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Abstract: Cancer is a term that denotes a group of diseases caused by the abnormal growth of cells
that can spread in different parts of the body. According to the World Health Organization (WHO),
cancer is the second major cause of death after cardiovascular diseases. Gene expression can play
a fundamental role in the early detection of cancer, as it is indicative of the biochemical processes
in tissue and cells, as well as the genetic characteristics of an organism. Deoxyribonucleic acid
(DNA) microarrays and ribonucleic acid (RNA)-sequencing methods for gene expression data allow
quantifying the expression levels of genes and produce valuable data for computational analysis.
This study reviews recent progress in gene expression analysis for cancer classification using machine
learning methods. Both conventional and deep learning-based approaches are reviewed, with an
emphasis on the application of deep learning models due to their comparative advantages for
identifying gene patterns that are distinctive for various types of cancers. Relevant works that employ
the most commonly used deep neural network architectures are covered, including multi-layer
perceptrons, as well as convolutional, recurrent, graph, and transformer networks. This survey also
presents an overview of the data collection methods for gene expression analysis and lists important
datasets that are commonly used for supervised machine learning for this task. Furthermore, we
review pertinent techniques for feature engineering and data preprocessing that are typically used to
handle the high dimensionality of gene expression data, caused by a large number of genes present
in data samples. The paper concludes with a discussion of future research directions for machine
learning-based gene expression analysis for cancer classification.

Keywords: gene expression analysis; machine learning; cancer classification

1. Introduction

Cancer describes a class of diseases in which malignant cells form inside the human
body due to genetic change. These cells divide indiscriminately upon development, extend
throughout the organs, and in many cases, they can result in loss of life. Cancer is the
second leading cause of mortality globally after cardiovascular illnesses [1]. Recently, gene
expression analysis has emerged as an important means for addressing the fundamental
challenges associated with cancer diagnosis and drug discovery [2,3]. Gene expression
analysis also provides insights into the contribution of different genes to cancer initiation
and progression. Consequently, changes in gene expression can be used as markers for
the early detection of cancer, and for identifying targets for drug development. Such
approaches can open up the possibility of healthcare that is more personalized, preventative,
and predictive [4].

Gene expression is the process by which the information contained in DNA is trans-
formed into instructions for making proteins or other molecules. It involves the tran-
scription of DNA into messenger RNA (mRNA), followed by a translation into proteins.
Gene expression analysis is employed to assess the order of genetic alterations occurring
under certain conditions, in tissue or a single cell [5]. It involves measuring the number
of DNA transcripts present in a sample tissue or cells to obtain information about which
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genes are expressed and to what levels. A component of gene expression quantification
is a comparison of the sequenced reads related to the number of base pairs sequenced
from a DNA fragment to a recognized genomic or transcriptome source. The precision of
the quantification depends on the sequenced reads having sufficient distinctive informa-
tion to allow applying bioinformatics algorithms to correlate the reads to the appropriate
genes. Prevalent methods for estimating gene expression include DNA microarrays and
next-generation sequencing (NGS) methods. The DNA microarray method employs a
two-dimensional array with microscopic spots to which short sequences or genes bind
to known DNA molecules through a hybridization process. NGS methods of massively
parallel sequencing offer extraordinarily high-throughput analysis, scalability, and speed,
and they have been used to determine the nucleotide sequence of a full genome, or of a
single DNA or RNA segment [6,7]. RNA-sequencing, also known as RNA-Seq, is an NGS
method that involves the conversion of RNA molecules into complementary DNA (cDNA)
and determining the sequence of nucleotides in the cDNA for gene expression analysis and
quantification. Compared to DNA microarrays, RNA-Seq [8,9] provides several advantages,
including greater specificity and resolution, increased sensitivity to differential expression,
and greater dynamic range. RNA-Seq can also be used to examine the transcriptome for
any species to determine the amount of RNA at a specific time.

Gene expression analysis requires implementing computational methods for under-
standing how genes are regulated or their role in the functioning of tissues and cells.
machine learning (ML)-based approaches have been frequently used to obtain insights
related to how variations in genes and regulatory regions result in phenotypic changes,
such as traits, wellness, and health [10,11]. Whereas early computational methods for gene
expression analysis typically relied on conventional ML approaches, such as Decision Trees
and Support Vector Machines, in the past ten years, deep learning (DL)-based methods
for forecasting the structure and function of genomic components—such as promoters,
enhancers, or gene sequence levels—have grown in prominence [12,13].

An important component of computational methods for gene expression analysis is
feature engineering, employed to handle the challenge of high dimensionality and the rela-
tively small number of samples in gene expression data. This study provides an overview
of the feature engineering techniques in gene expression analysis, classified into filter,
wrapper, and embedded methods [14]. Filter methods remove irrelevant and redundant
data features based on quantifying the relationship between each feature and the target
predicted variable. Wrapper methods employ a classification algorithm for evaluating
the importance of data features, where the classifier is wrapped in a search algorithm to
discover the best subset of data features. Embedded approaches [15,16] identify important
features that enhance the performance of a classification algorithm by embedding the
feature engineering technique into the learning stage of the classifier. In general, filter
methods are characterized by fast processing and lower computational complexity. In
contrast, wrapper and embedded methods typically extract more relevant data features
that contribute to improved performance of the corresponding classification method.

In the published literature, various architectures of deep neural networks (NN) were
applied for cancer classification using gene expression data, including fully connected
neural networks (also known as multi-layer perceptron NN, or MLP), convolutional neural
networks (CNN), recurrent neural networks (RNN), graph neural networks (GNN), and
transformers neural networks (TNN). MLP networks have connections from each neuron
to all neurons in the previous and the next layers. For analysis of gene expression data,
the input layer in MLP receives the gene expression profiles with each probe received
by one neuron. The output layer of the MLP returns the class probabilities of the gene
expression sample [17]. CNN models were initially designed for processing multidimen-
sional array data (images in particular), having two-dimensional convolutional filters as
processing units for learning hierarchical data representations. Subsequently, several works
transformed gene expression data into two-dimensional image-like arrays with rows and
columns [18] that were used as inputs to the network. Due to the ability of CNN models to
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capture local spatial relations in input data, they typically produced better classification
performance for gene expression analysis in comparison to MLP methods. In addition,
prior works also applied one-dimensional CNN, where each row in gene expression data is
fed directly as input to networks having layers that apply one-dimensional convolutional
filters. CNN models have generally been some of the best-performing DL models for gene
expression analysis. RNN models employ network architectures with recurrent connec-
tions, designed for modeling sequential data. A state vector is employed as an intermediate
process that combines the information of the current input in the sequence and stored
previous values to produce the output. These properties make RNN suitable for capturing
correlations in sequences of gene expression data as a source of information regarding the
biological processes underpinning cancer development [19,20]. Among the limitations of
RNN are the increased computational cost, and they are more susceptible to overfitting
in the small data regime, in comparison to CNN. GNN models employ an architecture
designed to learn graph representations of data features via a set of graph nodes and edges.
These models transform gene expression data into a graph representation and use a gene
expression topology to understand the correlations between the different genes [21]. This
capacity for learning graph-structured representations renders great potential for GNN
in future gene expression analysis, as demonstrated in recent works. TNN models use
a network architecture that applies the self-attention mechanism for learning long-range
dependencies in sequential data. This property makes TNN well-suited for identifying
correlations in gene expression analysis, and subsequently, models have been employed in
previous studies. Unlike related sequence models such as RNN, TNN allows parallelization
of the input samples for model training, which results in faster processing of long sequences.
Additionally, several studies designed hybrid network architectures, such as TNN models
with 1D convolutional layers, constructed for extracting gene information shared between
cancer types without the need for feature selection [22]. Additionally, transfer learning,
which refers to a set of techniques for transferring information from one model trained with
a large dataset to another, has been used to tackle the problem of small training datasets
and the high dimensionality of gene expression data [23,24].

Despite the recent progress in ML-based cancer classification using gene expression
data, various challenges remain to be addressed. Specifically, gene expression datasets
typically contain a small sample size, where each sample has a relatively large number
of dimensions, i.e., the number of genes. To handle this challenge, ML methods usually
rely on feature-engineering techniques for removing redundant information and selecting
an optimal set of features for classification. Although conventional ML approaches are
more dependent on efficient feature engineering and data preprocessing, prior works
have also leveraged feature engineering techniques in the workflows of DL models to
improve performance. In addition, transfer learning techniques were also employed to
overcome the problem of model training in the small data regime. DL-based methods have
generally outperformed conventional ML methods, and it can be expected that most future
models for gene expression analysis will be based on DL networks. Currently, several
approaches that employed MLP or CNN networks in combination with efficient feature
engineering and transfer learning techniques have achieved test accuracies upwards of
90%. However, the performance of current methods is sensitive to various parameters, and
further improvements are required for the generalization and robustness of the methods.
Other limitations of existing approaches include the lack of interpretability and limited
integration with other data types and modalities.

Numerous review papers in the published literature have overviewed the advances in
computational approaches for gene expression analysis. The most relevant papers that are
the closest to this review and were published in the last three years are listed in Table 1.
The table provides comparative information about the review papers, i.e., whether they
covered conventional ML approaches, feature-engineering techniques, DL approaches, and
the type of gene expression data used by the reviewed techniques. For instance, several
papers reviewed only conventional ML approaches for gene expression analysis. Similarly,
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some of the reviews concentrated solely on feature-engineering techniques, or other aspects
of gene expression analysis. In addition, many previous studies discussed mainly the
computational approaches related to DNA microarray gene expression data. Although
there are similarities and overlaps to some of the reviews listed in Table 1 and to other
reviews published before 2019, this review provides novel insights that were not covered
in prior works. The main contribution of this survey includes a comprehensive overview
of the applications of both conventional ML approaches and recent DL approaches for
gene expression analysis. Although some of the prior reviews discuss case studies in gene
expression analysis using DL architectures such as MLP, CNN, and RNN, no previous
review offers a comprehensive discussion of the use of GNN [25,26] and TNN [27,28]
architectures for gene expression analysis. On the other hand, GNN and TNN have the
potential to become prevalent DL architectures for this task. Furthermore, the focus of
this study was on approaches for modeling RNA-Seq gene expression data, being the
most dominant data format used for this task in recent years. In addition, this study
provides a review of related feature-engineering techniques and datasets for ML-based
gene expression analysis, which are not covered in many related review papers.

Table 1. List of previous review papers for gene expression analysis.

Reference Conventional ML
Approaches

Feature
Engineering DL Approaches Microarray Data RNA-Seq Data

Sathe et al., 2019 [29] No No RNN and CNN Yes Yes

Koumakis et al., 2020 [30] No No RNN and CNN Yes Yes

Zhu et al., 2020 [31] No No MLPNN, RNN,
and CNN Yes Yes

Gunavathi et al., 2020 [32] No No CNN Yes Yes

Tabares et al., 2020 [33] Yes No MLP and CNN Yes No

Bhonde et al., 2021 [12] No No MLPNN, RNN,
and CNN Yes Yes

Mazlan et al., 2021 [34] Yes Yes CNN Yes Yes

Karim et al., 2021 [35] Yes Yes MLPNN, RNN,
and CNN Yes Yes

Thakur et al., 2021 [36] Yes No CNN Yes Yes

Montesinos-López et al.,
2021 [37] No No MLPNN, RNN,

and CNN Yes Yes

Bhandari et al., 2022 [38] Yes Yes MLPNN, RNN,
and CNN Yes No

Khalsan et al., 2022 [39] Yes No MLPNN, RNN,
and CNN Yes Yes

Alhenawi et al., 2022 [40] No Yes No Yes No

2. Gene Expression Data

Gene expression analysis is the process of identifying the number of transcripts present
in a particular cell or tissue type to estimate the level of expressed genes. The branch of
science that focuses on the quantitative examination of the transcriptome is transcriptomics.
Early computational transcriptomics methods employed Sanger sequencing of expressed
sequence tag (EST) libraries. EST libraries represent short fragments of mRNA obtained
from a single sequencing procedure carried out on randomly chosen clones from cDNA
libraries. Whereas, a cDNA library is a collection of DNA sequences that have been
cloned and are complementary to mRNA that has been retrieved from an organism or
tissue. Over 45 million EST libraries from approximately 1400 distinct cellular species
have been produced to date. Although EST libraries provide a base resolution profile
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of expressed gene sequences, this technology usually does not contain full-length gene
sequences, and subsequently, the methods based on EST libraries were superseded by
chemical tag-based techniques, such as Serial Analysis of Gene Expression (SAGE). The
SAGE method allows for quantitative and simultaneous analysis of a large number of
transcripts in any particular cell system, without prior knowledge of the genes. This
method is based on a theoretical calculation that assumes a random nucleotide distribution
throughout the genome. The methods of Sanger sequencing of EST libraries and SAGE
were succeeded by DNA microarrays and NGS methods—most notably RNA-Seq—for
estimating gene expression.

2.1. Microarray Data

Microarray data are obtained through a laboratory technique where a DNA sequence
is contained in a tool consisting of a two-dimensional array with thousands of microscopic
spots. The microarray tools are also known as chips or slides, and each spot on the slide
is reserved for a single DNA sequence or gene. The DNA samples bind to the microarray
slide through a hybridization process, which is followed by scanning the colors of the
spots on the slide to measure the expression of each gene. One row in the microarray data
represents the gene expression level, and the columns represent the samples.

Microarrays can be used to identify DNA (as in comparative genomic hybridiza-
tion) or RNA (often as cDNA following reverse transcription), which may or may not
be translated into proteins. Microarray data allow for the comprehension of cellular pro-
cesses for genome-wide expression profiles related to specific conditions or diseases, such
as cancer. Similarly, they provide helpful information used in the pursuit of new phar-
maceuticals, in pharmacogenomics, and in the development of effective medications for
therapeutic methods.

One of the main advantages of DNA microarrays is that they allow one to measure
the expression level of thousands of genes. Microarrays also have limitations, including
relatively poor accuracy, precision, and specificity. Another limitation is the high sensitivity
of the experimental setup to changes in the temperature of hybridization, the purity and
rate of genetic material degradation, and the amplification process, all of which may affect
the quantification of gene expression.

2.2. RNA-Seq Data

RNA-Sequencing (RNA-Seq) belongs to the NGS methods [41], which are character-
ized by a capability for rapid profiling, and allow researchers to investigate the transcrip-
tome for any species in determining the presence and amount of RNA at a specific time [42].
This approach has been used to produce millions of sequences from complex RNA samples.
RNA-Seq is employed to measure gene expression, examine variations in gene expression
over time or due to applied therapies, discover and annotate complete transcripts, examine
post-transcriptional modifications, and characterize alternative splicing and polyadeny-
lation. The different applications are based on the capacity to analyze all RNA molecules
in a cell or tissue—including protein-coding RNA (mRNA) and non-coding regulatory
RNA (miRNA, siRNA) or functional RNA (tRNA, rRNA)—and suitably measure their
abundances simultaneously. Other important qualities of RNA-Seq include its high reso-
lution and large dynamic range, which have resulted in a large volume of acquired data
and contributed to remarkable advances in transcriptomics research [43]. Due to the above
advantages, RNA-Seq has been replacing microarrays for gene expression analysis.

Table 2 presents a comparison between microarray and RNA-Seq data in terms of
discovered gene range, different isoforms, resolution, background noise, cost, rare/new
transcript, and noncoding RNA. Conclusively, RNA-Seq provides several important advan-
tages when compared to microarray data.
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Table 2. Comparison between microarray and RNA-Seq data.

Characteristics Microarray Data RNA-Seq Data

Gene Discovery No Yes

Different Isoform No Yes

High Resolution No Yes

Background Noise Yes No

High Cost Yes No

Rare/New Transcript No Yes

Noncoding RNA No Yes

Similarly, single-cell RNA sequencing (scRNA-Seq) [44] allows the profiling of the
entire transcriptome for a large number of different types of individual cells. This results
in a high-throughput analysis with much larger datasets than conventional RNS-Seq. It
allows researchers to determine which genes are expressed in a heterogeneous sample at
the single-cell level, in what quantities, and across thousands of cells.

2.3. RNA-Seq Data Collection

To obtain RNA-Seq data, the extracted RNA is first converted into cDNA, and next
cDNA libraries are prepared for sequencing, and are sequenced on an NGS platform. The
sequencing process involves isolating and purifying mRNA molecules from the data. cDNA
is obtained by reverse transcription of mRNA using reverse transcriptase enzyme. cDNA
libraries are prepared by amplifying the cDNA fragments, and afterwards, NGS platforms
are used to analyze the resultant short-read sequences and estimate the gene expression
levels. The procedure depends on a number of experimental factors, including the utiliza-
tion of biological and technical replicates, level of sequencing, and target transcriptome
coverage. In certain instances, these experimental options will not significantly affect the
quality of RNA-Seq data. Still, thoughtful experimental design is often required, with a
focus on striking a balance between high-quality outcomes, time, and financial expenditure.

2.4. Gene Expression Datasets

The research community has dedicated significant efforts to collect, organize, and
integrate various types of gene expression data. Table 3 lists gene expression datasets,
including RNA-Seq and microarray data based on human tissue. The datasets are open-
source, easily accessible, and widely used for cancer classification and its related tasks.

Table 3. Datasets for gene expression analysis.

Reference Classification Task Type of Cancer and Data Source Number of Samples Type of Data

Mohammed et al., 2021 [45] Multiclass Classification
(5 types of cancers)

Breast Cancer (BRCA), Colon
adenocarcinoma (COAD), Lung

adenocarcinoma (LUAD), Ovarian
(OV), and Thyroid Cancer (THCA)

from Pan-Cancer Atlas

2166 RNA-Seq

Li et al., 2022 [46] Binary Classification
Kidney Renal clear cell carcinoma
(KIRC) from The Cancer Genome

Atlas (TCGA)
945 RNA-Seq

Zhang et al., 2022 [47] Binary Classification
Liver Hepatocellular

Carcinoma (LIHC) from
The Cancer Genome Atlas (TCGA)

424 RNA-Seq

Coleto-Alcudia et al., 2022 [48] Binary Classification Breast Cancer (BC) from
The Cancer Genome Atlas (TCGA) 1178 RNA-Seq

Abdelwahab et al., 2022 [49] Binary Classification Lung Adenocarcinoma (LUAD) from
The Cancer Genome Atlas (TCGA) 549 RNA-Seq



Bioengineering 2023, 10, 173 7 of 26

Table 3. Cont.

Reference Classification Task Type of Cancer and Data Source Number of Samples Type of Data

Ke et al., 2022 [50] Multiclass Classification
(33 types of cancers)

33 Types of Cancer from
The Cancer Genome Atlas (TCGA) 10,528 RNA-Seq

Divate et al., 2022 [51] Multiclass Classification
(39 types of cancers)

39 Types of Cancer from
The Cancer Genome Atlas (TCGA) 14,237 RNA-Seq

Houssein et al., 2021 [52] Binary Classification Leukemia from the GEO
(Gene Expression Omnibus) 72 Microarray

Hira et al., 2021 [53] Multiclass Classification
(18 types of cancers)

18 Types of Cancer from GEO
(Gene Expression Omnibus) 2096 Microarray

Vaiyapuri et al., 2022 [54] Binary Classification Ovarian Cancer from the GEO
(Gene Expression Omnibus) 253 Microarray

Lin Ke et al., 2022 [55] Binary Classification Lung Cancer from the GEO
(Gene Expression Omnibus) 181 Microarray

Deng et al., 2022 [56] Binary Classification Myeloma from the GEO
(Gene Expression Omnibus) 173 Microarray

Rostami et al., 2022 [57] Binary Classification Prostate Cancer from the GEO
(Gene Expression Omnibus) 102 Microarray

Xie et al., 2022 [58] Binary Classification Colon Cancer from the GEO
(Gene Expression Omnibus) 62 Microarray

3. Feature Engineering

Feature engineering is the process of turning raw data into features to emphasize
relevant information in the data and/or enhance the data analytics capability of machine
learning models. Feature engineering can select relevant features or produce novel features
for both supervised and unsupervised learning to streamline and accelerate data transfor-
mations while simultaneously increasing the predictive potential of computational methods.
Such techniques have been used to extract marker genes that influence the discriminative
capabilities of ML models [59,60] by evaluating and appraising which genomic features are
not redundant and should be prioritized [61]. In RNA-Seq data, characterized by a large
number of genes in comparison to the number of samples, feature selection is employed
to select a group of genes that best represent the dataset structure in a lower-dimensional
space and increase the signal-to-noise ratio.

Existing algorithms for feature engineering of gene expression data can be categorized
into three major groups: filter, wrapper, and embedded methods. The information flow in
the three groups of feature engineering methods is depicted in Figure 1.
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3.1. Filter Methods

Filter methods include feature engineering techniques that filter out data features that
are unlikely to contribute to the performance of a predictive model used in gene expression
analysis [63]. Filter methods are commonly used as a preprocessing step to rate the impor-
tance of all input features, typically by estimating a relevance score for ranking the genes
and using a threshold scheme for selecting the relevant genes for further processing [64].
To this end, filtering techniques assign weights related to the intrinsic qualities of the data
and evaluate the discriminative capability of the features, which are afterwards utilized to
retain only the highest-ranking traits and reject the lower-ranking features. For instance, the
Grouping Genetic Algorithm (GGA) was used to tackle the problem of grouping features
with the greatest diversity in RNA-Seq data. It has been employed for the classification of
an unbalanced database of RNA-Seq samples for gene expression analysis with different
forms of cancer. An advantage of the filter class of feature engineering methods is that it is
fast and computationally inexpensive, and therefore can be applied to large-scale RNA-Seq
datasets. Table 4 lists frequently used filter methods for feature engineering in RNA-Seq
data and the performance of the associated predictive models.

Table 4. Feature selection methods in gene expression analysis.

Reference Feature Selection Method Feature Selection Algorithm Dataset Type Accuracy (%)

Park et al., 2019 [65] Filter Methods Artificial Neural Network (ANN) RNA-Seq 90.71%

García-Díaz et al., 2019 [66] Filter Methods Grouping Genetic Algorithm RNA-Seq 98.81%

Wu and Hicks, 2021 [67] Filter Methods

K-nearest neighbor (kNN)
Naïve Bayes (NGB)
Decision trees (DT)

Support Vector Machines (SVM)

RNA-Seq

87%
85%
87%
90%

Chen and Dhahbi, 2021 [68] Filter Methods RF RNA-Seq 90%

Liu and Yao, 2022 [69] Filter Methods Deep Neural Network (DNN) RNA-Seq 99%

Gakii et al., 2022 [70] Filter Methods
Multilayer Perceptron

Sequential Minimal Optimization
Naive Bayes Classifier

NSCLC RNA-Seq
100%

96.42%
98.59%

Mahin et al., 2022 [71] Filter Methods k-Nearest Neighbor RNA-Seq 100%

Li et al., 2017 [72] Wrapper Methods Genetic Algorithm /k-Nearest Neighbor RNA-Seq 90%

Zhang et al., 2018 [73] Wrapper Methods

SVM-RFE-GS
SVM-RFE-PSO
SVM-RFE-GA

RFFS-GS

RNA-Seq

91%
91.68%
91.34%
92.19%

Simsek et al., 2020 [74] Wrapper Methods
RF

Artificial Neural Networks
DL Model (RMSProp)

RNA-Seq
91.83%
89.22%
95.15%

Al-Obeidat et al., 2021 [75] Wrapper Methods BABC-SVM RNA-Seq

97.41%
97.35%
98.50%
95.86%

Liu et al., 2022 [76] Wrapper Methods Random Forest RNA-Seq 99.68%

Al Abir et al., 2022 [77] Wrapper Methods Support Vector Machines (SVM)
SVM-RFE RNA-Seq 99.93%

Kong and Yu, 2018 [78] Embedded Methods Graph-Embedded Deep Feedforward
Networks (GEDFN) BRCA RNA-Seq 94.50%

Jiang et al., 2020 [79] Embedded Methods Bayesian Robit regression with
Hyper-LASSO (BayesHL) RNA-Seq N/A

Zhang and Liu, 2021 [80] Embedded Methods Robust biomarker discovery framework RNA-Seq

97%
98%
99%
98%
99%
98%

Abdelwahab et al., 2022 [49] Embedded Methods Recursive Feature Elimination
(RFE) + SVM RNA-Seq 94%

Coleto-Alcudia et al., 2022 [48] Embedded Methods Filtering + SVM RNA-Seq 93%
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3.2. Wrapper Methods

Wrapper methods evaluate the significance of data features by employing a classi-
fication algorithm. Wrapper methods interact with the classifier to identify a subset of
attributes that are optimal for model predictions, i.e., the attributions of various gene
subsets are assessed in an initial phase using the classifier to be employed, and afterwards
the classifier is re-trained using the genes with high importance. The criterion for selecting
a subset of features with wrapper methods is the performance of the learning algorithm.
In contrast, the learning algorithm is wrapped in a search algorithm that will discover the
best subset of features. In other words, wrapper methods evaluate the subsets of features
using the learning algorithm as a black box and the learning algorithm performance as the
objective function. Wrapper methods can be categorized as deterministic or randomized
search algorithms. Classification models that have been used with wrapper methods in-
clude k-Nearest Neighbors [72], Random Forests [73,76], Support Vector Machines [75,77],
and others. Since this feature-engineering approach requires training and evaluating a
multitude of classifiers by considering different subsets of candidate features, wrapper
methods are substantially more time-consuming and computationally demanding than
filter methods. On the other hand, wrapper methods deliver improved performance.

3.3. Embedded Methods

Embedded methods comprise algorithms for feature engineering that consider the
configuration of a used classifier to explore the space of hypotheses and feature subsets
in search of the optimal subset of features. Embedded methods attempt to combine the
benefits of filter and wrapper methods by applying the advantages of these methods
to the specifics of a single learning algorithm. Embedded methods generally produce
an improved performance in comparison to filter and wrapper methods, as they have
increased capacity for dealing with the feature interaction problem. This problem occurs
when the interactions of a subset of genes with other genes influence the feature selection
process, making it prone to be stuck with a subset of locally optimal features [81].

3.4. Hybrid Methods

Several works in the literature have employed a hybrid approach that combines the
advantages of the different feature-engineering methods. For instance, filter methods can
be employed in an initial step to reduce the overall number of features that are transmitted
to the wrapper stage. Afterward, a classifier model is applied to further refine the features
and select the final subset of genes [82]. Such methods introduce a tradeoff between com-
putational complexity and performance. In addition, ensemble methods such as Bagging,
Boosting Ensembles, and Random Forests were applied as flexible and robust alternatives
for handling feature interactions in high-dimensional settings. Because ensemble methods
use multiple weak classifiers, e.g., to fit portions of the available training data or portions
of the input features, these methods have been shown to reduce overfitting and improve
predictive performance in gene expression analysis [83].

3.5. Advantages and Disadvantages of Feature Engineering Methods

Table 5 presents the most important benefits and drawbacks of feature-engineering
methods in gene expression analysis. The advantages and limitations of filter methods are
provided for univariate filters and multivariate filters, where univariate filters evaluate each
feature independently, whereas multivariate filters evaluate features from the perspective of
other data features. For the wrapper methods, benefits and drawbacks are provided based
on prior knowledge about the feature distribution. Deterministic methods are used when
random variations of features in the data have a major influence on the predictive model,
whereas randomization procedures do not make assumptions about the data distribution
or account for random variations of features for gene expression analysis.
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Table 5. Characteristics of the categories of feature engineering methods for gene expression analysis.

Feature Selection Filter Methods Wrapper Methods Embedded Methods

Pros

Univariate Deterministic

Interacts with the classifier in a
complex way.
Models feature dependencies.
Reduced computational complexity
than wrapper methods.

Fast and scalable to large datasets.
Independent of the classifier.

Interacts with the classifier in
a simple way.
Models feature dependencies.
Takes less time to compute
than randomized methods.

Multivariate Randomized

Models feature dependencies.
Independent of the classifier.
Reduced computational
complexity than
wrapper methods.

Interacts with the classifier.
Models feature dependencies.
Less prone to the local feature
interaction problem.

Cons

Univariate Deterministic

Classifier-dependent selection.

Ignores feature dependencies.
Ignores interaction with
the classifier.

Risk of overfitting.
More prone than randomized
algorithms to the local feature
interaction problem.
Classifier-dependent selection.

Multivariate Randomized

Slower and less scalable than
univariate techniques.
Ignores interaction with
the classifier.

Computationally intensive.
Models feature dependencies.
Classifier-dependent selection.
Higher risk of overfitting than
deterministic algorithms.

4. Methods for Gene Expression Analysis

Various ML methods have been used in gene expression analysis to identify potential
cancers and provide insights into potential treatment options.

4.1. Traditional Machine Learning Methods

Conventional machine learning methods, such as Support Vector Machines (SVM),
k-Nearest Neighbor (kNN), Naïve Bayes (NB), Random Forest (RF), and related methods
were used in a body of works on early cancer detection [84,85]. For instance, Segal et al. [86]
proposed a genome-based SVM strategy for the classification of clear cell sarcoma. The
authors employed the Student’s t-test to select a set of 256 genes, which were used to train
a linear SVM classifier for distinguishing melanoma and soft tissue sarcoma. The classifier
accurately identified 75 out of 76 instances in leave-one-out cross-validation. Further,
several traditional ML methods were combined with feature selection methods, such as
the work of Zhang et al. [73], who use SVM with recursive feature elimination (RFE) and
parameter optimization (PO), hence referred to as SVM–RFE–PO. This approach applied
grid search and Partial Swarm Optimization for feature selection, combined with a genetic
algorithm for parameter tuning in the feature selection process. Afterwards, the optimal set
of salient features was used to train an SVM model for cancer classification. Ram et al. [87]
implemented an RF ensemble to extract a set of 273 relevant genes while retaining the
predictive capacity of the classifier. Similarly, Hijazi et al. [88] introduced an approach for
selecting a group of genes that can best differentiate between cancer subtypes for normal
and cancer samples via a two-step feature selection strategy based on an attribute estimate
method and a Genetic Algorithm. Although the model achieved high accuracy of 99.89%
and 99.40% for two types of cancers from five cancer datasets, the performance decreased
for other types of cancer. The Evolutionary Programming-trained Support Vector Machine
(EP-SVM) method [88] constructed a probabilistic SVM approach to examine the outputs of
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binary classifiers using unique class features. Prior works that employed traditional ML
methods for gene expression analysis are listed in Table 6.

Table 6. Traditional ML-based methods for gene expression analysis.

Reference Dataset Algorithm Dataset Type Performance

Segal et al., 2003 [86] Cancer SVM Gene Expression Data Accuracy: 98.5%

Hijazi et al., 2013 [88] Mixed-Lineage Leukemia
(MLL) SVM Linear Gene Expression Data Accuracy: 99.89%

Ram et al., 2017 [87] Colon Cancer RF Microarray Data Accuracy: 87.39%

Zhang et al., 2018 [73] Breast Cancer SVM-RFE-PSO Gene Expression Data Accuracy: 81.54%

Yuan et al., 2020 [89] Tumor-educated platelets Evolutionary
Programming-trained SVM Gene Expression Data Accuracy: 95.93%

Yuan et al., 2020 [90]
Lung adenocarcinoma

(AC) and lung squamous
cell cancer (SCC)

RF Gene Expression Data Accuracy: 94.9%

RF Gene Expression Data Accuracy: 93.3%

SVM Gene Expression Data Accuracy: 94.7%

Abdulqader et al., 2020 [91]
Lymphoma kNN Microarray Data Accuracy: 94.7%

Lymphoma NB Microarray Data Accuracy: 74.83%

In general, ML algorithms have proven to be a powerful tool for detecting hard-to-
discern patterns in complex and high-dimensional data across numerous applications.
Therefore, they have been well-suited for analysis and classification of gene expression
data [89]. However, the performance of conventional ML algorithms highly depends on
the quality of supplied features; hence, their performance has relied on the efficiency of the
accompanying feature selection methods.

4.2. Deep Learning Methods

Deep learning-based methods employ artificial neural networks (NN) with multiple
layers of processing units for learning data representations. These methods can learn
hierarchical representations in high-dimensional data, which is a key advantage compared
to conventional ML algorithms [92]. Consequently, present state-of-the-art methods for
gene expression analysis take advantage of their unique capabilities [93]. The most com-
monly used NN architectures include fully-connected NN (multi-layer perceptron NN),
convolutional NN (CNN), recurrent NN (RNN), graph NN (GNN), and transformer NN
(TNN) [31].

4.2.1. Multi-Layer Perceptron (MLP) Neural Networks

MLP is a neural network architecture with fully connected layers where each neuron
in a hidden layer is connected to all other neurons in the neighboring layers. MLP classifiers
have been designed for cancer classification in a line of prior works on gene expression
analysis. For instance, Lai et al. [94] designed an MLP network that combined diverse data
sources of gene expression and clinical data to successfully predict the overall survival of
non-small cell lung cancer (NSCLC) patients. The study integrated 15 biomarkers with
clinical data, which were afterward utilized to create an integrative MLP classifier using
bimodal learning to predict the 5 year survival status of NSCLC patients and achieved
0.8163 AUC and 75.44% accuracy. Zhang et al. [95] proposed an unsupervised feature
learning framework for identifying different properties from gene expression profiles by
combining a principal component analysis (PCA) algorithm and an autoencoder MLP
model. An ensemble classifier based on the AdaBoost algorithm referred to as PCA-AE-
Ada was used to predict clinical outcomes in breast cancer. Gao et al. [96] proposed the
Deep Cancer Subtype Classification (DeepCC) approach for supervised cancer classification
based on the analysis of functional spectra that indicate the activities of biological pathways.
They performed enrichment analysis for each sample and trained a multilayer NN to
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replace hand-engineered features. The authors achieved a balanced accuracy greater than
90% on breast and colorectal cancer classification. Chandrasekar et al. [97] introduced
an MLP-based classification approach to compare the assessment period, categorization
correctness, and potential to detect the illness and determine the severity positions of the
illness. They focused on obtaining accurate prediction using a small number of gene subsets
in predicting cancer disease and providing its severity level. Laplante et al. [98] designed
an MLP network for classifying cancers in 20 anatomical areas using miRNA stem-loop
cohorts to identify the anatomical site of cancer in 27 cancer types from TCGA. The first
layer of the MLP network had 1046 input neurons corresponding to each miRNA in the
dataset, and the final layer had 27 neurons representing the cancer types. This approach
achieved an average accuracy of 96.9%.

Table 7 lists related works in gene expression analysis based on MLP neural networks.
The main advantage of MLP models and related DL methods compared to conventional
ML methods is the capacity for extracting representative features in genomic data indepen-
dently from the implementation of feature selection methods. Among the limitations of
MLP classifiers is that the fully connected network architecture is less powerful in identi-
fying long-term correlations in genomic data compared to CNN, RNN, GNN, and TNN.
MLP networks also lack the means provided by GNN for identifying graph connections in
genomic data.

Table 7. Deep learning-based MLP methods for gene expression analysis.

Reference Dataset Type of Cancer Algorithm Dataset Type Performance

Zhang et al., 2018 [95] NCBI GEO
database Breast

DNN [AdaBoost
algorithm

(PCA-AE-Ada)]

Gene Expression
Data ROC-AUC: 0.714%

Gao et al., 2019 [96] Breast Cancer Breast DeepCC Gene Expression
Data

Accuracy:
89%

Lai et al., 2020 [94] Lung
Adenocarcinoma Lung

DNN [four hidden
layers, with the

rectified linear unit
(ReLU)]

Gene Expression
Data

ROC-AUC: 0.8163,
Accuracy: 75.44%

Chandrasekar et al., 2020 [97] Microarray
Dataset

Cancer
(heterogeneous

disease)
DNN Gene Expression

Data
Accuracy:

72.5%

Laplante et al., 2020 [98] TCGA Tumor DNN Gene Expression
Data

Accuracy:
96.9%

Azad et al., 2021 [99]

Breast Cancer
Wisconsin

(Original) Dataset
(WBCD)

Breast Cancer

Intelligent Ensemble
Classification method
based on Multi-Layer

Perceptron neural
network (IEC-MLP)

Gene Expression
Data

Accuracy:
98.74%

Alshareef et al., 2022 [100]

Patient Databases
(PubMed,

CENTRAL,
EMBASE,

OASIS, and CNKI)

Prostate Cancer
Detection

DNN [CIWO-based
F.S.]

Gene Expression
Data

Accuracy:
96.21%
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4.2.2. Recurrent Neural Networks (RNN)

RNN is a subclass of neural networks that introduces recurrent connections between
the neuron units, which furnish the network with a memory capability: past observations
can be employed to understand the current observation or predict future observations in
an input sequence. These characteristics provide RNN with sequential dynamic behavior,
making it suitable for processing sequential data and identifying inner relationships and
variation tendencies [101,102]. Sahin et al. [103] developed an RNN framework to model a
stability mechanism for robust feature selection of microarray datasets. They combined a
long short-term memory (LSTM) network with the Artificial Immune Recognition System
(AIRS) and achieved 89.6% accuracy. RCO-RNN was introduced by Aher et al. [104]
and employed the rider chicken optimization (RCO) method to extract relevant genes in
gene expression data, which were afterward categorized with an RNN. On the Leukemia
database, Small Blue Round Cell Tumor (SBRCT) dataset, and Lung Cancer Dataset, RCO-
RNN achieved a 95% accuracy rate. Majji et al. [105] presented a novel technique for
automatic cancer prediction, referred to as JayaALO-based DeepRNN, which employed
Jaya ant lion optimization (ALO) in an RNN model. The approach was validated using
four datasets, namely AP Colon Kidney, AP Breast Ovary, AP Breast Colon, and AP
Breast Kidney dataset, and achieved the maximum accuracy of 95.97%. Suresh et al. [106]
designed an approach for interpreting genome sequencing with the bat sonar algorithm
and LSTM model for disease detection. LSTM recurrent networks were frequently used in
other related works to find associated genes for tumor diagnosis, breast cancer detection,
identify cancerous cells from normal cells, and biological entity recognition [107–110].
Zhao et al. [111] developed an RNN model to identify the transcriptional target factor. The
memetic technique was used in [112] to learn RNN parameters, while LASSO-RNN was
used to rebuild gene regulatory networks (GRNs). A summary of recent related works
based on RNN is provided in Table 8.

Table 8. Deep learning-based RNN methods for gene expression analysis.

Reference Dataset Type of Cancer Algorithm Dataset Type Performance

Sahin et al., 2019 [103] Colon, lung, and prostate datasets from
gene expression profile (GEP) datasets

Lung
Lymphoma
Leukaemia

Colon
SRBCT
Prostate

RNN [LSTM-AIRS] Microarray data

Accuracy:
89.6%
88.3%
85.3%
84.7%
77.6%
75.7%

Zhao et al., 2019 [111]

Data1endoderm (PrE)
Cells.

Data2: Mouse embryonic
fibroblast (MEF)

cells.
Data3: Definitive
endoderm (DE)

cells.

Classification RNN Gene Expression
Data

ROC-AUC
Data1: 0.620
Data2: 0.587
Data3: 0.578

Liu et al., 2020 [112] Benchmark Dataset: DREAM3 and
DREAM4 Classification MALASSRNN-GRN Microarray data

ROC-AUC
(node = 10,

Density = 20%,
40%)

0.6351
0.7188

Aher et al., 2021 [104]
Leukaemia datasets (Leukemia data 2017),

SRBCT dataset (SBRCT dataset 2020).
SRBCT dataset (SBRCT dataset 2020).

Leukaemia
SRBCT
Lung

RNN [Rider Chicken
Optimization

algorithm]
(RCO-RNN)

Gene Expression
Data

Accuracy:
94.5%
94.0%
95.0%

Majji et al., 2021 [105]

AP_Colon_Kidney dataset 2020
AP_Breast_Ovarydataset 2020
AP_Breast_Colon dataset 2020

AP_Breast_Kidney dataset 2020

Colon Cancer
Kidney Cancer
Breast Cancer
Ovary Cancer

JayaALO-based
DeepRNN

Gene Expression
Data

Accuracy:
95.27%
95.97%
95.97%
95.27%

Suresh et al., 2021 [106]
Acute

myeloid (AML) and acute lymphoblastic
leukemia (ALL)

Acute
myeloid (AML)

and acute
lymphoblastic

leukemia (ALL)

LSTM
and Bat sonar

Algorithm

Gene Expression
Data

(via DNA
microarray)

Accuracy:
86.35%
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RNN models have multiple advantages in gene expression analysis, as they improve
the efficiency by enabling the model to identify and retain sequential feature informa-
tion [113]. Additionally, these networks can adapt to the dynamics of uncertain systems,
for instance, because the significance of genetic data may alter over time. RNNs also have
some disadvantages for gene expression analysis, such as increased processing time com-
pared to CNNs and other related methods, resulting in slower and more complex training
procedures and a reduced ability to capture dependencies in longer genomic sequences
compared to GNN and TNN [114,115].

4.2.3. Convolutional Neural Networks (CNN)

Convolution Neural Networks (CNN) are deep learning architectures initially de-
signed primarily for image analysis and processing. CNN employ convolutional filters
to automatically learn spatial feature hierarchies in input data. The network architectures
use a combination of stacked convolutional and pooling layers (additional regularization
layers are frequently used, such as Batch Normalization or Dropout layers) [116]. In gene
expression analysis, Xiao et al. [117] presented a CNN-based ensemble method, which
was applied to three public RNA-Seq datasets of three kinds of cancers, including Lung
Adenocarcinoma, Stomach Adenocarcinoma, and Breast Invasive Carcinoma, and attained
a precision of 98%. In several related research works [18,118], the authors employed CNN
models to classify tumor types by embedding the high-dimensional RNA-Seq data into
2D images. Accordingly, the lightweight CNN architecture for breast cancer classification
using gene expression data transformed into 2D images proposed by Elbashir et al. [18]
achieved a precision of 98.76%. Three CNN models (1D-CNN, 2D-Vanilla-CNN, and 2D-
Hybrid-CNN) were trained and tested using gene expression profiles from 10,340 samples
of 33 different cancer types. The authors fed 713 normal samples that matched 23 TCGA
cancer types into a 1D-CNN model to examine the effects of tissues of origin. This model
achieved the best performance for predicting breast cancer subtypes compared to other
models, with a precision of 88.42% [119].

CNN using multi-dimensional 1D, 2D, and 3D convolutional models has been de-
signed for analysis of gene expression data. One-dimensional convolutions were applied
to sequences of genomic data and were proven suitable for learning sequential patterns.
Two-dimensional convolutions have been designed for processing gene expression data
that are first transformed into an image format. Gene expression images are typically
created by directly mapping gene expression values to a predetermined palette of colors
and utilizing domain-specific data to identify the location of each gene in the images. The
main disadvantage of this method is the loss of information that results from utilizing
discrete sets of colors instead of the original continuous expression values to calculate
the values of the image pixels. Another approach divides the process of creating a gene
expression image into two parts that follow one another. First, a biological functional
hierarchy represented by a tree-shaped structure is transformed into a functional hierarchy
image template. The gene locations are defined by following a certain biological standard.
Afterward, gene expression images are created by mapping the expression values to the
positions of the genes in the image template. This results in a final set of images where
each pixel represents the continuous gene expression value of the corresponding gene,
preventing the information loss that results from converting continuous gene expression
values into a set of discrete colors [120]. CNN models have generally achieved better per-
formance for gene expression analysis in comparison to RNN (see Table 9) because of the
ability to evaluate large amounts of genetic data more quickly, effectively, and accurately, by
extracting relevant information from both local and global level features in gene expression
data [36,121].
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Table 9. Deep learning-based CNN methods for gene expression analysis.

Reference Dataset Type of Cancer Algorithm Dataset Type Performance

Xiao et al., 2018 [117]

From TCGA
LUAD dataset
STAD dataset
BRCA dataset

LUAD
STAD
BRCA

Deep learning-based
multi-model

ensemble method
RNA-seq data

Accuracy:
95.60%
94.63%
94.62%

Lyu et al., 2018 [118] 33 tumor types in
Pan-Cancer Atlas 33 tumor types. CNN RNA-Seq data Accuracy:

95.59%

de Guia, et al., 2019 [122] TCGA 33 cohorts of cancer
types CNN RNA-Seq data Accuracy:

95.65%

Elbashir et al., 2019 [18] TCGA Breast Cancer lightweight CNN RNA-Seq data Accuracy:
98.76%

Mostavi et al., 2020 [119]
From TCGA:

33 cancer types
23 normal tissues.

33 cancer types and
23 normal tissues.

1D-CNN
2D-Vanilla-CNN
2D-Hybrid-CNN

RNA-Seq data

Accuracy:
95.7%
92.5%
95.7%

Khalifa et al., 2020 [123]
Tumor Gene

Expression for five
separate cancer types

KIRC
BRCA
LUSC
LUAD
UCEC

Binary Particle
Swarm Optimization–

Decision Tree
(BPSO—DT) and

CNN.

RNA-Seq data

Accuracy:
98.20%
98.30%
97.7%
84.8%

96.40%

4.2.4. Graph Neural Networks (GNN)

Graph neural networks (GNN) [124] are a deep learning architecture developed for
performing inference on data represented by graphs with vertices (nodes) and edges. A
graph network propagates data features through the graph nodes to learn contextualized
features via a statistical model for analyzing pairwise connections between objects and
entities. It aims to create precise state embedding vectors, where the state of the nodes
is continuously updated with the information dissemination mechanism on the graph.
GNN models follow a neighborhood aggregation scheme, where the representation vector
of a node is computed by recursively aggregating and transforming the representation
vectors of its neighboring nodes. For biological networks, graph nodes are frequently
genes, transcripts, or proteins, whereas graph edges tend to represent experimentally
determined similarities or functional linkages between them. The generation of network
graphs [125] from gene expression data frequently uses correlation coefficients to measure
the similarity between gene expression profiles derived from the range of analyzed samples.
For instance, pairwise Pearson correlation coefficients calculated for every set on the array
and above a predefined threshold have been used to define edges between genes (nodes)
network graphs.

GNN models have been designed for the analysis of multi-omics pan-cancer data
such as gene expression profile, DNA methylation, gene mutation rates, copy number
variation, exon expression, and clinical data, with an emphasis on predicting various types
of cancers [25]. Pfeifer et al. [126] introduced a unique explainable GNN-based framework
for cancer subnetwork discovery. The protein–protein interaction (PPI) network topology
of each patient is employed, where the nodes are enriched with multi-omics data from
DNA methylation and gene expression. The proposed GNN explainer offers model-wide
explanations for enhanced illness subnetwork detection. Similarly, other studies have em-
ployed GNN to forecast cancer types and find cancer-specific indicators using multi-omics
data with PPI networks [127]. Zhou et al. [128] employed gene–gene interaction networks
for cancer prediction in multi-dimensional omics datasets using a graph convolutional
network (GCN). In order to improve the diagnostic performance of graph-based techniques
for cancer grading, the authors used a contour-aware information aggregation network
(CIA-Net) with nuclear masks to extract nuclear shape and appearance features. A gated
graph attention network (GGAT) [26] was designed to extract the underlying semantic
information in graph-structured data where the graph describes the relationship between
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genes and their associated molecular functions. The authors used a gating mechanism
(GM) that interacts with the attention mechanism (AM) to overcome the limitation of
one-hop neighborhood reasoning (i.e., every node embedding contains information about
the features of its immediate graph neighbors, which can be reached by a path of length
one in the graph). In another related study, the authors achieved an accuracy of 95.66% by
gaining knowledge for distinguishing between the relative importance of the nodes in each
surrounding node [129].

GNN models have multiple advantages for processing gene expression data due to
the intrinsic learnable properties of propagating and aggregating attributes that capture
relationships across the entire cell-cell graph. Hence, the learned graph embeddings can be
treated as high-order representations of cell–cell relationships in RNA-Seq data in the con-
text of graph topology. GNNs can also effectively aggregate detailed relationships between
similar cells using a bottom-up approach, and they can use prior domain knowledge in
gene regulation to direct the imputation of missing data [130]. Furthermore, GNN models
have the ability to combine the strengths of heuristic skeletons. By incorporating topologi-
cal neighbor propagation throughout the entire gene network, GNNs offer the means to
build gene regulatory networks (GRN) and improve the generalization capability [131].
One of the shortcomings of GNN is the sensitivity to noisy data when building graph
structures [132].

4.2.5. Transformer Neural Networks (TNN)

TNN models employ network architectures that are based on the multi-head self-
attention mechanism, which allows capturing long-range dependencies between items in
a sequence [133]. It is a state-of-the-art approach for processing sequential data, such as
time series data, genomic sequences, acoustic signals, or natural language data. TNN is an
appealing network choice for gene expression analysis due to the ability to jointly attend
to information from different representation subspaces at different positions in genomic
data. Gene transformer [27] employs multi-head self-attention modules to address the
complexity of high-dimensional gene expression by recognizing relevant biomarkers across
multiple cancer subtypes. The multi-omic transformer adopted the transformer architec-
ture proposed by Osseni et al. [28] to discriminate complex phenotypes (cancer types)
based on four omics data types: transcriptomics (mRNA and miRNA), epigenomics (DNA
methylation), copy number variations (CNVs), and proteomics. Lv et al. [134] introduced a
transformer-based fusion network integrating pathological images and genomic data (PG-
TFNet) for cancer survival analysis. The transformer-based feature fusion module allowed
researchers to leverage the intra-modality relationships between patches in multiple fields
of view in multi-scale pathological slides.

TNN models have demonstrated increased robustness in comparison to CNN and
RNN and exhibited competitive performance on benchmarks with various data formats.
The self-attention mechanism allows one to utilize contextual information for any location
in the input sequence and capture long-range dependencies in comparison to CNN, and
permits higher parallelization compared to RNN [135]. Among the drawbacks of TNNs
include the requirement for large amounts of data, and hence their performance can be
inferior to other NN models for genetic data with a lower number of input samples [136].

4.3. Transfer Learning

Transfer learning [137] aims to enhance the performance of downstream models by
transferring information from different (but related) source domains. In order to use
knowledge representation of feature maps to untrained cancer datasets, Kakati et al. [138]
employed transfer learning to a CNN model called DEGnext, to predict the significant
up-regulated (UR) and down-regulated (DR) genes from gene expression data received
from The Cancer Genome Atlas database. Das et al. [24] utilized spectrogram images of
digital DNA sequences to perform transfer learning for automated liver cancer gene recog-
nition using 2D CNN models. In their suggested method, DNA sequences are digitally
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represented using entropy-based, EIIP, and integer-mapping approaches. Zhang et al. [139]
fine-tuned a convolutional LSTM network (CLSTM) by transfer learning to model the
temporal genetic information of cancer genes in dynamic contrast-enhanced magnetic reso-
nance imaging (DCE-MRI). Kandaswamy et al. [140] introduced a deep transfer learning
(DTL) framework built upon individual cell information without employing any type of
profiling or reduction methods with extracted cell features, which sped up the process
by 30% and improved the performance. The characteristics of related transfer learning
approaches are shown in Table 10.

Table 10. Deep-learning-based Transfer Learning methods for gene expression analysis.

Reference Type of Cancer Algorithm Dataset Type Performance

Sevakula et al., 2019 [141]

AP_Omentum_Lung (OL)
AP_Omentum_Uterus (OU)
AP_Colon_Omentum(CO)
AP_Ovary_Uterus (OvU)

AP_Endometrium_Uterus (EU)
AP_Endometrium_Ovary (EOv)

AP_Omentum_Ovary(OOv)

Transfer Learning Gene Expression
Data

Accuracy:
98.30%
97.89%
97.08%
95.60%
94.85%
93.82%
84.80%

Lopez-Garcia et al., 2020 [120] Lung Cancer Transfer Learning +
CNN

Gene Expression
Data

Accuracy:
73.26%

Zhang et al., 2021 [139] Breast cancer Transfer Learning +
CNN + CLSTM

Breast cancer
molecular subtypes

on MRI

Accuracy:
CNN with transfer

learning = 90%
CLTSM with transfer

learning = 93%

Kakati et al., 2022 [138] Breast cancer and uterine cancer Transfer Learning +
CNN

Gene Expression
Data

ROC-AUC:
88–99%

Das et al., 2022 [24] Liver cancer Deep Transfer
Learning Gene Sequences

Accuracy:
1D CNN model = 80.36%
2D CNN model = 98.86%

4.4. Pathway Analysis

Pathway analysis is a widely used technique for extracting biological meaning from
high-throughput gene expression data. Existing methods primarily focus on determin-
ing which pathway or pathways may have been disrupted because of differential gene
expression patterns [142]. For instance, the adipocytokine signaling pathway was used to
effectively distinguish breast cancer from colon and stomach tumors [143]. These meth-
ods are critical for developing effective bioinformatics techniques that enable researchers
to understand the genes and pathway routes altered in various cancer types and find
potential treatments. Over the last two decades, many pathway analysis methods have
been proposed, all of which can be divided into three categories (i.e., generations) based
on their timeline and employed strategy. The first two generations are referred to as
over-representation analysis (ORA) and functional class scoring (FCS) [144], and they use
pathways as gene sets. Topology-based (TB) pathway analysis [145] is the third generation,
which incorporates the pathway topology into the model for improved performance [146].
In TB pathway analysis, the signaling pathways method uses two types of information
to calculate a pathway’s impact, which includes differentially expressed (DE) genes in a
particular pathway and additional biological information related to the position and degree
of change in all DE genes expression, the relationships between genes as specified by the
pathway, and the nature of interactions. Biological pathway databases, such as KEGG [147]
and Reactome [148], utilize years of curated knowledge to annotate the positions and
interactions of genes in a pathway.
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5. Future Directions

This section discusses future directions that may potentially advance the research on
ML-based gene expression analysis.

• One avenue of future research is to consider additional types of input features with
existing learning algorithms because the full impact of gene expression cannot be
represented by the genetic sequence alone. Specifically, DNA methylations and muta-
tions are possible types of features that can be utilized in cancer classification. DNA
methylations can occur at CpG dinucleotides as well as in non-CpG sites. The CpG
is used to differentiate between the CG base-pairing of cytosine and guanine from
the single-stranded linear sequence. DNA methylation is linked to the normal devel-
opmental process and the observable change during the pathological processes. The
pathological processes include DNA repair genes and the gene-silencing of tumor
suppressors. Therefore, integrating methylations and mutations with RNA-Seq data
can produce features that positively impact tumor classification.

• Along with selecting the feature type that can contribute significantly to enhancing
the performance of ML methods, the design of the computational algorithm is also
essential. In this regard, researchers can focus on innovative techniques that can
perform efficiently on gold-standard datasets, such as the unique molecular identifier
(UMI), which has experimentally proven reference genes. Such studies can allow
researchers to conduct an experimental comparison of single-cell methods. Also,
research studies can validate the performance of algorithms on single-cell sequencing
protocols such as SMART-Seq, Cel-Seqs, and droplets.

• Identifying cancer-related biomarkers can be an important future direction where
researchers can investigate methodologies for identifying biomarkers related to each
cancer type. For instance, the methods listed for IntPath [149] and others [150] can
help in conducting functional pathway analysis of related genes for the cancer types.
Given a 2D image, DL methods can be used to extract promising features from images,
which can assist in identifying cancer-specific biomarkers.

• GNN can also be designed to support the integration of single-cell multi-omics data by
implementing heterogeneous graphs. Such data can include Droplet scRNA-Seq [151]
and the intra-modality of Smart-Seq2. Cell-type-specific gene regulatory mechanisms
can be elucidated using scGNN, especially when integrating scATAC-Seq and scRNA-
Seq data. Additionally, T cell ancestries can be identified uniquely by the T cell receptor
repertoires. The unique identification of T cells is important because it can improve
the performance of prediction methods regarding cell–cell interactions. scGNN can
facilitate building connections between diverse experiments, sequencing technologies,
and data modalities.

• It is also essential to place emphasis on the design of interpretable ML models that help
to understand the decision-making process by the employed computational methods,
and provide explanations about the cases where the models might fail. Interpretable
and explainable models that highlight the local and global properties of ML models
based on counterfactuals or feature attribution should receive increased attention in
this area.

• Recently, more studies have considered the analogous genomic probing of pre-malignant
lesions in the genomic analysis of various cancers, undertaken as part of The Cancer
Genome Atlas (TCGA) project. In addition to genomics, cancer prevention strategies in
the future will incorporate a variety of new modalities, including imaging, proteomic,
metabolomic, glycemic, and epigenetic, to identify and validate surrogate biomarkers
for cancer gene prevention trials. In conjunction with preclinical and clinical stud-
ies, these modalities can help establish new biomarkers to improve cancer patients’
treatment. Toxicologists, pathologists, and clinicians involved in early-phase clinical
studies may be able to use these novel validated biomarkers for diagnosis, treatment,
and cancer patient monitoring.
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• Multidomain genomic data analysis is another important avenue to study feature
selection and extraction, and for downstream analysis. Multimodal and multitask ML
methods based on early and late fusion may provide improved performance compared
to existing methods.

• Differentiating clinically similar cancers can be challenging, and focusing on genomic
and transcriptomic variations may prove beneficial. The omics data describe details
on various methods available for ovarian and different types of cancers and renal
cell carcinoma for identifying key genes and pathways that might assist in proposing
diagnostic and prognostic predictions. Optical genome mapping and structural variant
analysis (at a region of DNA, also known as copy number variants, which can contain
inversions, balanced translocations, or genomic imbalances) may be applied to various
cancer datasets for improved prognosis and treatment [152].

• Further understanding of circRNA localization, transportation, and degradation in
live cells, a completed circRNA interactome, and single-cell profiling are important
topics in this field that may prove helpful for cancer gene prediction [153].

A summary of future perspectives is provided in Table 11.

Table 11. Future directions in ML-based methods using gene expression data.

Future Perspectives

1. New types of data features
Introducing additional input features, such as DNA
methylations and mutations, can improve the discriminative
performance of existing learning algorithms.

2. Innovation in computational algorithms
The design of novel computational algorithms and novel
benchmarking approaches is important for advancing gene
expression analysis.

3. Improved cancer-related biomarkers Investigate methods for identifying biomarkers specific to each
form of cancer.

4. Integration of single-cell multi-omics data with
graph networks

GNN architectures can support the integration of single-cell
multi-omics data by employing heterogeneous graphs.

5. Design interpretable and explainable approaches
Emphasize the adoption of interpretable ML models that help to
understand the decision-making process and explain the
reasons when ML models fail.

6. Cancer prevention strategies based on multiple
data modalities

Combine a variety of new modalities, including imaging,
proteomic, metabolomic, glycemic, and epigenetic data, to find
and evaluate surrogate biomarkers for cancer gene
prevention studies.

7. Design multi-modal and multi-task learning approaches Multimodal and multitask ML methods based on early and late
fusion have the potential to improve classification performance.

6. Conclusions

Recent advances in deep learning-based approaches for processing complex high-
dimensional data offer tremendous potential for pattern recognition and predictive ana-
lytics of multi-omics data. This study overviews the progress in the application of both
traditional machine learning methods and deep learning methods for gene expression anal-
ysis using RNA-sequencing and DNA microarray data for cancer detection. The manuscript
presents a brief overview of the data collection methods for gene expression analysis and
lists the pertinent commonly used datasets for supervised machine learning. A taxonomy
of the techniques for feature engineering and data preprocessing is also provided, as an
important component of gene expression analysis. ML-based methods for gene expression
analysis are presented next, with a focus on deep learning-based approaches, due to their
comparative advantages for gene expression analysis. Prior works that employ neural
networks with popular architectures are covered, including multi-layer perceptrons, as well
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as convolutional, recurrent, graph, and transformer networks. The use of deep learning
methods in cancer classification using RNA-Seq data has shown promising results, with
several studies reporting high accuracy in classifying different types of cancer. We expect
that future research in this area will address the current challenges of generalizability,
robustness, and explainability of the results, and will lead to enhanced cancer diagnosis
and improved healthcare outcomes. The paper concludes with an outline of promising
future directions for cancer classification using gene expression analysis.

The main contributions of this study are in the provision of a comprehensive review
of recent research works for cancer classification using gene expression analysis, covering
feature engineering techniques, datasets for gene expression analysis, and applications of
traditional and deep learning ML methods. This study overviews methods based on recent
neural network architectures—such as graph and transformer networks—that have not
been covered in published reviews, as well as having a focus on RNA-Seq methods as the
dominant data format in recent works.
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