricted to fall and winter.

• The gastrointestinal system
differs greatly from that of
humans [129].

• Open fracture model [130].
• Epiphyseal fractures [131].

Pig 4–6 months Closure after
sexual maturity Existence

• Easy to acquire specimens (i.e.,
blood, urine, bone).

• Bone density and fracture strength
are similar to human.

• High price, not easy to feed.
• Biomechanical reconstruction

is different from that of
humans.

• Open fracture model [132].

Nonhuman
primates 3–5 years Closure after

sexual maturity Existence

• Biomechanical characteristics
closest to those of humans.

• The fracture fixation and
biomechanical reconstruction are
similar to human.

• Moderate body size and low
surgical technique requirements.

• High price, short growth cycle,
not easy to feed.

• Their sources are very limited
due to the strict ethical and
legal protection of animals.

• Various fracture healing
models (particularly suitable
for studies related
to mechanics,
osteoconductivity) [133].

* The information comes from Hillier et al. [134] and O’Loughlin et al. [135].
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6. Summary

Animal fracture models are designed to study the mechanisms of bone tissue repair
during fracture healing. Fracture healing is a very complex process, and no all-inclusive
model can accurately mimic the underlying osteoporosis or fracture pattern in humans.
This review found that rodents and rabbits are more popular in the choice of animal species
because of economic factors and suitability. The choice of animal models for fracture healing
varies depending on the purpose of the study, but long bone fractures remain the most
dominant fracture model. Furthermore, there are still some challenges in animal fracture
models: (1) existing studies mainly focus on long bone fractures, and the understanding
of special site fractures (including epiphyseal fractures, joint fractures, etc.) is not yet
comprehensive, and there is no standardized surgical protocol; (2) osteoporotic fractures
have not yet been able to fully simulate the clinical spontaneous fracture process in humans,
especially vertebral compression fractures, while no effective small animal model has been
found. These problems still need to be solved by further research, and we believe that with
the continuous development of science, new animal fracture models will emerge.
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