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Abstract: Background: this study aimed to utilize various diffusion-weighted imaging (DWI) tech-
niques, including mono-exponential DWI, intravoxel incoherent motion (IVIM), and diffusion kurtosis
imaging (DKI), for the preoperative grading of rectal cancer. Methods: 85 patients with rectal cancer
were enrolled in this study. Mann–Whitney U tests or independent Student’s t-tests were conducted
to identify DWI-derived parameters that exhibited significant differences. Spearman or Pearson
correlation tests were performed to assess the relationships among different DWI-derived biological
markers. Subsequently, four machine learning classifier-based models were trained using various
DWI-derived parameters as input features. Finally, diagnostic performance was evaluated using ROC
analysis with 5-fold cross-validation. Results: With the exception of the pseudo-diffusion coefficient
(Dp), IVIM-derived and DKI-derived parameters all demonstrated significant differences between
low-grade and high-grade rectal cancer. The logistic regression-based machine learning classifier
yielded the most favorable diagnostic efficacy (AUC: 0.902, 95% Confidence Interval: 0.754–1.000;
Specificity: 0.856; Sensitivity: 0.925; Youden Index: 0.781). Conclusions: utilizing multiple DWI-
derived biological markers in conjunction with a strategy employing multiple machine learning
classifiers proves valuable for the noninvasive grading of rectal cancer.

Keywords: diffusion weighted MRI; machine learning; rectal neoplasms; intravoxel incoherent
motions; diffusion kurtosis imaging

1. Introduction

Rectal cancer is a leading cause of human death. The histopathological grade is an
important prognostic factor of rectal cancer [1,2]. High-grade rectal cancer always signifies
the poor prognosis, including the high probability of both recurrence and metastasis [3,4].
Additionally, previous research indicates that patients with high-grade rectal cancer always
have a much shorter median survival time [5,6]. Furthermore, preoperative radiother-
apy and chemotherapy are often required for patients with high-grade rectal cancer. At
present, histopathological examination serves as the gold standard for evaluating the grade
of rectal cancer during clinical practice. Nevertheless, the invasiveness, potential sam-
pling bias, and time-consumption are the insurmountable limitations of histopathological
examination [7–9]. Therefore, non-invasive, cost-effective, and convenient approaches are
urgently needed for grading rectal cancer.

As a non-invasive and cost-effective imaging technique, diffusion weighted magnetic
resonance imaging (DW-MRI) has shown tremendous clinical potential for cancer diag-
nosing, and cancer grading, as well as therapeutic response prediction [10,11]. Moreover,
numerous DWI models, including the conventional DWI (mono-exponential DWI), IVIM
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(intravoxel incoherent motions), DKI (diffusion kurtosis imaging), and so on, have been
proposed for characterizing tumor from different perspectives [12–21]. However, the bio-
logical insights provided by a lot of DWI-derived parameters mainly include cellularity,
vascularity and micro-structural heterogeneity [12]. For instance, the conventional DWI-
derived apparent diffusion coefficient (ADC) is able to provide the characterization of
cellular density. Differently, IVIM-derived perfusion fraction (f) and so on, together with
the DKI-derived apparent kurtosis coefficient (Kapp) and so on, are able to characterize the
vascularity and micro-structural heterogeneity, respectively. Therefore, integrating these
biological markers together will benefit the clinical application via more comprehensively
characterizing the tumor from multiple perspectives.

Several researchers have explored the utility of DWI techniques for assessing rectal
cancer. For instance, studies employing mono-exponential DWI, IVIM, DKI, and RSI have
demonstrated potential in noninvasively predicting the grade of rectal cancer [15,19,22,23].
Nonetheless, there have been limited efforts to utilize diverse DWI biomarkers to evaluate
rectal cancer. Additionally, there is a scarcity of reports on the integration of various
DWI biomarkers using machine learning-based models to comprehensively characterize
rectal neoplasms.

In this study, we formulated the following hypotheses: the integration of mono-
exponential DWI, IVIM, and DKI techniques would be sufficient to elucidate three key
DWI-related biological aspects: cellular density, perfusion associated with vascularity, and
structural heterogeneity. The amalgamation of these DWI-derived biological insights could
enhance the comprehensive characterization of tumors from various perspectives, thus hold-
ing significant potential for the accurate grading of rectal cancer. Machine learning, as a
robust technique, could effectively incorporate diverse quantitative biomarkers by utilizing
them as input features. Consequently, the primary aim of this research is to preoperatively
grade rectal cancer using multiple DWI models, multiple DWI-derived biological parameters,
and various machine learning classifiers. The technique flowchart is illustrated in Figure 1.
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2. Materials and Methods
2.1. Patients

Ethical approval was obtained from the local Institute Review Board (IRB) under
Approval Number #MEC089, and written informed consent was obtained from each patient.
A total of 105 patients were enrolled in this prospective study between May 2020 and April
2021, following the established inclusion and exclusion criteria, which were based on
previous research as a reference [7]. The inclusion criteria were: (1) patients with a strong
suspicion of rectal cancer according to other imaging examinations or their medical history,
as well as those with confirmed rectal cancer through endoscopic biopsy. The exclusion
criteria: (1) Patients who received any adjuvant treatment between the MR examination
and subsequent surgical treatment. (2) Patients with a significant time gap (≥10 days)
between the MR examination and the subsequent surgical procedure. (3) Patients without a
surgical treatment history and records at our institute, leading to a lack of histopathological
results. (4) Patients with poor image quality of DWI images due to artifacts or other factors.
(5) Patients with lesions that were too small to be identified in DWI images.

In this prospective study, we initially recruited 105 patients. However, we excluded
7 patients due to pre-operative neoadjuvant therapy, 2 patients due to poor MR image
quality, 6 patients because the time interval between MR examination and surgery exceeded
ten days, and 5 patients due to missing histopathologic grade results. Ultimately, our study
comprised 85 participants, consisting of 45 men and 40 women. This cohort included
17 patients classified as WHO-Grade 1 (G1), 36 patients as WHO-Grade 2 (G2), and
32 patients as Grade 3 (G3) according to the WHO classification.

2.2. MRI Examinations

All the MRI measurements were performed with a 3.0 T scanner (uMR 780, United
Imaging Healthcare, Shanghai, China) and a twelve-channel coil. The MRI protocols
contained a T2-weighted Fast Spin Echo sequence termed as FSE T2WI (repetition time
(TR): 4200 ms; echo time (TE): 103.1 ms; flip angle (FA): 110◦; matrix: 336 × 432; field of view
(FOV): 280 × 360 mm2; slice thickness: 6 mm), T1-weighted Fast Spin Echo sequence termed
as FSE T1WI (TR: 649.0 ms; TE: 10.7 ms; FA: 110◦; matrix: 480 × 570; FOV: 320 × 380 mm2;
slice thickness: 6 mm), Dynamic three-dimensional T1 weighted gradient echo (GRE)
sequence (TR: 3.3 ms; TE: 1.45 ms; FA: 10◦; matrix: 336 × 480; FOV: 280 × 499 mm2)
and single shot-spin echo-echo planar imaging sequence termed as SS-EPI (TR: 4800 ms;
TE: 88 ms; FA: 90◦; section thickness: 4 mm; matrix: 95 × 112; FOV: 180 × 240 mm2; voxel
size: 2.52 × 2.14 × 4 mm3; b values: 0, 10, 20, 30, 50, 80, 100, 150, 200, 400, 600, 800, 1500
and 2000 s/mm2; scanning time: 5 min and 14 s).

Furthermore, to mitigate the adverse effects of intra-rectal air on reliable DWI exami-
nations, patients were instructed to maintain steady and smooth breathing, while efforts
were made to prevent any irregular inhalations. It is important to emphasize that both DKI
and IVIM analyses were conducted based on the SS-SE-EPI sequence mentioned earlier,
with varying selections of b values for subsequent post-processing.

2.3. Image Analysis
2.3.1. DWI Parametric Maps

All original data underwent processing using a custom in-house prototype software
developed in MATLAB (MathWorks, Natick, MA, USA). For mono-exponential diffusion-
weighted imaging (DWI) analysis, the fitting algorithm employed in accordance with
prior research can be expressed as follows: Sb/S0 = exp(−bADC) where Sb is the signal
intensity when specific b values (800 s/mm2) are applied, S0 is the DWI signal intensity
when b value of 0 is applied, and ADC is the abbreviation of apparent diffusion coefficient.
For the IVIM DWI model, the fitting algorithm was according to previous research [24],
and can be expressed as: Sb/S0 = (1 − f )exp(−bD) + f exp

(
−bDp

)
, where Sb is the signal

intensity when specific b values are applied, S0 is the DWI signal intensity when b value of
0 is applied, f is the abbreviation of perfusion fraction representing the proportion of protos
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related with “pseudo diffusion” (micro-circulation), D is defined as the abbreviation of
diffusion coefficient representing the pure diffusivity, and Dp is defined as the abbreviation
of pseudo diffusion coefficient representing the incoherent microcirculation. The quan-
titative pixel-wise parameters and parametric maps can be generated with the b values
including 0, 10, 20, 30, 50, 80, 100, 150, 200, 400, 600, and 800 s/mm2 as the input data on a
voxel-by-voxel basis. For DKI DWI model, the fitting algorithm was according to previous
research [25], and can be expressed as: ln(Sb) = ln(S0) − b · Dapp + 1/6 · b2Dapp

2Kapp,
where Sb and S0 are similar to those of IVIM, Dapp is the abbreviation of apparent diffusion
coefficient representing the apparent diffusivity, Kapp is defined as the abbreviation of ap-
parent kurtosis coefficient representing the deviation from a perfect Gaussian distribution.
The quantitative pixel-wise parameters and parametric maps can be generated with the b
values including 0, 800, 1500, and 2000 s/mm2 as the input data on a voxel-by-voxel basis.
We used the Levenberg–Marquardt non-linear fitting algorithm for parametric fitting in this
study. The fitting bounds for D, Dp, f, Dapp, Kapp were as follows: 0.0 to 5.0 × 10−3 mm2/s,
0.0 to 80.0 × 10−3 mm2/s, 0.0 to 0.8, 0.0 to 5.0 × 10−3 mm2/s, 0.0 to 2.5, respectively.

2.3.2. Definition of Volume of Interests (VOIs)

Following the methodology established in previous studies [7,8], three experienced
radiologists, each having significant expertise in the field (Q.W with 32 years of experience,
H.L with 22 years, and MY.S with 5 years), conducted an independent review of the MRI
images. These radiologists were blinded to the pathological results and delineated freehand
volume of interests (VOIs), along the boundaries of the low-signal regions of the tumor
on the ADC, D, and Dapp maps. This meticulous approach aimed to ensure maximum
inclusion of the entire tumor within the VOI while excluding areas of necrosis, cysts, and
hemorrhage. Subsequently, these VOIs were automatically replicated onto other parametric
maps, including the Dp map, f map derived from the D map, and Kapp map derived from
the Dapp map.

To calculate the mean values of the DWI-derived parameters, we employed a whole-
lesion averaging approach. This approach ensured that the measurements were made
across the entirety of the tumor region. To enhance the reliability of our analysis, we
averaged the measurements of DWI parameters obtained by the three different observers.
For making measurements and defining the volume of interests, we utilized an open-source
software application designed for 3D medical image segmentation, known as ITK-SNAP
(http://www.itksnap.org/pmwiki/pmwiki.php, accessed on 10 August 2021).

2.4. Histopathological Evaluation

The pathological evaluations were conducted by experienced pathologists, each pos-
sessing more than 5 years of expertise, utilizing hematoxylin–eosin (H&E) stained surgical
specimens. Histological grading was performed in accordance with the WHO grading
criteria [26]. Patients were categorized into one of three grades: grade 1 (WHO-G1), grade 2
(WHO-G2), or grade 3 (WHO-G3) based on the presence of gland-like structures. Specifi-
cally: WHO-G1: patients with more than 95% gland-like structures. WHO-G2: patients
with gland-like structures ranging from 50% to 95%. WHO-G3: patients with less than 50%
gland-like structures. Furthermore, WHO-G1 and WHO-G2 rectal cancers were defined as
low-grade rectal cancer, while WHO-G3 was defined as high-grade rectal cancer.

2.5. Statistical Analysis

The inter-observer agreement and reproducibility were assessed using the intra-class
coefficient (ICC). Inter-observer agreement was categorized as follows: excellent for ICC
values between 0.8 and 1.0, substantial for ICC values between 0.6 and 0.8, moderate for
ICC values between 0.4 and 0.6, fair for ICC values between 0.2 and 0.4, and poor for ICC
values between 0.0 and 0.2. To evaluate the normal distribution of the parameters, the
Shapiro–Wilk test was employed. Based on the results of the Shapiro–Wilk test, independent
Student’s t-tests or Mann–Whitney U tests were used to determine whether significant

http://www.itksnap.org/pmwiki/pmwiki.php
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differences existed between patients with low-grade rectal cancer and those with high-grade
rectal cancer. Pearson or Spearman correlation tests were conducted to assess correlations
among different DWI-derived parameters, with the correlation coefficient abbreviated as
“r.” Subsequently, incorporating IVIM-derived or DKI-derived parameters that exhibited
significant differences between low-grade and high-grade patients, machine learning-based
diagnostic models, including logistic regression (LG), K-nearest neighbor (KNN), support
vector machine (SVM), and random forest (RF), were sequentially established. LG, KNN,
SVM, and RF are all machine learning classifiers that take quantitative features as input and
provide probabilities for various categories as output. LG is a linear model used for binary
classification. It estimates the probability of an instance belonging to a class. KNN is a non-
parametric algorithm that classifies based on the majority class of its closest neighbors in
feature space. SVM finds the optimal hyperplane maximizing class separation, suitable for
linear and non-linear classification. RF is an ensemble method that combines decision trees
to enhance classification accuracy, reducing overfitting. A receiver operating characteristic
curve (ROC) analysis was performed to evaluate the diagnostic performance of individual
DWI-derived parameters and the four machine learning models. The assessment included
quantitative indices such as the area under the curve (AUC), specificity, sensitivity, and
Youden Index. To mitigate potential statistical bias, a 5-fold cross-validation approach was
employed to evaluate diagnostic performance. The DeLong test was conducted to compare
the AUCs of different models. Statistical analyses were carried out using SPSS software
(PASW Statistics 25.0, SPSS Inc., Chicago, IL, USA), Medcalc (MedCalc 9.0.2, Mariakerke,
Belgium), R version 3.6.1 (R Core Development Team), and RStudio (RStudio Inc., Boston,
MA, USA). R packages, including random forest, e1071, kknn, and caret, were utilized to
establish the machine learning models. Statistical significance was determined when the
p-value was less than 0.05.

3. Results
3.1. Clinicopathological Characteristics and MR Images

The baseline clinicopathological characteristics are presented in Table 1. As depicted
in Table 1, there were no significant differences observed in terms of age, gender, tumor
size (longest diameter), pN stage, expression of Carbohydrate antigen 199 (CA199), or
expression of carcinoembryonic antigen (CEA) between low-grade and high-grade rectal
cancers (p values ranging from 0.085 to 0.703). However, a significant correlation was noted
between pT stage and grade (p = 0.047). Representative MR images of a low-grade rectal
cancer and a high-grade rectal cancer are displayed in Figures 2 and 3, respectively. In
Figure 4, histopathologic photographs of two patients, whose MR images are shown in
Figures 2 and 3, respectively, are presented. Histopathological examinations revealed that,
in comparison to low-grade rectal cancers, high-grade rectal cancers exhibited elevated
cellular density with an increased ratio of nuclear to cytoplasm. Additionally, the cell shape,
cell size, and other structural characteristics within different tumor regions in high-grade
rectal cancer displayed significant variation, implying a more complex microstructure in
high-grade rectal cancer.

3.2. DWI-Derived Parameters in Different Subgroups

The inter-observer agreement and reproducibility were quantified using the ICC. The
ICCs for various DWI-derived parameters, as measured by three experienced radiologists,
fell within the range of 0.751 to 0.862, indicating substantial to excellent inter-observer
agreement and reproducibility (Table 2). As depicted in the box plots in Figure 5, the
ADC value exhibited a significant decrease as histopathological grade increased (low
grade = 1.471 ± 0.202 × 10−3 mm2/s, high grade = 1.321 ± 0.143 × 10−3 mm2/s, p < 0.001).
This trend was consistent with observations for D (low grade = 1.339 ± 0.201 × 10−3

mm2/s, high grade = 1.129 ± 0.146 × 10−3 mm2/s, p < 0.001), Dapp low grade = 1.499 ±
0.231 × 10−3 mm2/s, high grade = 1.297 ± 0.224 × 10−3 mm2/s, p < 0.001), and f (low
grade = 0.239 ± 0.068, high grade = 0.197 ± 0.055, p = 0.001). However, the behavior of
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Kapp was contrary to this pattern (low grade = 0.678 ± 0.133, high grade = 0.819 ± 0.130,
p < 0.001). Interestingly, IVIM-derived Dp did not exhibit a significant difference between
low-grade and high-grade rectal cancer (low grade = 45.952 ± 12.376 × 10−3 mm2/s, high
grade = 48.165 ± 12.368 × 10−3 mm2/s, p = 0.427).
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Figure 2. Representative MR images of a patient with low grade rectal cancer. Notes: All parametric
maps employed a consistent color bar, spanning from blue to red, to signify the minimum and
maximum values, respectively. The parametric ranges for ADC, D Dp, f, Dapp, Kapp are as follows:
0.0 to 5.0 × 10−3 mm2/s, 0.0 to 5.0 × 10−3 mm2/s, 0.0 to 80.0 × 10−3 mm2/s, 0.0 to 0.8, 0.0 to
5.0 × 10−3 mm2/s, 0.0 to 2.5, respectively. The yellow arrows indicate the tumors.
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Figure 3. Representative MR images of a patient with high grade rectal cancer. Notes: All parametric
maps employed a consistent color bar, spanning from blue to red, to signify the minimum and
maximum values, respectively. The parametric ranges for ADC, D Dp, f, Dapp, Kapp are as follows:
0.0 to 5.0 × 10−3 mm2/s, 0.0 to 5.0 × 10−3 mm2/s, 0.0 to 80.0 × 10−3 mm2/s, 0.0 to 0.8, 0.0 to
5.0 × 10−3 mm2/s, 0.0 to 2.5, respectively. The yellow arrows indicate the tumors.
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Table 1. Baseline clinical-pathological characteristics.

Characteristics Low Grade (n = 53) High Grade (n = 32) p Value

Age: mean ± SD (years) 59.13 ± 10.75 61.27 ± 11.54 0.612
Gender 0.703

Men 28 17
Women 25 15

Size of tumor (mm) 24.1 ± 8.79 38.3 ± 9.25 0.085
pT stage 0.047

T1 3 2
T2 28 7
T3 15 13
T4 7 10

pN stage 0.452
N0 20 15
N1 17 10
N2 16 7
CA199 0.251
≤20 U/mL 36 13
>20 U/mL 17 19

CEA 0.632
≤5 ng/mL 30 10
>5 ng/mL 23 22
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Table 2. The inter-observer agreement of DWI-derived parameters as measured by three radiologists.

ICC Lower Bound of 95%
CI

Upper Bound of 95%
CI

ADC 0.862 0.821 0.883
D 0.827 0.787 0.840

Dp 0.751 0.734 0.792
f 0.802 0.761 0.829

Dapp 0.836 0.801 0.855
Kapp 0.843 0.817 0.862
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Figure 5. Box-plots of mono-exponential DWI-derived, IVIM-derived and DKI-derived parameters
in low grade and high grade rectal cancer. Note: (1) Unit: ADC value: ×10−3 mm2/s; D value:
×10−3 mm2/s; Dp value: ×10−3 mm2/s; f value, unitless; Dapp value: ×10−3 mm2/s and Kapp,
unitless. (2) ** signifies p values of less than 0.01 and *** signifies p values of less than 0.001.

3.3. The Correlations among the Different DWI-Derived Biological Markers

The correlation matrix in Figure 6 showed the correlations among various DWI-
derived parameters. Having similar biological inspiration of cellular density, ADC, D, and
Dapp showed a strong positive correlation (rADC & D = 0.877, p < 0.01; rADC & Dapp = 0.779;
p < 0.01, rD & Dapp = 0.840, p < 0.01). In addition, cellular density related ADC, D and
Dapp significantly and positively correlated with the vascularity related f (rADC & f = 0.408,
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p < 0.01; rD & f = 0.484, p < 0.01; rDapp & f = 0.466, p < 0.01), but significantly and nega-
tively correlated with structural heterogeneity related Kapp (rADC & Kapp = −0.578, p < 0.01;
rD & Kapp = −0.648, p < 0.01; rDapp & Kapp = −0.514, p < 0.01). Moreover, there were signif-
icant negative correlations between f and Dp (rf & Dp = −0.544, p < 0.01), as well as f and
Kapp (rf & Kapp = −0.609, p < 0.01) with regard to significant positive correlation between
Dp and Kapp (rDp & Kapp = 0.297, p < 0.01).
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3.4. Diagnostic Performance Evaluation

Figure 7 and Table 3 present the comparisons of the diagnostic efficacy of indi-
vidual DWI-derived parameters for grading rectal cancer. Among the individual DWI-
derived parameters, the parameter associated with cellularity, D, demonstrated the high-
est grading power (AUC = 0.811, 95% confidence interval (CI): 0.711–0.911), followed
by Kapp (AUC = 0.782, 95% CI: 0.681–0.884), Dapp (AUC = 0.746, 95% CI: 0.635–0.856),
ADC (AUC = 0.729, 95% CI: 0.620–0.838), f (AUC = 0.718, 95% CI: 0.598–0.838), and Dp
(AUC = 0.543, 95% CI: 0.415–0.671). It is noteworthy that for four machine learning-
based diagnostic models, we introduced cellularity-related D, vascularity-related f, and
heterogeneity-related Kapp as input features. The rationale for selecting these parame-
ters is as follows: These parameters exhibited significant differences between low-grade
and high-grade rectal cancer. They provide distinct biological insights, encompassing
cellularity (D), vascularity (f), and micro-structural complexity (Kapp). Dp was excluded
from consideration because it showed no significant difference between low-grade and
high-grade rectal cancer, and Dapp was omitted due to the following reasons: (1) Dapp
conveys the same biological insight as D. (2) By eliminating the influence of perfusion, D is
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better suited to characterize the true diffusion restriction arising from cellularity [24,27].
The diagnostic performance of the four machine learning-based classifiers was evaluated
through 5-fold cross-validation and is depicted in Figure 8 and Table 3. Specifically, LG
exhibited the most potent grading power (AUC in 5 folds: 0.962, 0.933, 0.917, 0.766, 0.933.
Mean AUC: 0.902, 95% CI: 0.754–1.000), followed by KNN (AUC in 5 folds: 0.778, 0.833,
0.659, 0.969, 0.857. Mean AUC: 0.819, 95% CI: 0.590–0.964), SVM (AUC in 5 folds: 0.778,
0.900, 0.800, 0.775, 0.800. Mean AUC: 0.811, 95% CI: 0.628–0.982), and RF (AUC in 5 folds:
0.923, 0.714, 0.784, 0.742, 0.875. Mean AUC: 0.808, 95% CI: 0.628–0.975). Additional detailed
measures of diagnostic power, including sensitivity, specificity, and Youden Indexes, are
presented in Table 3. Furthermore, a Delong test was conducted to compare the AUC of
the best machine-learning classifier (LG-based diagnostic models) with the AUCs of other
individual DWI-derived parameters. The results indicated that the AUC of the LG-based
diagnostic model was significantly higher than the AUCs of any other individual DWI
parameters (p < 0.05).
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Table 3. Evaluation of the diagnostic performance of individual DWI-derived parameters and
machine learning-based diagnostic models.

Sensitivity Specificity AUC 95% CI of AUC Youden Index

KNN 0.687 0.951 0.819 0.590–0.964 0.638
LG 0.925 0.856 0.902 0.754–1.000 0.781
RF 0.719 0.897 0.808 0.628–0.975 0.616

SVM 0.711 0.910 0.811 0.628–0.982 0.621
ADC 0.686 0.736 0.729 0.620–0.838 0.423

D 0.781 0.830 0.811 0.711–0.911 0.611
Kapp 0.656 0.830 0.782 0.681–0.884 0.486
Dapp 0.719 0.736 0.746 0.635–0.856 0.455

f 0.531 0.887 0.718 0.598–0.838 0.418
Dp 0.625 0.490 0.543 0.415–0.671 0.116

KNN: K nearest neighbor, LG: logistic regression, RF: random forest, SVM: support vector machine, ADC: apparent
diffusion coefficient (mono-exponential DWI), D: true diffusion coefficient, Dp: pseudo diffusion coefficient, Kapp:
apparent kurtosis coefficient, Dapp: apparent diffusion coefficient (DKI), f: perfusion fraction, Dp: pseudo diffusion
coefficient and CI: confidence interval.
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4. Discussion

In recent years, DWI-MRI has garnered significant interest among radiologists due
to its capacity to provide various biological markers closely linked to disease processes,
particularly carcinogenesis. With the aid of diverse DWI models that have emerged in
recent times, DWI-derived insights, encompassing aspects such as cellularity, vascularity,
and micro-structural heterogeneity, have demonstrated substantial clinical promise. For
instance, commonly used DWI-derived parameters such as ADC, DKI-derived Dapp, and
IVIM-derived D, all of which are capable of representing cellular density, exhibit a notable
decrease as tumor malignancy escalates [8,9,28]. Indeed, parameters like DKI-derived
Kapp, which provide insights into structural heterogeneity, demonstrate notable variations
as tumor malignancy increases [8,29,30]. Furthermore, it has been previously reported
that IVIM-derived f possesses diagnostic potential for grading rectal cancer, as it allows
for the quantification of changes in micro-circulation [22]. Our findings align with these
earlier studies and corroborate the work of Zhu et al. and Cui et al., who concluded
that the D value decreases while Kapp increases with an increase in the histopathologic
grade of rectal cancer [7,8]. Additionally, Sun et al. found that decreased IVIM-derived D
and f values hold substantial diagnostic power for grading rectal cancer. The biological
underpinnings of these findings can be elucidated as follows: (1) As the histopathological
grade of rectal cancer rises, the rapid proliferation of tumor cells results in a marked
increase in the ratio of nuclear to cytoplasmic content. This, in turn, restricts the diffusion
of water molecules, leading to a decrease in ADC, D, and Dapp values. (2) Kapp is defined
as a measure of deviation from a perfect DWI Gaussian distribution. Increased tissue
heterogeneity associated with higher histopathologic grade results in a greater deviation
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from this Gaussian distribution, leading to a significant increase in Kapp. (3) High-grade
rectal cancer is characterized by the rapid growth of tumor cells, leading to the poor
structural integrity of lumenized vessels. This, in turn, diminishes micro-circulation and
perfusion, ultimately reflected in a decrease in f value.

Regarding IVIM-derived Dp, the lack of significant differences among different sub-
groups may be attributed to several factors. According to IVIM theory, Dp is influenced by
various factors, as expressed by the equation: Dp = (l × v)/6, where l represents capillary
length, and v represents the average velocity of blood in the capillary [31]. Consequently,
Dp is susceptible to the effects of a low signal-to-noise ratio (SNR). Moreover, many in-
vestigators have reported similar results, indicating that Dp does not exhibit significant
differences among various subgroups [27,32,33].

The strong correlations observed among different DWI biological markers underscore
the importance of integrating these insights to comprehensively characterize tumors from
various angles, considering cellular density, vascularity, and micro-structural heterogeneity.
While combinations of different DWI models have been widely explored in the literature,
few studies have focused on integrating these models based on DWI-derived biological
insights. Much attention has been devoted to comparing the clinical effectiveness of
different DWI parameters for specific clinical objectives such as grading and staging.
However, an excessive number of DWI models can lead to prolonged scan times and
complex procedures, potentially diminishing their clinical value. In this research, we
believe that by combining mono-exponential DWI, DKI, and IVIM, we can effectively
capture the key biological insights related to cellularity, vascularity, and heterogeneity.
Therefore, we employed multiple machine learning classifiers to integrate these different
DWI-derived biological insights for preoperative grading of rectal cancer. Prior attempts
have been made to apply machine learning to enhance the clinical effectiveness of DWI.
For instance, Wang achieved accurate diagnosis of prostate cancer (AUC = 0.983) by
applying DKI-derived radiomics metrics and an SVM-based classifier [34]. Vidic et al.
suggested that integrating IVIM-derived histogram metrics with SVM effectively assisted
in discriminating malignant breast cancer from benign breast cancer with an accuracy of
0.98 [35]. In a different approach, Yin Bo’s research used three different machine learning
classifiers, including classic decision trees, conditional inference trees, and decision forests,
to demonstrate that ADC map-based texture features had significant potential for accurately
grading meningioma [36]. However, to the best of our knowledge: (1) Combining multiple
DWI models to yield multiple biological insights for use as input features in machine
learning models has been rarely explored. (2) Few studies have introduced and compared
multiple machine learning models instead of relying on a single classifier like SVM. (3) The
integration of machine learning with DWI for preoperative grading of rectal cancer has been
underexplored. As anticipated, machine learning classifiers based on logistic regression
demonstrated superior diagnostic performance for grading rectal cancer compared to using
single DWI-derived parameters. This improvement can be attributed to several factors:
(1) The simultaneous introduction of three DWI biological markers allowed for a more
comprehensive characterization of rectal cancer. (2) Machine learning algorithms inherently
possess robust classification abilities. The logistic regression model is computationally
efficient, easy to implement, and requires less time and computer memory. It is also highly
robust to data noise.

Nonetheless, it is important to acknowledge several potential limitations in this study.
Firstly, akin to the majority of previous research, the positive results—which demonstrate
that DWI-derived parameters can offer substantial diagnostic power (for grading, staging,
or therapeutic efficacy evaluation) across various cancers—merely suggest the clinical
potential of DWI. The practical application of these DWI-derived parameters in clinical set-
tings may still be a long-term goal. The challenges stemming from unstable measurements
or parameter calculations, induced by the inherent limitations of DWI-MRI, including the
low SNR of DWI images and issues like distortion or mis-registrations, particularly at
high b values, are challenges faced by nearly all investigators. Addressing these issues
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will require collaborative efforts from researchers in the future. Secondly, the sample size
and data imbalance may introduce certain complexities during the training of machine
learning models. Thirdly, the inclusion of specific pathological indices as input features
could potentially enhance the diagnostic power of the models. Fourthly, in future studies,
the utilization of more robust deep learning models may further benefit the construction of
diagnostic models.

5. Conclusions

The combination of different DWI techniques allows for the comprehensive characteri-
zation of rectal cancer from multiple perspectives, encompassing aspects such as cellularity,
vascularity, and micro-structural heterogeneity. Integrating these DWI-derived biological
markers with multiple machine learning classifiers, we can achieve exceptional diagnostic
performance for grading rectal cancer. This approach, which relies on multiple DWI models,
multiple DWI-derived biological markers, and various classifiers, holds significant promise
for accurately preoperatively grading rectal cancer. Furthermore, this diagnostic strategy
can be readily extended to other clinical applications, including cancer diagnosis, cancer
staging, and the prediction of therapeutic outcomes.
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