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Abstract: The early identification and treatment of various dermatological conditions depend on
the detection of skin lesions. Due to advancements in computer-aided diagnosis and machine
learning approaches, learning-based skin lesion analysis methods have attracted much interest
recently. Employing the concept of transfer learning, this research proposes a deep convolutional
neural network (CNN)-based multistage and multiclass framework to categorize seven types of
skin lesions. In the first stage, a CNN model was developed to classify skin lesion images into
two classes, namely benign and malignant. In the second stage, the model was then used with the
transfer learning concept to further categorize benign lesions into five subcategories (melanocytic
nevus, actinic keratosis, benign keratosis, dermatofibroma, and vascular) and malignant lesions
into two subcategories (melanoma and basal cell carcinoma). The frozen weights of the CNN
developed–trained with correlated images benefited the transfer learning using the same type of
images for the subclassification of benign and malignant classes. The proposed multistage and
multiclass technique improved the classification accuracy of the online ISIC2018 skin lesion dataset
by up to 93.4% for benign and malignant class identification. Furthermore, a high accuracy of 96.2%
was achieved for subclassification of both classes. Sensitivity, specificity, precision, and F1-score
metrics further validated the effectiveness of the proposed multistage and multiclass framework.
Compared to existing CNN models described in the literature, the proposed approach took less time
to train and had a higher classification rate.

Keywords: skin lesion detection; skin cancer; convolutional neural network; melanoma; classification

1. Introduction

The skin is the biggest organ in the human body, which also functions as a barrier
against heat, light, and infections. In addition to protecting the body, it is essential for
controlling body temperature and storing fat and water [1]. The epidermis, dermis, and
subcutaneous fat are the three primary layers [2]. Skin cancer begins in the cells, which
are the essential building components of the skin. Skin cells grow and divide naturally,
replacing old cells with new ones as part of the body’s normal process. This natural cycle
occasionally breaks down. When the skin does not require new cells, they form, and
existing cells die when they should not. These extra cells build up and form a tissue mass
known as a tumor [3,4].

Skin lesions are commonly classified into two classes: malignant (melanoma (MEL)
and basal cell carcinoma (BCC)) and benign (melanocytic nevus (NV), actinic keratosis (AK),
benign keratosis (BKL), dermatofibroma (DF), and vascular (VASC)) [5,6]. The majority
of skin cancer-related deaths are caused by MEL and BCC, which are the most aggressive
and deadly types of the disease. The specific cause remains mysterious despite continuous
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investigation [4,7]. However, this condition develops due to various elements, including
environmental factors, UV radiation exposure, and genetic predisposition. According to
Seigel [8], the estimated new skin cancer cases in the United States are around 104,930
(62,810 are male and 42,120 are female), with around 12,470 deaths (8480 are male and 3990
are female).

Even though malignant skin cancer has a very high survival rate when diagnosed early,
its widespread prevalence remains a major societal concern. Melanoma can spread through
the lymphatic or circulatory systems, reaching distant parts of the body in some situations.
Among the numerous skin cancer forms, this cancer has the highest risk of spreading [9,10].
According to research, early identification considerably reduces melanoma-related mor-
tality rates [11]. Even for specialists, early diagnosis remains challenging. Simplifying the
diagnosis process using novel technologies could benefit healthcare workers.

A non-invasive imaging method called dermoscopy has been developed to diagnose
skin cancer more accurately during clinical examinations [12]. The dermoscopy devices
can help differentiate between benign and malignant skin lesions because of their high
visual perception. Dermatologists are now better able to distinguish between malignant
and benign images because of the development of numerous conventional methods, such
as the Menzies technique [13], the ABCD rule [14], the seven-point checklist [15], and
CASH [16]. Accurate diagnosis of skin cancer by an expert is difficult due to intra-class
similarities. Furthermore, the color, size, and other features of skin cancer types are very
similar. Image processing and machine vision use for various medical imaging applications
has grown tremendously in the past decade [17–22]. Using these strategies speeds up the
diagnosis process and reduces human error. Utilizing the proven effectiveness of machine
learning and deep learning techniques in various applications [23,24], the researchers
used these techniques on dermoscopy images to examine skin lesions [25,26]. Since 2015,
dermoscopic image analysis (DIA) has relied primarily on convolutional neural networks
(CNNs) as classifiers, with advanced computer-aided diagnosis research emphasizing the
importance of CNN in achieving superior results in image classification, detection, and
segmentation in complex scenarios [27]. Codella et al. [26] investigated popular deep
neural network models, such as deep residual and CNN models, to identify malignant
lesions. Thomas et al. [28] classified tissues into 12 dermatologist classes using a CNN
framework for skin lesion detection. They outperformed clinical accuracy by achieving
a high accuracy of 97.9% compared to 93.6% for the clinical technique. Amin et al. [29]
designed a framework to compute deep features. They employed methods such as image
scaling, biorthogonal 2D wavelet transform, the Otsu algorithm, RGB-to-luminance channel
conversion, and pretrained networks such as VGG16 and AlexNet. Principal component
analysis was applied to choose the best features for categorization. Al-Masni et al. [30]
designed a full-resolution convolutional network for the segmentation of dermoscopic
images. The results showed that the ResNet-50 pretrained model had the best accuracy
compared to others. Another study found that the SENet CNN can be used to detect
skin lesions, and its proposed model had a high detection rate of 91% for the ISIC2019
dataset [31]. Recently, Bibi et al. [32] proposed a deep feature fusion-based framework to
categorize dermoscopic images into subclasses. They used DensNet-201 and DarkNet-53
CNNs to extract the deep features after applying the contrast enhancement approach. A
genetic optimization algorithm was used to select the optimal parameters for learning of
the models, and the serial–harmonic mean approach was used to fuse the features of both
models. The marine predator-based optimization algorithm was employed to discard the
irrelevant features. They used ISIC2018 (https://challenge.isic-archive.com/data/#2018)
and ISIC2019 (https://challenge.isic-archive.com/data/#2019) online datasets to validate
their proposed framework and achieved a high classification accuracy of 85.4% and 98.80%,
respectively. Although their models showed high performance, the computational time was
also increased due to pretrained models’ training and irrelevant feature removal. Therefore,
further research is still needed to achieve high performance with low training time and
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categorize the subclasses of skin lesions with a high classification rate to assist doctors in
making early treatment decisions. The following are the main contribution of this study:

• A new multistage and multiclass identification CNN-based framework for skin lesion
detection using dermoscopic images is presented;

• First, an isolated CNN was developed from scratch to classify the dermoscopic images
into malignant and benign classes;

• Second, the developed isolated CNN model was used to develop two new CNN
models to further classify each detected class (malignant and benign) into subcate-
gories (MEL and BCC in the case of malignant and NV, AK, BK, DF, and VASC in
the case of benign) using the idea of transfer learning. It was hypothesized that the
frozen weights of the CNN developed and trained on correlated images could enhance
the effectiveness of transfer learning when applied to the same type of images for
subclassifying benign and malignant classes;

• The online skin lesions dataset was used to validate the proposed framework;
• The proposed multistage and multiclass framework results were also compared with

the existing pretrained models and the literature.

2. Proposed Framework

Figure 1 depicts the proposed multistage and multiclass framework for skin lesion
detection using isolated and deep transfer learning models. The dermoscopic images were
preprocessed to minimize noise and adjust the size. The isolated CNN model (CNN-1)
was then developed to classify the dermoscopic images into two categories (benign and
malignant). Two new deep learning models (CNN-2 and CNN-3) were built from the
CNN-1 using transfer learning to further categorize each class type into subclasses (MEL
and BCC in the case of malignant (CNN-2 model) and NV, AK, BK, DF, and VASC in the
case of benign (CNN-3 model)). The frozen weights of the trained CNN-1 from correlated
images benefited the transfer learning for the same type of images for the subclassification
of benign and malignant classes. The subsequent sections provide a detailed explanation of
each step.
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Figure 1. A proposed deep learning network-based multistage and multiclass framework for skin
lesion detection.

2.1. Dataset Description

This work used an online skin lesions dataset to validate the proposed CNN-based
multistage and multiclass framework [5]. The dataset used for skin cancer classification
is HAM10000 and publically available (https://challenge.isic-archive.com/data/#2018,
accessed on 1 November 2023); it consists of dermatoscopic images of a diverse range of skin
lesions. The dataset includes 10,015 high-resolution dermatoscopic images collected over
two decades from two separate locations: the Department of Dermatology at the Medical
University of Vienna, Austria, and Cliff Rosendahl’s skin cancer practice in Queensland,
Australia [5]. Professional dermatologists have annotated clinical diagnoses to the dataset,
offering trustworthy reference data for machine learning model training and assessment.
However, challenges such as imbalanced class distribution, noise, and the existence of
undesired areas pose obstacles to developing models with robust generalization across all
lesion types. Further details about the samples in various classes are presented in Table 1.

https://challenge.isic-archive.com/data/#2018
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Table 1. Details of ISIC2018 skin lesions dataset.

Types Dermoscopic Images No. of Samples

MEL
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2.2. Preprocessing

Extraneous information is included in dermoscopic images, following a low categoriza-
tion rate. To improve relevance, it is critical to remove noise and undesirable regions. The
cropping approach is used to estimate extreme points, while noise-reduction techniques
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such as erosion and dilatation are used to reduce undesirable elements [19,33]. The data
augmentation was also applied to adjust the size (to 227 × 227) and balance the dataset
(1000 samples per class) using rotation and translation.

2.3. Development of CNN Models

An isolated CNN is meant to train for a specific task without prior knowledge [34]. A
transfer-learned model, on the other hand, uses knowledge from pre-existing models [35].
Transfer learning entails training a base model for subsequent tasks utilizing base images.
The new CNN is then trained by combining previously learned features from a previously
trained CNN that has been precisely tuned for the new task [36]. Pretrained and newly
designed CNNs are the two most common techniques for transfer learning [22,37]. Publicly
accessible pretrained models like ResNet50, ShuffleNet, SqueezeNet, MobileNet v2, and
GoogleNet can be modified for a particular task. On the other hand, newly developed
networks are built from scratch, reutilizing neuron weights by modifying particular CNN
model layers to fit the objective task.

The isolated CNN was designed to classify dermoscopic images into malignant and be-
nign categories. After that, the developed isolated CNN model was reused to subcategorize
both classes.

2.3.1. Isolated CNN for Binary Class Classification

A CNN is made up of multiple layers, including an input layer and a processing
layer, including convolutional, ReLU, and pooling layers. These layers work together to
retrieve various pieces of information from an image. A fully connected layer then uses the
collected features to classify the image [36,38]. A CNN also includes neurons, weights, bias
factors, and activation functions in addition to layers.

In this research, an isolated CNN was designed to categorize dermoscopic images
of skin into binary classes (malignant and benign). Different isolated CNN models were
developed to evaluate their performance. The isolated CNN model’s input layer comprised
pixel values taken from images. Notably, the 26-layer isolated CNN model (CNN-1)
outperformed the others in binary classification. As a result, Figure 2 depicts the detailed
architecture of this high-performing model and the relevant parameters.

Bioengineering 2023, 10, x FOR PEER REVIEW 6 of 17 
 

2.3. Development of CNN Models 

An isolated CNN is meant to train for a specific task without prior knowledge [34]. 

A transfer-learned model, on the other hand, uses knowledge from pre-existing models 

[35]. Transfer learning entails training a base model for subsequent tasks utilizing base 

images. The new CNN is then trained by combining previously learned features from a 

previously trained CNN that has been precisely tuned for the new task [36]. Pretrained 

and newly designed CNNs are the two most common techniques for transfer learning 

[22,37]. Publicly accessible pretrained models like ResNet50, ShuffleNet, SqueezeNet, 

MobileNet v2, and GoogleNet can be modified for a particular task. On the other hand, 

newly developed networks are built from scratch, reutilizing neuron weights by modi-

fying particular CNN model layers to fit the objective task. 

The isolated CNN was designed to classify dermoscopic images into malignant and 

benign categories. After that, the developed isolated CNN model was reused to subcat-

egorize both classes.  

2.3.1. Isolated CNN for Binary Class Classification 

A CNN is made up of multiple layers, including an input layer and a processing 

layer, including convolutional, ReLU, and pooling layers. These layers work together to 

retrieve various pieces of information from an image. A fully connected layer then uses 

the collected features to classify the image [36,38]. A CNN also includes neurons, 

weights, bias factors, and activation functions in addition to layers. 

In this research, an isolated CNN was designed to categorize dermoscopic images of 

skin into binary classes (malignant and benign). Different isolated CNN models were 

developed to evaluate their performance. The isolated CNN model’s input layer com-

prised pixel values taken from images. Notably, the 26-layer isolated CNN model 

(CNN-1) outperformed the others in binary classification. As a result, Figure 2 depicts the 

detailed architecture of this high-performing model and the relevant parameters. 

 

Figure 2. The isolated CNN (CNN-1) developed to categorize the skin dermoscopic images into 

two classes (malignant and benign). 

2.3.2. Developed Transfer Learned CNNs for Subcategorization 

This research applied transfer learning using a developed CNN, as explained in the 

previous sections. Reusing the CNN-1 model developed for binary classes (malignant 

and benign), two different CNN models were retrained by exchanging the final three 

layers, as shown in Figures 3 and 4. CNN-2 was developed to further classify the malig-

nant class into MEL and BCC. Figure 3 shows the detailed architecture of CNN-2. Simi-

larly, one more CNN model (CNN-3) was developed to subclassify the benign class into 

AK, BKL, DF, NF, and VASC. Figure 4 shows the detailed architecture of CNN-3. 
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classes (malignant and benign).

2.3.2. Developed Transfer Learned CNNs for Subcategorization

This research applied transfer learning using a developed CNN, as explained in the
previous sections. Reusing the CNN-1 model developed for binary classes (malignant and
benign), two different CNN models were retrained by exchanging the final three layers, as
shown in Figures 3 and 4. CNN-2 was developed to further classify the malignant class
into MEL and BCC. Figure 3 shows the detailed architecture of CNN-2. Similarly, one more
CNN model (CNN-3) was developed to subclassify the benign class into AK, BKL, DF, NF,
and VASC. Figure 4 shows the detailed architecture of CNN-3.
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2.3.3. CNN Optimization

By lowering the cost/loss function, optimization plays a critical part in improving the
accuracy of CNNs. Optimization measures the extent to which learnable parameters have
been computed, and loss reduction has been achieved.

To compute image features, convolution layer filters employ parameters that are
learned. During training, these parameters are initialized randomly. Each epoch’s loss is
determined by the target and predicted class labels. In the subsequent epoch, the optimizer
updates the learnable parameters, constantly updating them to minimize the loss. Figure 5
depicts the working of the optimizer. The stochastic gradient descent with momentum
(SGDM) method was used for optimization in this work.
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Validation Accuracy (%) 92.42 91.57 91.57 93.1 90.07 

Training Time 389 min 46 s 513 min 43 s 67 min 11 s 1227 min 29 s 11 min 43 s 

Sensitivity 

AK 0.98 0.96 0.96 0.985 0.985 

BCC 0.945 0.935 0.935 0.935 0.920 

BKL 0.885 0.82 0.82 0.905 0.795 

DF 1 1 1 1 1 

MEL 0.76 0.865 0.865 0.855 0.825 

NV 0.9 0.83 0.83 0.84 0.780 

VASC 1 1 1 1 1 

Specificity 

AK 0.987 0.991 0.991 0.993 0.980 
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BKL 0.977 0.988 0.988 0.978 0.977 
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AK 0.925 0.946 0.946 0.961 0.891 
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BKL 0.863 0.916 0.916 0.874 0.850 

DF 0.985 0.971 0.971 0.985 0.990 

Figure 5. The workflow for updating the CNN’s weights.

3. Results

In this study, all simulations and analyses were conducted using MATLAB 2023a on a
personal computer with the following specifications: core i7, 12th generation, 32 GB RAM,
NVIDIA GeForce RTX 3050, 1 TB SSD, and a 64-bit Windows 11 operating system. For
each CNN training, the following parameters were selected: 100 epochs, 0.9 momentum,
128 mini batch-size, and 0.001 learning rate.

First, the augmentation was performed to balance the ISIC2018 skin lesion dataset.
After performing the augmentation, each of the seven classes had 1000 samples per class.
The dataset was split into 80:20 ratios for CNN training and testing. The images used for
model testing were not used to train the CNN. Various commonly publically available
pretrained CNNs, such as ResNet50, Inception V3, GoogleNet, and DenseNet-201, were
used to categorize the skin lesions dataset. The results of all mentioned pretrained models
and developed 26-layer CNN are presented in Table 2.

Table 2. Performance of pretrained CNNs for ISIC2018 dataset.

Parameters
CNNs

ResNet50 Inception V3 GoogleNet DenseNet-201 26-Layer CNN

Training Loss 0.0019 0.0011 0.0011 0.0012 0.0016
Training Accuracy (%) 100 100 100 100 100

Validation Loss 0.3425 0.4971 0.4971 0.3526 0.5216
Validation Accuracy (%) 92.42 91.57 91.57 93.1 90.07

Training Time 389 min 46 s 513 min 43 s 67 min 11 s 1227 min 29 s 11 min 43 s

Sensitivity

AK 0.98 0.96 0.96 0.985 0.985
BCC 0.945 0.935 0.935 0.935 0.920
BKL 0.885 0.82 0.82 0.905 0.795
DF 1 1 1 1 1

MEL 0.76 0.865 0.865 0.855 0.825
NV 0.9 0.83 0.83 0.84 0.780

VASC 1 1 1 1 1

Specificity

AK 0.987 0.991 0.991 0.993 0.980
BCC 0.995 0.985 0.985 0.993 0.992
BKL 0.977 0.988 0.988 0.978 0.977
DF 0.998 0.995 0.995 0.998 0.998

MEL 0.981 0.967 0.967 0.980 0.964
NV 0.975 0.978 0.978 0.978 0.978

VASC 1 0.998 0.998 0.999 0.996
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Table 2. Cont.

Parameters
CNNs

ResNet50 Inception V3 GoogleNet DenseNet-201 26-Layer CNN

Precision

AK 0.925 0.946 0.946 0.961 0.891
BCC 0.969 0.912 0.912 0.959 0.948
BKL 0.863 0.916 0.916 0.874 0.850
DF 0.985 0.971 0.971 0.985 0.990

MEL 0.869 0.812 0.812 0.877 0.793
NV 0.857 0.865 0.865 0.866 0.852

VASC 1 0.99 0.99 0.995 0.976

F1 Score

AK 0.952 0.953 0.953 0.973 0.936
BCC 0.957 0.923 0.923 0.947 0.934
BKL 0.874 0.865 0.865 0.889 0.822
DF 0.992 0.985 0.985 0.993 0.995

MEL 0.811 0.838 0.838 0.866 0.809
NV 0.878 0.847 0.847 0.853 0.815

VASC 1 0.995 0.995 0.998 0.988

After analyzing the results presented in Table 2, it was evident that all the pretrained
models showed a reasonable classification performance, but the time taken for training was
relatively high. The developed 26-layer CNN model took less training time but produced
a low classification rate compared to pretrained models. Therefore, this work used a
multistage and multiclass framework for skin lesion detection using isolated and deep
transfer learning models. First, all the classes were grouped into two classes, namely
benign and malignant. The benign class had all the images of AK, BKL, DF, NV, and VASC,
whereas the malignant group contained the images of MEL and BCC classes. CNN-1 was
trained to classify the dermoscopic images into binary classes. The performance of the
CNN-1 model is illustrated in Table 3 and Figure 6.

Table 3. Performance of developed CNN-1 model for binary classification.

Parameters CNN-1

Training Loss 0.0074
Training Accuracy (%) 100

Validation Loss 0.4563
Validation Accuracy (%) 93.4

Training Time 11 min 41 s

Sensitivity Benign 0.927
Malignant 0.941

Specificity Benign 0.941
Malignant 0.927

Precision
Benign 0.941

Malignant 0.928

F1 Score
Benign 0.934

Malignant 0.935

It is evident from the results presented in Table 3 and Figure 6 that the developed
CNN-1 model detected the benign and malignant classes with a high accuracy of 93.4%
using dermoscopic images. It correctly classified the 649 images out of 700 for the benign
class and had a high true positive rate of 92.7%. Similarly, the 659 images of the malignant
class were correctly classified using the developed CNN-1 model. It also showed a high
classification rate of 94.1%, with a low false negative rate of only 5.9%. To further classify
each class into subclasses, the CNN-2 and CNN-3 models were developed for malignant
and benign classes using the idea of transfer learning, respectively, as discussed above.
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The results of both developed CNN transfer learned models are presented in Table 4 and
Figure 7.
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Table 4. Performance of developed CNN-2 and CNN-3 models.

Parameters
CNNs

CNN-2 CNN-3

Training Loss 3.73 × 10−4 2.63 × 10−3

Training Accuracy (%) 100 100
Validation Loss 0.2576 0.1956

Validation Accuracy (%) 96.25 96.20
Training Time 389 min 46 s 513 min 43 s
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Table 4. Cont.

Parameters
CNNs

CNN-2 CNN-3

Sensitivity

AK - 0.990
BCC 0.985 -
BKL - 0.875
DF - 1

MEL 0.940 -
NV - 0.945

VASC - 1

Specificity

AK - 0.983
BCC 0.940 -
BKL - 0.991
DF - 0.998

MEL 0.985 -
NV - 0.983

VASC - 0.999

Precision

AK - 0.934
BCC 0.943 -
BKL 0.962
DF - 0.990

MEL 0.984 -
NV - 0.931

VASC - 0.995

F1 Score

AK - 0.961
BCC 0.963 -
BKL - 0.916
DF - 0.995

MEL 0.962 -
NV - 0.938

VASC - 0.998

The CNN-2 classifies the malignant class with a high accuracy of 96.25%, with a true
positive rate (sensitivity) of 98.5% and 94% for the BCC and MEL classes, respectively.
Similarly, in the case of benign class subclassification, the CNN-3 showed a high accuracy
performance of 96.2% for five class classification problems. The VASC class was correctly
classified with 100% accuracy, whereas the DF class also showed the same classification
rate of 100% accuracy. BKL class had the lowest true positive rate (sensitivity) of 87.5%
only, with a 12.5% false negative rate. The positive predictive values (precision) were
93.4%, 96.2%, 99%, 93.1%, and 99.5% for the AK, BKL, DF, NV, and VASC, respectively. The
learning curves of the proposed multistage multiclass framework are presented in Figure 8.
After carefully analyzing the learning curves, it was found that the CNN-1 was stable for
almost 60 epochs. In contrast, the CNN-2 and CNN-3 reached 100% training and validation
accuracy after 20 epochs. This validated the proposed multistage multiclass framework’s
robustness and high classification performance.

To further validate the performance of the proposed multistage multiclass approach,
the results of 10-fold cross-validation are shown in Figure 9.
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4. Discussion

Skin cancer, a common and potentially fatal condition, is typically classified as benign
or malignant. Benign lesions are often low-risk; however, malignant lesions, such as MEL
and BCC, can be fatal.

This research focuses on improving these classifications by employing multistage
and multiclass CNN-based framework to attain noteworthy accuracy in subclassifying
malignant and benign skin lesions. In the first stage, the classes were classified as benign or
malignant. The developed CNN-1 model achieved a high binary classification accuracy
of 93.4%, excelling in detecting benign and malignant classes with minimal false negative
rates (see Table 3 and Figure 6). The ablation study was carried out before finalizing the
layers of developed CNN—the results of the ablation study are presented in Table 5.

Table 5. Results of ablation study.

Parameters
Developed CNNs

22-Layer 26-Layer 30-Layer 34-Layer

Training Loss 0.0412 0.0074 0.0051 0.0264
Training Accuracy (%) 98.43 100 100 100

Validation Loss 0.5645 0.4563 0.498 0.5549
Validation Accuracy (%) 89.7 93.4 92.2 90.5

Training Time 11 min 10 s 11 min 41 s 13 min 35 s 13 min 43 s

The ablation study findings show the effect of changing the number of layers in
the developed CNNs. It shows that as the number of layers extends from 22 to 34, the
training loss reduces, with the 30-layer CNN having the lowest value. Meanwhile, training
accuracy stays steady (100%), implying that deeper networks may match the training data



Bioengineering 2023, 10, 1430 14 of 17

more closely, resulting in superior training performance. With an increase in layers, the
trend in validation loss does not decrease. Validation losses are lower for the 26-layer and
30-layer CNNs than for the 22-layer and 34-layer models. The 26-layer and 30-layer models
seem to provide greater generalization to unknown data, which is reflected in increased
validation accuracy. As expected, the training time rises with the number of layers. Deeper
networks can take longer to train due to increased computational complexity. The 26-layer
CNN surpasses the 22-layer, 30-layer, and 34-layer models in terms of validation accuracy
(93.4%). It implies that an ideal balance of model complexity and generalization is obtained
with 26 layers since too few or too many layers may result in suboptimal validation data
performance. Therefore, the 26-layer CNN model was selected.

CNN-2 and CNN-3 models were introduced using a newly developed 26-layer CNN
built from scratch (CNN-1), reutilizing neuron weights by modifying particular layers for
additional subclassification, with outstanding accuracy rates of 96.2% for both malignant
and benign subclasses (see Table 4). Figure 7a,b depict CNN-2 and CNN-3 performance in
subclassifying malignant and benign classes, respectively. CNN-2 achieved 96.2% accuracy,
with noteworthy sensitivity for BCC and MEL classes. CNN-3 subclassified benign lesions
with 96.2% accuracy, and high precision across all classes. The comparison of the proposed
approach with the latest literature is presented in Table 6.

Table 6. Comparison of the proposed multistage and multiclass CNN with the literature.

Study Accuracy (%)

Budhiman et al. [39] 87 (for normal and melanoma class)
Bibi et al. [32] 85.4

Mahbod et al. [40] 86.2
Ali et al. [41] 87.9

Carcagnì et al. [42] 88
Sevli [43] 91.51

Mehwish et al. [44] 92.01
Bansal et al. [45] 94.9 (for normal and melanoma class)

This study

93.4 (for benign and malignant)
94.2 (for benign and malignant using 10-fold cross-validation)

96.2 (for subclassification of benign and malignant)
97.5 (for subclassification of malignant using 10-fold cross-validation)

95.3 (for subclassification of benign using 10-fold cross-validation)

In Table 6, it can be seen that the proposed framework yielded the best classification
performance compared to others. Budhiman et al. [39] used the ResNet 50 pretrained
model to classify the skin images into two classes, and it had a correct classification rate of
only 87%. In [40], the multiscale multi-CNN approach was used for skin lesion detection
and reported an accuracy of 86.2%. Their model yielded a reasonable accuracy and had a
high training time. In another study [45], the authors extracted the local and global level
features and fused them with deep features to detect melanoma. The model showed high
classification accuracy. However, it could only classify the dermoscopic images into normal
and melanoma classes. In addition, the authors did not consider any feature selection
method to remove the redundant features. In contrast, in [32], the deep features were
extracted using the DensNet-201 and DarkNet-53, and a marine predator optimizer was
applied to extract the useful features, an approach that yielded an accuracy of 85.4% for
seven class ISIC2018 datasets. Furthermore, Mehwish et al. [44] used a wrapper-based
approach to remove the redundant deep features and reported a high accuracy of 92.01%.
However, the feature selection approach with CNN can enhance the complexity and
compatibility issues with dependencies on the external algorithms. Therefore, this study
proposes a multistage and multiclass CNN-based framework; it shows a high classification
rate with minimal training time compared to pretrained CNNs (see Tables 2–4), paving the
way for improved skin lesion identification and subcategorization.
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In this study, the CNN hyperparameter was not fine-tuned, and augmentation was
applied to balance the datasets. However, in the future, the fine-tuning of the CNN
hyperparameter and original dermoscopic images may be considered to evaluate the
proposed framework’s performance further. In addition, this study utilized a simple
architecture; however, more intuitive architectures like natural language processing may
be tested in the future.

5. Conclusions

The present study proposed a new multistage and multiclass CNN-based framework
for skin lesion detection using dermoscopic images. First, a 26-layer CNN (CNN-1) was
developed from scratch to distinguish between benign and malignant images, and the
CNN-1 achieved a high classification rate of 93.4% and only took 11 min and 41 s for model
training. After that, two new CNN models (CNN-2 and CNN-3) were developed for the
subclassification of each identified class. Both models were developed by reutilizing the
weights of CNN-1 using transfer learning. Both models showed promising classification
accuracy for subcategorizing benign and malignant classes with a very low training time.
Both the trained models showed a high classification rate of 96.2% for BCC and MEL (in
the case of CNN-2) and AK, BKL, DF, NV, and VASC (in the case of CNN-3) classes. The
results were also compared in terms of accuracy and training time with those of various
pretrained models. The final results demonstrated that employing the proposed multistage
multiclass CNN-based framework yielded the best skin lesion detection.
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