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Abstract: The application of deep learning for taxonomic categorization of DNA sequences is investi-
gated in this study. Two deep learning architectures, namely the Stacked Convolutional Autoencoder
(SCAE) with Multilabel Extreme Learning Machine (MLELM) and the Variational Convolutional
Autoencoder (VCAE) with MLELM, have been proposed. These designs provide precise feature
maps for individual and inter-label interactions within DNA sequences, capturing their spatial and
temporal properties. The collected features are subsequently fed into MLELM networks, which yield
soft classification scores and hard labels. The proposed algorithms underwent thorough training and
testing on unsupervised data, whereby one or more labels were concurrently taken into account. The
introduction of the clade label resulted in improved accuracy for both models compared to the class or
genus labels, probably owing to the occurrence of large clusters of similar nucleotides inside a DNA
strand. In all circumstances, the VCAE-MLELM model consistently outperformed the SCAE-MLELM
model. The best accuracy attained by the VCAE-MLELM model when the clade and family labels
were combined was 94%. However, accuracy ratings for single-label categorization using either
approach were less than 65%. The approach’s effectiveness is based on MLELM networks, which
record connected patterns across classes for accurate label categorization. This study advances deep
learning in biological taxonomy by emphasizing the significance of combining numerous labels for
increased classification accuracy.

Keywords: convolutional autoencoder; variational autoencoder; extreme learning machine; DNA sequencing

1. Introduction

The high mobility of the global population and the effects of globalization have led
to the emergence and rapid spread of new viruses and bacteria, similar to the COVID-19
pandemic. It is crucial to detect and identify infections early to prevent outbreaks and facil-
itate therapeutic development [1]. The categorization of Deoxyribose Nucleic Acid (DNA)
sequences holds significant importance within the field of computational biology. In the
event of a patient contracting a viral infection, it becomes necessary to conduct sequencing
of samples and genomes to get insights into the virus’s source and facilitate the develop-
ment of vaccinations. Quickly and accurately identifying the pathogen’s phylogenetic tree
is essential.

To classify DNA sequences according to their taxonomy, researchers in this paper have
developed two types of deep learning (DL) algorithms. Sequences and domain labels used
in this research were obtained from the National Center for Biotechnology Information
(NCBI) database, which houses a large amount of genomic sequence data. Machine learning
algorithms are utilized to address the exponential growth in the number of DNA sequences.
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DNA functions as the fundamental genetic material for all living organisms and
is made up of a set of four nucleotides, namely adenine (A), cytosine (C), guanine (G),
and thymine (T). Every virus possesses its own distinct DNA, and the specific arrange-
ment of nucleotides within the DNA molecule is responsible for conferring its unique
properties [1]. DNA has the ability to exist in two distinct forms: single-stranded and
double-stranded. In the double-stranded form, nucleotides on one strand are able to form
pairs with their complementary counterparts on the opposing strand. RNA is a molecule
that demonstrates close connection and has the ability to exist in either a one-stranded or
two-stranded conformation. In RNA viruses, uracil (U) is present instead of thymine (T).
The genome consists of a specific arrangement of nucleotides, namely adenine (A), cytosine
(C), guanine (G), and thymine (T) for DNA viruses. For bacteria, adenine (A), cytosine (C),
uracil (U), and guanine (G) exist.

The process of categorizing domain labels in the analysis of DNA sequences entails
the application of the Word2Vec algorithm to extract relevant features from the unpro-
cessed DNA sequence. The aforementioned characteristics are subsequently utilized as
inputs for the Stacked Convolutional Autoencoder MLELM (SCAE-MLELM) and Varia-
tional Convolutional Autoencoder Multilabel Extreme Learning Machine (VCAE-MLELM)
models. These models are then compared to other deep learning (DL) models, including
CNN-Bidirectional LSTM [1] and DeepMicrobe [2], with respect to accuracy and various
other metrics. The aim of this study is to identify the most effective encoding and archi-
tecture methods for extracting features from DNA sequences and achieving an accurate
classification of taxonomy labels. The classification of domain labels in DNA sequence
analysis involves utilizing characteristics extracted from the raw DNA sequence using
the Word2Vec algorithm. These features are then inputted into the Stacked Convolutional
Autoencoder-Multilabel Extreme Learning Machine (SCAE-MLELM) and Variational Con-
volutional Autoencoder—Multilabel Extreme Learning Machine (VCAE-MLELM) models,
which are compared with other DL models such as CNN-Bidirectional LSTM [1], and
DeepMicrobe [2] in terms of accuracy and other metrics. The objective is to determine
the optimal encoding and architecture for extracting features from DNA sequences and
accurately classifying taxonomy labels.

The sequence classification challenge involves classifying the taxonomy and establish-
ing phylogenetic groups for a set of genomics sequences, such as DNA or RNA sequences.
This problem is important in bioinformatics as it relates to specific tasks like virus sub-
typing, haplogroup identification, or predicting the group to which a new sequence belongs.

Various approaches have been used in this field, including alignment-based and
alignment-free methods. The objective of this study is to introduce a methodology that
outperforms current contemporary techniques in terms of both effectiveness and accuracy.
The key contributions of this study are as follows.

• The proposed strategy addresses the issue of uneven sequence lengths in DNA or
RNA strands by dividing them into equal lengths of 3000 nucleotides per sequence.
Additional nucleotides are added to strands that cannot reach the desired length to
ensure uniformity.

• The sequences are then encoded using one-hot encoding and transformed into 4-mer
color platelet images, where each unique 4-mer sequence is assigned a distinct color.
The split-sequence data overlap by 50% to create the 4-mer relationship matrix, which
captures the position and relationship between 4-mers.

• This data is fed into a neural network for taxonomy classification. SCAE and VCAE
structures extract detailed feature vectors, and a series of Multilabel Extreme Learn-
ing Machines generate soft classification scores and hard labels for unsupervised
DNA sequences.

2. Literature Review

Scientists used to categorize organisms according to their form and structural charac-
teristics using morphological techniques. However, modern taxonomy relies on DNA data
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and several methods, including as sequence alignment and DNA barcoding, to identify and
classify species [3]. Organisms are classified into kingdoms, phyla, classes, orders, families,
genera, and species in addition to these fundamental divisions. Humans, for instance, are
classified into haplogroups based on shared ancestry. Proteins are encoded by DNA or
RNA sequences, which are known as genomics. DNA contains the instructions needed to
make proteins. Reading or sequencing DNA is the process of determining the nucleotide
order on a DNA strand. It is often achieved by breaking the DNA strand into smaller
fragments and stitching them together. Next-generation sequencing methods, which reduce
sequencing costs and boost speed but require more processing power, are used to read
shorter fragments. the sequence assembly effort. Alignment-free sequence classification
techniques have therefore gained popularity.

A multitude of alignment-free sequence comparison algorithms have been developed
in recent years, such as conditional Lempel-Ziv [4] and Kolmogorov complexity [5], mea-
sure representation [6], Markov model comparisons and frequent substring lengths [7,8],
which divides the genome into regions that represent a system that is evolving over time
with hidden states. Base-base correlation [9], spectral distortion [10], primitive discrim-
ination substrings [11], Burrows-Wheeler similarity [12], normalized central moments,
nearest-neighbor interactions [13], subword composition [14], prefix codes [15], informa-
tion correlation [16], the context-object model [17], and spaced word frequencies [18].

These algorithms are used in sequence classification (e.g., COMET [19]), sequence
composition (e.g., COMET [19]), restriction enzyme site distributions (the ‘natural vec-
tor’ for viral genome and proteome classification [20]), and neural networks that use
genomic cepstral coefficient characteristics to distinguish deadly viruses [21]. Alignment-
free methods provide an option for comparing sequences, making it possible to analyze
and classify a variety of genomic data efficiently.Methods utilizing k-mer frequencies,
which examine the patterns of occurrence for substrings with a length of k, are commonly
employed for sequence comparison without alignment. These methods were invented by
Blaisdell, who created phylogenetic trees for other DNA sequences [22] and alpha- and
beta-globin genes [23].

Further investigation into k-mer bias patterns has revealed connections between these
patterns and many DNA sequence characteristics, including repair mechanisms, mutations,
and DNA/RNA structure. It has also been shown that k-mer proportions can function as
genomic signatures, allowing sequences from the same organism to be distinguished from
one another.

In supervised classification, k-mer frequency vectors have been used. Nonetheless,
it is more frequently seen in small datasets. The field of influenza subtyping [24], viral
fragment classification, HPV genotype prediction [25], taxonomic grouping of bacterial
and eukaryotic genomes [17], identification of microbial DNA sequences [26], differen-
tiation between the genomes of E. coli and yeast [27], classification of bacterial genome
fragments [25], classification of splicing-related sequence snippets [28], and classification of
archaeal and bacterial groups [29] have all been observed applications of these techniques.

These k-mer-based approaches offer an effective means for sequence comparison and
classification, leveraging the abundance and distribution patterns of k-mers to gain insight
into genomics relationships.

Researchers have employed various combinations of deep learning techniques to
extract high-level features from sequences that represent DNA or RNA. For example,
Ref. [30] employed Long Short-Term Memory (LSTM) to process these features from binary-
encoded DNA sequences, demonstrating that this approach outperforms current state-of-
the-art methods. Abbas et al. [31] employed five distinct feature encoding techniques to
extract relevant features from RNA sequences. They used SHapley Additive exPlanations to
select the best features among the extracted ones then XGBoost, a machine learning classifier,
was employed in the model. Additionally, an optimization method called “Optuna” was
utilized to efficiently determine the best hyperparameters for the model. Rehman et al. [32]
represents DNA sequences numerically using a single encoding technique. After that,
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a series of convolution layers process the numerical data in order to extract low-level
features. The capsule network uses these properties in addition to extracting intermediate
and high-level features that are used to categorize 6 mA sites. For shallow feature extraction,
each of the contextual feature vectors derived from the encoding methods is independently
processed via a number of neural network layers [33].

In this study, we conducted a comparative analysis between CNN-Bidirectional
LSTM [1] and DeepMicrobe [2], to categorize DNA sequences based on 4 species taxonomic
rank. While prior methods required a carefully curated taxonomic tree, DeepMicrobe
addresses the challenge of integrating genomic assemblies of uncultivated species into
a taxonomic reference database. DeepMicrobe has created a deep learning-based com-
puter architecture that goes beyond the constraints of conventional techniques. It has been
demonstrated to be more accurate in estimating abundance while being more successful in
identifying species and genera. It was trained on genomes of the gut microbiome, which
simplified the study of uncharacterized metagenomic species and may have yielded new
signatures in inflammatory bowel diseases. Conversely, CNN-Bidirectional LSTM, which
has an architecture modeled after AlexNet, performs transfer learning and makes use of
Artificial Neural Networks (ANN). It also includes a bidirectional long-short-term memory
(BiLSTM) layer, which takes temporal characteristics into account during processing.

3. Dataset Collection

The entire DNA/Genomics sequence of viruses such as cherry virus, cereal yellow
dwarf, human fecal virus, and others was acquired from “the National Center for Biotech-
nology Information (NCBI)”, a public nucleotide sequence database. DNA sequence data
are in FASTA format. The sequence varies in length from 8 to 76,000 nucleotides. The
distribution of hosts in the class, together with the corresponding sample sizes, is as follows:
13.5% for plants, 20.6% for fungi, 29.7% for humans, and 36.3% for bacteria.

It is evident from the dataset that there is a problem with the dataset being skewed.
To solve this problem, SMOTE (Synthetic Minority Oversampling Technique) [34] might
be used. The host and fungus DNA sequences of plants are limited in our database.
The SMOTE method might be used to create synthetic samples for minority classes, such as
fungi and plants, that closely matched the majority class. The SMOTE algorithm employs
a random selection process to choose an instance from the minority class. Subsequently, it
identifies the k nearest neighbors belonging to the same minority class. Synthetic exam-
ples are created by combining two selected instances using a convex combination. This
methodology can generate a fabricated scenario for the underrepresented categories.

3.1. Preprocessing Dataset

Regarding machine learning and deep learning, pre-processing is the most crucial step
whenever numerical input is used instead of categorical. The genomics sequence in the
chromosome data is categorized. There are several strategies for converting category data
to numerical data. The process of transforming nucleotide categorical data into a numerical
form is known as encoding. Label encoding, one-hot encoding, and K-mer encoding are
utilized to encode the DNA sequence in this study. As shown in Figure 1, the DNA sequence
gives an index value (AAAA-1, AAAC-2, AAAG-3, and AAAT-4) to each 4-kmer sequence
nucleotide using label encoding and then transforms it to one-hot encoding.Using the
LabelBinarizer() and OneHotEncoder() functions in Python, the complete DNA sequence is
transformed into an array of integers.

By producing 4-mers for the raw DNA sequence, the k-mer encoding approach con-
verts it into an English-like statement. Each DNA sequence is turned into a K-mer of size 4,
and all of the K-mers produced from the sliding window set to 1 are concatenated to make a
sentence of 3000 in length. These DNA sequences were classified using a natural language
processing (NLP) approach. During this investigation, the sequence embedding layer was
operationalized to effect a transformation of the K-mer phrase into a matrix composed of
dense feature vectors.
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AGAGCTTTGCCCAACTGA...

(AGAG, CTTT), (AGAG, GCCC)
(CTTT,AGAG), (CTTT, GCCC), (CTTT, AACT)
(GCCC,AGAG), (GCCC, CTTT), (GCCC, AACT),(GCCC,GA...)
(AACT,CTTT), (AACT, GCCC), (AACT, GA...),(AACT,....)
 . . . . . . . .  .

Word2Vec Algorithm: 
window size = 2 

kmer size = 4

FocusContext Context

LabelBinarizer () and
OneHotEncoder()

Embedding layer

Figure 1. Formation of dense relationship feature vector matrix from the 4-mer sequence with sliding
window = 1.

In the embedding layer of the sequence, word2Vec algorithm is used. Commonly
used in NLP [35] to learn features from a set of k-mer sequences. Here k-mer sequences
are mapped to a vector of real numbers. For example; “AAAA” = [0.148, 0.4756, ..., 1.248].
The important feature in k-mer sequence embedding is that similar k-mers in the semantics
sense (the digital information of the linear genetic code) have smaller Euclidean cosine
distances between them compared to k-mer sequences that have no semantic relationship.
The model under consideration comprises a sequence embedding layer, which is a neural
network consisting of an input layer, a hidden layer, and an output layer. The determination
of the training matrices for sequence embeddings involves the selection of a hyperparam-
eter, namely the window size (w) of the context k-mer. The minimum size of w must be
1, as the algorithm cannot function without context k-mer. For example, if w = 1 and
k − mer = 3 for a sample DNA sequence “AATCGCTTTAGCTA. . . ”. The bold 3-mer is
the focused sequence, and one 3-mer sequence to the left and right of the focus sequence
is the context sequence. Therefore, with this logic, we can build data points and a dense
relationship feature vector matrix for a DNA sequence, as shown in Figure 1. The focal
point of the analysis is the 4-mer sequence matrix, with an emphasis on the red table.
The purpose of this structure is to maintain the location of the focal sequence within the
strand. Second, the blue table is the context 4-mer sequences matrix. This preserves
the relationship between the focus 4-mer sequence and context 4-mer sequences. Lastly,
the concatenation of the focus and context matrices is done to form the relationship-dense
feature vector matrix. The embedding dimension (hidden layer) is set to 2 to later plot
the 4-mer sequences in the data space and see whether similar 4-mer sequences cluster.
Softmax activation, a linear function, is used in the output layer of the neural network.
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The input dimension is equal to the total number of unique 4-mer sequences. Keras and
tensorflow are used to train the network.

3.2. Multilabel Data Representation

Each data instance for a given number of classes, denoted by C, is a subset Fi =
fi1, fi2, fi3, ..., fin(i = 1, ..., N) related to a vector Oi = oi1, oi2, ..., oiC [36]. It is possible for
an instance to belong to more than one class simultaneously. The values in the output
vector are represented in binary format, with 1 indicating that the sample belongs to a
particular class category and 0 indicating that it is not similar to that class category. The
utilization of several class labels on a single instance is feasible in this scenario, unlike with
signal-label data, where it is impossible. A label set refers to every possible combination of
class labels. More details regarding the representation of multiple labels will be discussed
in subsequent sections.

4. Proposed Models

The researchers in this paper introduced two deep-learning models to address the
challenge of identifying the host from which a DNA sequence originates. The first model
combines a stacked convolutional autoencoder (SCAE) with MLELM. The second model
utilizes a variational convolutional auto-encoder (VCAE) within the MLELM framework
for classification based on one-hot encoding input data. The researchers conducted a series
of experiments using several deep learning models. The study’s findings indicated that the
optimal model for SCAE-MLELM was a completely interconnected SCAE combined with
MLELM. This model demonstrated superior soft categorization and score estimation per-
formance across various classes. The utilization of a convolutional autoencoder facilitates
the extraction of the spatial organization inherent in DNA sequences, hence enhancing
computational efficacy and performance through the identification and representation of
latent associations among data attributes. The extracted features are subsequently inputted
into two MLELMs, with the initial model generating probabilistic labels and the subsequent
model establishing a relationship between deterministic labels and probabilistic labels.
Unseen data is assigned hard labels based on the projected ratings.The VCAE-MLELM
architecture is kept simple, with fully connected convolutional and deconvolutional layers,
and mean and variance nodes in the autoencoder bottleneck. A comprehensive overview
of the proposed system is provided in the following sections, and the research design is
illustrated in Figure 2.

k-mer LabelBinarization

Sequence
embedding

OneHotEncoding

SCAE VCAE

Classification of HOST
of the DNA Sequence

MLELM

Figure 2. Overview of the proposed system.

4.1. Stacked Convolutional Autoencoder (SCAE)

Autoencoders are neural networks that compress input data into a lower-dimensional
representation and then reconstruct it. Convolutional Neural Networks (CNNs) have con-
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volutional, pooling, and fully connected layers. Autoencoders operate in an unsupervised
manner, whereas CNNs are feedforward networks.

The encoder in an autoencoder maps the input to hidden nodes using a transfer
function. The decoder reconstructs the original input from the hidden representation.
The weights are updated through backpropagation. The proposed model includes convolu-
tional layers and ReLU activation functions, forming a Stacked Convolutional Autoencoder
(SCAE) to capture hierarchical features.

The convolutional layer in the bottleneck position serves to flatten the data, which
are then sent into a fully connected layer. The feature vector is used for the purposes of
analysis and prediction by multilabel extreme learning machines. The encoder and decoder
are configured to reduce the amount of error when reconstructing the input data.

Figure 3 illustrates the structure of an auto-encoder, while CNNs have a different
architecture comprising convolutional, pooling, and fully connected layers. The purpose
of autoencoders is to learn a compressed representation of input data, whereas CNNs are
primarily used for tasks such as image recognition and classification.

Figure 3. Proposed system workflow.

The proposed model employs convolutional layers with rectified linear unit (ReLU)
activation functions, in addition to incorporating max-pooling layers inside the encoder
portion. This choice of a convolutional autoencoder is made to improve computational
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complexity and overall performance [37]. The encoder component of the model employs
a non-linear transformation to convert the input vector into a lower-dimensional hidden
representation. Subsequently, the decoded part reconstructs the original input from this
hidden representation. This process is repeated, forming a Stacked Convolutional Au-
toencoder (SCAE) that effectively captures hierarchical features in the data. The encoder
and decoder structures are symmetric, allowing for the extraction of low-dimensional
hierarchical features [38].

4.2. Variational Convolutional Autoencoder (VCAE)

A variational autoencoder (VAE) models observations in latent space using probability
distributions instead of single values. By representing each latent property as a distribution,
we can capture multiple alternative values for each characteristic. This approach allows
for a more flexible and descriptive encoding of input data. The encoder model in VAE
generates probability distributions for each latent property, while the decoder model
reconstructs the input based on random samples from these distributions. This probabilistic
representation ensures a smooth and continuous latent space, enabling similar values to
produce similar reconstructions.

In a VAE encoder model, instead of directly producing values for the latent state, it
generates parameters representing distributions for each dimension in the latent space.
The mean and variance vectors are outputted to characterize these distributions based on
the assumption of a normal prior. To simplify the model, we assume a diagonal covariance
matrix with non-zero values only on the diagonal, representing the association between
dimensions. The decoder model then reconstructs the input by sampling from these
distributions. To enable backpropagation during training, a reparameterization technique
is used, involving sampling from a unit Gaussian and adjusting the samples based on the
mean and variance of the latent distribution. Additionally, the logarithmic transformation
followed by an exponential is often used to handle negative values in the learned variance.

4.3. Extreme Learning Machine (ELM)

MLELM is a three-layer architecture consisting of input, hidden, and output layers.
The weights linked to the input layer and biases are initially assigned random values and
stay constant during the learning process, with the learning occurring only inside the
hidden layer.The activation function ϑ is applied to calculate the output of each hidden
node. The model weight matrix v is obtained iteratively during the training phase, allowing
class prediction in the testing phase. The proposed system combines the ELM network’s
topology with encoded features from SCAE for Multilabel classification. A threshold
determines the hard labels based on the score achieved, with the drawback of potential
misclassification. The reduced number of input nodes in MLELM due to SCAE results in a
compact weight matrix and a smaller hidden layer. The generation of soft classification
label scores is followed by their utilization as input for the second MLELM model to make
predictions for target labels without needing a predetermined threshold. The discrete class
labels are obtained by converting the final score using a calibrated threshold.

5. Experimental Setup

The study employed 117,405 full-length sequences that were sourced from the NCBI
database as its dataset. The input data was split into training sets (70%), validation
(10%), and testing (20%), with each sequence being broken into 3000 nt, 82,215 training
sequences, 11,740 validation sequences, and 40,000 testing sequences were the end results
of this.Throughout the training procedure, the difference between the desired label and
the anticipated output was computed using the binary cross-entropy function. The loss
function is used to modify the model’s weights.

To test several models, hyperparameters like filter type, size, number of layers, and em-
bedding dimension were changed. The grid search cross-validation method was used to
choose the ideal parameters. The ideal number of filters in each layer for each of the three
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models was discovered to be 128, 64, and 32. The experiment’s configuration included
the following values: the filter size was set to 22, the training batch size was set to 100,
the number of training epochs was set to 10, the embedding dimension was set to 32,
and the K-mer size was set to four.

During the training phase, the input data is passed through the Stacked Convolutional
Autoencoder (SCAE). The Adam optimizer is used with a learning rate set at 0.001 to
train the encoder and decoder components within the SCAE. The primary objective of this
training process is to minimize the Mean Squared Error between the input data and its
reconstructed output. Training continues until a stopping criterion is met. In this case,
training stops after 10 epochs if there is no improvement in the validation loss, which serves
as a metric to prevent overfitting. The choice of this stopping criterion is influenced by
factors such as dataset size, model complexity, available computational resources, and the
model’s performance. The SCAE employs an iterative learning approach by using multiple
layers and progressively reducing the number of features to improve its ability to recognize
input data.

Next, in order to do soft-class prediction, the encoded attributes gathered from the
SCAE are input into the Multilabel ELM network (MLELM). MLELM processes all input
instances simultaneously while operating in batch mode, with the number of hidden layers
determined by the input nodes. With MLELM, weights learned from the hidden layer via
the variable v are used to compute class scores for encoded training data. The weighted
outputs of the hidden nodes are added to produce these scores. The second MLELM
network receives the expected scores after that, enhancing the predictions by comparing
the class scores to the actual class labels. To extract the weights for the hidden layer in the
second MLELM network, just one operation is needed. The test data is then autonomously
put into the SCAE network following the training of the MLELM and SCAE networks.
The procedure entails the creation of encoded attributes, which are then sent across MLELM
networks.The hard class labels for the test data are obtained by mapping soft class scores to
real class labels.

6. Result

The performance assessment of the models is conducted using evaluation measures
such as recall, precision, F1-score, and accuracy. The recall metric quantifies the proportion
of correctly predicted positive instances in relation to the combined number of correctly
predicted positive and incorrectly predicted negative instances. Precision is a metric that
quantifies the proportion of accurate positive predictions relative to the total number of
positive forecasts, including both true positive and false positive predictions. The F1-score
is a statistic that provides a balanced assessment of model performance by computing the
harmonic mean of accuracy and recall. Accuracy is computed as the ratio of true positive
and true negative predictions to the sum of true positive, true negative, false positive,
and false negative predictions.

The confusion matrix is used to determine the true positive (TP), false negative (FN),
true negative (TN), and false positive (FP) values. The number of samples that have been
correctly identified as positive, according to the true positive labels, is represented by the
variable TP. The number of samples that were predicted to be positive but do not match the
actual positive labels is referred to as False Negatives (FN).TN refers to accurately predicted
negative samples, and FP indicates samples that were predicted as negative but had actual
positive labels. The accuracy metric assesses the proportion of accurately predicted labels
in the test data.

6.1. Classification of Host by Considering Family Label

The classification problem addressed in this study involves categorizing host labels
(bacteria, fungi, humans, plants) from DNA sequences obtained from the NCBI dataset.
Among the proposed methods, VCAE-MLELM significantly outperforms SCAE-MLELM
in terms of accuracy. This improvement can be attributed to the approach used by VCAE-
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MLELM, which utilizes the mean and variance of each input feature to predict the output
rather than solely relying on the weights of hidden nodes.

The highest accuracy achieved by the models is 61% for VCAE-MLELM and 31% for
SCAE-MLELM, as demonstrated in the confusion matrix shown in Figure 4 and Table 1. It
is evident from the confusion matrix that SCAE-MLELM exhibits a higher misclassification
rate compared to VCAE-MLELM. This can be attributed to the fact that the number of
similar nucleotide groups formed in the sequences is quite low. Furthermore, the presence
of unique features at the family class level in the phylogenetic tree further contributes to
the high misclassification rate of host labels.

Tr
ue

 L
ab

el
s

Predicted Labels

a) SCAE-MLELM
Tr

ue
 L

ab
el

s

Predicted Labels

b) VCAE-MLELM

Figure 4. Confusion Matrices of Host label by considering the Family label only. (a) SCAE-MLELM
generated confusion matrix and (b) VCAE-MLELM model generated.

Table 1. Classification Results for Host by considering “Family” label; precision, recall, and f1-Score
by using the SCAE-MLELM and VCAE_MLELM model.

SCAE-MLELM VCAE-MLELM

Class Group Precision Recall f1-Score Precision Recall f1-Score

Bacteria 0.08 0.12 0.10 0.37 0.42 0.40
Fungi 0.013 0.12 0.08 0.47 0.53 0.49
Human 0.04 0.06 0.015 0.46 0.61 0.60
Plant 0.025 0.31 0.12 0.55 0.56 0.48

Accuracy 0.31 0.61

In summary, the VCAE-MLELM model demonstrates superior performance with a
higher accuracy rate compared to SCAE-MLELM. Misclassification of host labels remains a
challenge, primarily due to the low occurrence of similar nucleotide groups and the unique
characteristics of the family class in DNA sequences.

6.2. Classification of Host by Considering Family and Class Label

The confusion matrix for both models, VCAE-MLELM and SCAE-MLELM, in the four-
category problem is shown in Figure 5. As expected, the VCAE-MLELM model outperforms
the SCAE-MLELM model, achieving the highest accuracy rate of 78%. On the contrary,
the SCAE-MLELM model only achieves an accuracy rate of 65%, Table 2. Misclassifications
are more prevalent in the SCAE-MLELM model, indicating its lower performance.

Although we considered the family label along with the genus and order categories,
we chose not to showcase it due to the significantly high rate of misclassification in the
SCAE-MLELM model. The genus category, being lower than the family label, does not
effectively consider a larger number of nucleotides. On the other hand, the order label
considers slightly more nucleotides than the family label, but we focus on the class label.
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Figure 5. Confusion Matrices of Host label by considering the Family and Class labels. (a) SCAE-
MLELM generated confusion matrix and (b) VCAE-MLELM model generated.

Table 2. Classification Results for Host by considering “Family and Class” label; precision, recall,
and f1-score by using the SCAE-MLELM and VCAE-MLELM model.

SCAE-MLELM VCAE-MLELM

Class Group Precision Recall f1-Score Precision Recall f1-Score

Bacteria 0.34 0.42 0.37 0.64 0.78 0.76
Fungi 0.64 0.65 0.57 0.62 0.71 0.63
Human 0.40 0.45 0.39 0.72 0.75 0.63
Plant 0.57 0.60 0.50 0.63 0.66 0.55

Accuracy 0.65 0.78

Analyzing the confusion matrix, we can observe distinct patterns of misclassification
more prominently in the SCAE-MLELM model. False predictions are not evenly spread
out but rather concentrated towards the left part of the matrix. On the contrary, the VCAE-
MLELM model exhibits fewer false classifications.

This analysis further confirms the superior performance of the VCAE-MLELM model
compared to the SCAE-MLELM model in the four-category problem. The results highlight
the importance of selecting appropriate labels and considering larger nucleotide patterns
to achieve accurate classification in DNA sequence analysis.

6.3. Classification of Host by Considering Family and Clade Label

In the four-category problem, we present the confusion matrix (Figure 6) for both the
VCAE-MLELM and SCAE-MLELM models, which demonstrates a significantly improved
scenario for both models. Consistently, the VCAE-MLELM model outperforms the SCAE-
MLELM model, achieving the highest accuracy rate of 94%, Table 3. On the contrary,
the SCAE-MLELM model achieves an accuracy rate of 86%. Misclassifications occur at a
lower rate for the SCAE-MLELM model.

In our experimentation, we considered the inclusion of the phylum and kingdom
categories as well. However, the results for the phylum label were similar to those of
the class label, while incorporating the kingdom label resulted in overfitting the model.
The inclusion of the kingdom label led to high variance and low error rates.

To further enhance performance, increasing the number of input data points to the
model could be beneficial. Additionally, Figure 7 illustrates the accuracy and loss curves
for both proposed models. For the VCAE-MLELM model, the accuracy rate gradually
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increases until the 10th epoch and then stabilizes. In contrast, the SCAE-MLELM model
remains unstable throughout the training phase.
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Figure 6. Confusion Matrices of Host label by considering the Family and Class labels. (a) SCAE-
MLELM generated confusion matrix and (b) VCAE-MLELM model generated.

Table 3. Classification Results for Host by considering “Family and Clade” label; precision, recall,
and f1-score by using the SCAE-MLELM and VCAE_MLELM model.

SCAE-MLELM VCAE-MLELM

Class Group Precision Recall f1-Score Precision Recall f1-Score

Bacteria 0.76 0.81 0.73 0.80 0.88 0.86
Fungi 0.74 0.82 0.75 0.84 0.92 0.85
Human 0.80 0.85 0.76 0.83 0.87 0.78
Plant 0.82 0.86 0.79 0.90 0.94 0.91

Accuracy 0.86 0.94

Overall, the results highlight the superior performance of the VCAE-MLELM model in
the four-category problem. The findings suggest that further improvements can be achieved
by increasing the size of the dataset and carefully selecting relevant labels for classification.

6.4. Comparison between Existing Algorithm

To evaluate the effectiveness and efficiency of the system, a comparative study is
carried out with two well-known models: CNN-Bidirectional LSTM and DeepMicrobe.
This review uses datasets with both picture (2D) and word (1D) inputs with the aim of
classifying. As stated in their individual publications, the NCBI dataset was adjusted to
meet the model’s requirements. The perspective article provides information on the specific
operations of these models as well as the generation of the output. Table 4 shows the
aggregate test results in terms of the statistical metrics.

This study examines the individual labeling problems, including family, class, and clade,
as well as a combination of multiple labels, such as family-class, family-clade, and class-
clade. The highest accuracy is achieved when the family-clade or class-clade labels are
taken into consideration by the models. The VCAE-MLELM model demonstrates superior
performance compared to other models, achieving a remarkable accuracy rate of 94% when
evaluating the family-clade and class-clade labels. The accuracy of the SCAE-MLELM
model reaches its peak at 88% when taking into account the class-clade label. The CNN-
Bidirectional LSTM and DeepMicrobe models attain their peak accuracy rates of 87%
(class-clade) and 84% (family-clade), respectively.
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Figure 7. Training and Validation accuracy and loss curve for family-clade label consideration.

Table 4. Models performance by considering different co-relationships between the Family, Class,
Clade, Family-Class, Family-Clade, and Class-Clade labels.

Model Name Performance Family Class Clade Family-Class Family-Clade Class-Clade

SCAE-MLELM

Accuracy 0.31 0.38 0.46 0.65 0.86 0.88
Precision 0.25 0.29 0.44 0.52 0.60 0.78
F1-Score 0.35 0.32 0.57 0.42 0.58 0.81
AUC (%) 0.41 0.42 0.46 0.63 0.75 0.79
pAUC (%) 0.24 0.37 0.37 0.72 0.68 0.68

VCAE-MLELM

Accuracy 0.61 0.78 0.85 0.78 0.94 0.94
Precision 0.58 0.84 0.77 0.67 0.92 0.89
F1-Score 0.62 0.82 0.74 0.73 0.87 0.91
AUC (%) 0.59 0.37 0.49 0.61 0.87 0.90
pAUC (%) 0.67 0.60 0.68 0.87 0.86 0.78
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Table 4. Cont.

Model Name Performance Family Class Clade Family-Class Family-Clade Class-Clade

CNN-Bidirectional
LSTM [1]

Accuracy 0.21 0.42 0.48 0.85 0.75 0.87
Precision 0.18 0.35 0.40 0.75 0.44 0.78
F1-Score 0.19 0.41 0.37 0.68 0.57 0.80
AUC (%) 0.13 0.28 0.46 0.79 0.60 0.66
pAUC (%) 0.11 0.16 0.38 0.80 0.68 0.47

DeepMicrobe [2]

Accuracy 0.35 0.48 0.54 0.83 0.84 0.84
Precision 0.40 0.42 0.57 0.82 0.75 0.74
F1-Score 0.38 0.38 0.62 0.78 0.69 0.65
AUC (%) 0.24 0.44 0.58 0.75 0.79 0.79
pAUC (%) 0.32 0.36 0.36 0.68 0.84 0.83

From Table 4, we can observe that the VCAE-MLELM model outperforms the existing
models and the SCAE-MLELM model. This can be attributed to the architecture of the
VCAE-MLELM model, which incorporates the mean and variance of the extracted features
from the convolutional layer in the encoded section before deconvolution.

The proposed models consistently outperform existing algorithms in terms of various
metrics, whether using text or image input. This superiority can be attributed to the Multil-
abel structure of the proposed models, as the existing models exhibit better performance
with a single-label data structure.

7. Conclusions

This paper aimed to address the challenges of taxonomic classification of DNA se-
quences by creating a dataset using the publicly available NCBI viral resource database.
The data set was constructed by splitting each sequence into segments of 3000 nucleotides
with a 50% overlap between DNA sequences of similar species. These sequences were
then encoded using one-hot encoding and transformed into numerical arrays using the
LabelBinarizer function in Python.

To capture the relationship between K-mer sequences, we utilized a word embed-
ding layer to build a dense feature vector matrix. This matrix preserved the positional
information of each K-mer sequence and its neighboring sequences. Two models were pro-
posed for classifying the host of the sequence based on this dense feature matrix. The first
model, Stacked Convolutional Autoencoder (SCAE), generated a detailed feature vector
that captured label relationships. Subsequently, Multilabel Extreme Learning Machines
(MLELM) were used to generate soft classification scores and hard labels from the fea-
ture map based on the training data. The second model, the Variational Convolutional
Autoencoder (VCAE), calculated the mean and variance of each feature before passing it
to the MLELM network for classification. VCAE-MLELM demonstrated superior perfor-
mance by accurately extracting essential features and achieving higher accuracy compared
to SCAE-MLELM.

To evaluate the system’s performance, efficiency, and robustness, extensive training,
validation, and testing were conducted. The proposed VCAE-MLELM outperformed
existing algorithms such as CNN-Bidirectional LSTM and DeepMicrobe, achieving an
accuracy score of 94%, while SCAE-MLELM achieved 88% accuracy. This indicates that
the techniques employed in the VCAE-MLELM models are more reliable in recognizing
relevant salient features from DNA sequences. The incorporation of MLELM allowed the
consideration of two labels at a time during classification, which proved to be effective
on the basis of experimentation. Taking into account the family label alone resulted in
31% accuracy for SCAE-MLELM and 61% for VCAE-MLELM. However, considering the
combination of family and clade labels, the highest accuracy scores were obtained for both
models, reaching 86% for SCAE-MLELM and 94% for VCAE-MLELM. This improvement
can be attributed to the analysis of a larger group of 4-mer sequence nucleotides and
the examination of more relationships between K-mer sequences, which provided a more
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accurate probability data space for VCAE. It is worth noting that considering more than two
labels led to the overfitting of the models. Therefore, optimal performance was achieved by
considering two labels at a time.
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