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Abstract: Early detection is crucial for the survival and recovery of lung cancer patients. Computer-
aided diagnosis system can assist in the early diagnosis of lung cancer by providing decision support.
While deep learning methods are increasingly being applied to tasks such as CAD (Computer-aided
diagnosis system), these models lack interpretability. In this paper, we propose a convolutional
neural network model that combines semantic characteristics (SCCNN) to predict whether a given
pulmonary nodule is malignant. The model synthesizes the advantages of multi-view, multi-task
and attention modules in order to fully simulate the actual diagnostic process of radiologists. The 3D
(three dimensional) multi-view samples of lung nodules are extracted by spatial sampling method.
Meanwhile, semantic characteristics commonly used in radiology reports are used as an auxiliary task
and serve to explain how the model interprets. The introduction of the attention module in the feature
fusion stage improves the classification of lung nodules as benign or malignant. Our experimental
results using the LIDC-IDRI (Lung Image Database Consortium and Image Database Resource
Initiative) show that this study achieves 95.45% accuracy and 97.26% ROC (Receiver Operating
Characteristic) curve area. The results show that the method we proposed not only realize the
classification of benign and malignant compared to standard 3D CNN approaches but can also be
used to intuitively explain how the model makes predictions, which can assist clinical diagnosis.

Keywords: lung nodule classification; convolutional neural network; multi-view; interpretability;
attention mechanism

1. Introduction

Lung cancer is the malignant tumor with the highest incidence and mortality rate,
and studies have shown that the number of people dying from lung cancer in 2030 will
continue to increase, China could reach 42.7% [1,2]. Lung cancer is often overlooked in
the early stage due to the lack of obvious symptoms [3], and when detected, it is usually
in the advanced stage, often accompanied by multiple organ or lymph node metastasis,
which makes the treatment difficult and ineffective. Early lung cancer is mostly manifested
as lung nodules, which can be treated with surgery and radiotherapy, so early screening
is of great significance to the prevention and treatment of lung cancer [4]. Studies have
shown that low-dose spiral CT (Low-dose Computed Tomography (LDCT)) screening
methods can significantly improve lung cancer detection rates and reduce the morbidity
and mortality of people at a high risk of lung cancer by 20% compared to chest radiography
screening methods [5].

The popularization of LDCT technology has achieved a high yield of CT images.
Consequently, the workload of manual reading has increased dramatically [6], which not
only burdens doctors with time-consuming and cumbersome work but also may cause
fatigue misdiagnosis and omission of diagnosis [7]. For this reason, researchers have
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proposed a computer-aided diagnosis (CAD) system for lung nodule classification to
improve the effectiveness of diagnosis [8]. In recent years, CAD systems have been widely
used to assist in the treatment of different diseases due to their efficiency and reliability
in clinical diagnosis [9,10]. Benign and malignant identification is the top priority in the
auxiliary diagnosis of lung nodules. Generally speaking, the traditional computer-aided
diagnosis system extracts the underlying features of the image from the candidate nodules
after lung parenchyma segmentation and adopts traditional classifiers for learning. In
contrast, with the rise of deep learning technology, its application in medical images has
gradually become a mainstream trend [11].

Deep learning techniques create a form of end-to-end automated processing that
integrates feature selection and extraction in a single architecture, significantly improving
efficiency and accuracy [12]. Shen et al. [13] proposed MC-CNN (Multi-crop convolu-
tional neural networks) to simplify the traditional way of classifying the malignancy of
lung nodules by using convolutional neural networks to learn the features generated at
multiple scales, effectively reducing computational complexity. Liu et al. [14] designed
multiple independent neural networks to simulate different expert behaviors and fused the
results with integrated learning, consisting of three different types of architectures to form
a multi-model 3D CNN. Ciompi et al. [15] extracted multi-view features of lung nodules by
analyzing three views, axial, coronal and sagittal, and constructed a multi-scale representa-
tion using three scales, which is more conducive to the classification of lung nodules. Zheng
et al. [16] proposed a deep convolutional neural network, STM-Net (Scale-Transfer Module
Net), which contains a scale-shifting module and multi-feature fusion operation, and the
model adapts to the size of the target by scaling the images with different resolutions.

Although convolutional neural networks can simplify complex processing steps, some
problems inevitably arise. Networks are often characterized by complex parameters, layers
and high dimensionality of data, making it difficult to intuitively understand how they
make decisions and unable to explain the logic behind their predictions. They are often
considered as a “black box” [17]. Especially in the medical field [18], it is necessary to have
a clear explanation and basis for the model’s judgment in order to help radiologists make
more profound diagnoses.

When doctors assess lung nodules with CT images, they use characteristics such as
lobulation, texture, diameter, subtlety and degree of calcification to describe and analyse
their relevant manifestations [19]. These semantic characteristics are also often found
in radiology reports. Clinically speaking, these semantic characteristics are important
reference factors for determining the benignity and malignancy of pulmonary nodules
and correlate with each other [20]. Utilizing shared features among multiple semantic
characteristics can achieve mutual enhancement between features. Studies have shown
that multi-task learning can improve performance when similar domain background tasks
are involved [21]. Wu et al. [22] designed PN-SAMP (Pulmonary Nodule Segmentation
Attributes and Malignancy Prediction) to combine lung nodule segmentation, semantic
characteristics and benign and malignant prediction, which helps improve a single task’s
performance. Zhao et al. [23] proposed a multi-scale multi-task combined 3D CNN that
can detect benign and malignant lung nodules from CT scan Classification. This CNN
combined two image features of different volume scales, followed by multi-task learning to
achieve benign, malignant and semantic feature classifications of lung nodules. Li et al. [24]
incorporated domain knowledge into the CNN and achieved the classification of nine
semantic characteristics of lung nodules by multi-task learning with improved overall
performance of the model.

The performance of each semantic characteristic common to lung nodules is shown
in Figure 1, from top to bottom, indicating the elevated level of semantic characteristics
represented by the column. Semantic characteristics are more intuitive and informative for
clinicians [25], so this study synthesizes them to assist in benign and malignant diagnosis
and analysis. Semantic characteristics are intuitive to radiologists and provide objective
methods to capture image information. There is an opportunity to incorporate these
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semantic characteristics into the design of deep learning models, combining the best of
both worlds.
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Figure 1. Semantic characteristic performance of lung nodules.

Similarly, the diagnostic process focuses on different semantic characteristics by re-
peatedly observing them. Attention mechanisms proposed in recent years also draw on
the humans ability to focus attention when processing information [26]. In computer
vision tasks, by assigning different weights to the input image, the model is allowed to
selectively focus on a specific portion of the input to understand the data better. Zhang
et al. [27] designed the LungSeek model that combines the SK-Net with a residual Network
to simultaneously extract lung nodule features from both spatial and channel dimensions,
improving lung nodules detection effectiveness. Fu et al. [28] added an attention module
to the model, which can compute the importance of each slice to filter out irrelevant slices.
AI-Shabi et al. [29] proposed a 3D axial attention, applying the attention to each axis indi-
vidually, thus providing complete 3D attention to focus on the nodes efficiently. There are
not many studies that take semantic characteristics and attention mechanisms into account,
but simply classify malignant labels. We try to incorporate this domain knowledge into a
deep learning framework, and the mentioned studies are summarized in Table 1.

Table 1. Summary of the contribution and development of existing research in the field.

Existing Research Highlights Contribution

Shen et al. [13] Multiple scales Simplify the traditional way

Liu et al. [14] Integrated learning Simulate different expert behaviors

Ciompi et al. [15] Multi-view(three views) A multi-scale representation using three scales

Zheng et al. [16] Scale-shifting module Scaling the images with different resolutions
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Table 1. Cont.

Existing Research Highlights Contribution

Wu et al. [22] Combine lung nodule segmentation,
semantic and malignant prediction Improve a single task’s performance

Zhao et al. [23] Multi-scale and multi-task Combined two image features of different volume

Li et al. [24] Domain knowledge into CNN Achieved the classification of nine semantic characteristics

Zhang et al. [27] Both spatial and channel dimensions Improving detection effectiveness

Fu et al. [28] Attention module Compute the importance of each slice

AI-Shabi et al. [29] 3D axial attention Applying the attention to each axis individually

In this paper, we design a convolutional neural network (SCCNN) with semantic char-
acteristics and integrate the multi-view, multi-tasking and attention mechanism advantages.
The input of the model is the original CT image cube centered on the nodule. The degree
of malignancy is regarded as the main task, and semantic characteristics are regarded as
the branch task. The primary task explains what the SCCNN model learns from the raw
image data, and trains it to improve the prediction of whether a nodule in a CT image
is malignant.

The contributions of this paper are as follows:

1. We synthesized the semantic characteristics of lung nodules commonly used by
doctors during clinical diagnosis to design a multi-task learning network model to
assist in identifying benign and malignant nodules, which was experimentally verified
to improve the model’s performance and increase the interpretability of the model.

2. A multi-perspective approach is used for data augmentation, combining physician-
annotated data and gold-standard pathological diagnostic data to deal with uncertain
nodules in order to solve the problems of too little annotated data and sample imbal-
ance and maximize the use of existing annotation information.

3. Establish ablation experiments by introducing different attention mechanisms so that
the model can adaptively focus on more critical feature information when synthesizing
multiple semantic characteristics and improve the robustness of the model.

The remainder of this paper is organized as follows. Section 2 presents the materials
and methods used in this study, including the dataset, data processing methods and the
proposed SCCNN model. Section 3 describes the performance evaluation indicators and
model results. Section 4 discusses the strengths and limitations of this work. Finally, in
Section 5, the conclusions of the study are provided.

2. Materials and Methods
2.1. Dataset and Data Cleaning

This study used the publicly available Lung Image Database Consortium and Image
Database Resource Initiative (LIDC-IDRI) [30] as the underlying data source, which con-
tains 1018 lung CT cases from 1010 lung cancer patients. The CT cases contained lesion
annotations from four experienced chest radiologists. The CT images were given digital
imaging and communications in medicine (DICOM) format. The annotation results were
presented in Extensive Markup Language (XML) format, and the annotations included large
nodules (diameter ≥ 3 mm), small nodules (diameter < 3 mm), and non-nodules, with ad-
ditional identifiers of specific contours and features for large nodules. The four physicians
labelled the images with the following nine semantic characteristics: subtlety, lobulation,
spiculation, sphericity, margin, texture, internal structure, calcification and malignancy. All
of the categories were divided into five grades to differentiate the degree of expression of
the semantic characteristics. The calcification was classified in six grades. Evaluating an
isolated pulmonary nodule’s specific morphology can help differentiate between benign
and malignant nodules. For example, lobulated outlines or spiculation edges are usually
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associated with malignancy. The presence and pattern of calcification can also help distin-
guish between the two [31]. These image features provide a quantitative and objective way
to capture image information to create more standardized rating systems and terminology,
and reduce competent variability between radiologist annotations [32]. Typically, a higher
rank indicates a more significant corresponding semantic characteristic. Table 2 shows the
specifics of each rank.

Table 2. Grading of semantic characteristic.

Semantic
Characteristics 1 2 3 4 5 6

Subtlety Extremely subtle Moderately subtle Definitely subtle Moderately distinct Distinct -
Internal structure Soft tissue Fluid Fat Air - -

Calcification Popcorn Laminated Solid Non-central Central None
Sphericity Linear - Ovoid - Round -

Margin Vague - - - Sharp -
Lobulation None - - - Distinct -
Spiculation None - - - Distinct -

Texture Non-solid - Mixed - Solid -

Malignancy Highly unlikely Moderately unlikely Indeterminate Moderately
suspicious Highly suspicious -

- There is not precisely expressed in the LIDC for the corresponding level.

LIDC-IDRI provides the diagnostic data of benign-malignant at two levels, semantic
benign-malignant and pathological benign-malignant, where the former is mainly based on
the information labelled by doctors, i.e., doctors’ subjective judgment of lung nodules based
on rich clinical experience, and the latter is based on pathological diagnostic information,
i.e., the diagnosis of the nodules through tissue sections and puncture biopsy procedures,
which is the “gold standard” for assessing the risk of lung cancer [33].

The gold standard data makes it more difficult to obtain data samples because it
involves invasive surgical operations and 157 subjects in LIDC had pathologic diagnostic
information. There were 2072 lung nodules with physician annotations of semantic charac-
teristic grade in LIDC, each containing annotations from at least one physician. We first
screened out high-quality data from these CT imaging data with a nodule diameter greater
than 3 mm and CT slice thickness within 3 mm, referring to the positive and negative
sample definition method in a previous study [34]. In order to maximize the use of limited
annotations for samples of uncertain malignant samples, we added them to the dataset
after referring to the pathological diagnosis. Figure 2 shows the specific data cleaning
process, and the cleaned data totaled 1779 cases.
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2.2. Data Preprocessing and Correlation Analysis

In order to quantify the intrinsic association between semantic characteristics and the
degree of malignancy, our study performed a Spearman’s correlation [35] analysis on the
cleaned data, using the absolute value of the correlation coefficient as a measure of the
degree of linear correlation between the two.

The semantic characteristics of the lung nodules with higher correlation can be inter-
preted as follows: when this characteristic has a higher rank, it may be accompanied by a
more pronounced degree of malignancy, which is more likely to enhance the prediction
of malignancy by the network model. As can be seen from Table 3, the three characteris-
tics with the highest rank of relevance are lobulation, spiculation and subtlety, indicating
that these semantic characteristics play an essential role in malignancy classification [36].
Therefore, they are selected as auxiliary tasks for the model.

Table 3. Correlation analysis of each semantic characteristic with malignancy.

Semantic Characteristics Correlation Coefficient

Lobulation 0.494 **
Spiculation 0.376 **

Subtlety 0.348 **
Margin −0.305 **

Calcification 0.280 **
Texture −0.177 **

Sphericity −0.173 **
Internal structure 0.083 **

** p < 0.01.

Meanwhile, the cleaned data samples are divided into training and test sets in the
ratio of 9:1, as shown in Table 4. During the training process, a 10% portion is taken
as validation set, so the original dataset is divided into the training set, validation set,
and test set corresponding to 81%, 9% and 10% of the divisions. The test set was used
as an independent validation and was not involved in data balancing and amplification
operations. It was left as it was to show the original proportions of positive and negative
samples in the dataset.

Table 4. Training set and test set sample division.

Datasets Benign Nodules Samples Malignant Nodules Samples

Train dataset 1058 544
Test dataset 117 60

The Hounsfield unit (HU) in the CT image reacts to the degree of tissue absorption of
X-rays, and the image needs to convert to the HU value before making the window width
and window position adjustment [37,38].

Therefore, the CT slices were firstly unified in the range of [−1000, 400]. Then, the CT
values of the lung nodule images were extracted and normalized using linear transforma-
tion to make the images more transparent. At the same time, since the images in the dataset
come from different devices, in order to truly reflect the imaging size of the lung nodules,
the voxel spacing in the x, y and z directions is resampled to 1 mm × 1 mm × 1 mm. Con-
trolling the resolution of the input images to be of the same size creates the conditions for
the subsequent model to capture the features.

In the study of A.P Reeves [34], the nodal coordinate positions and nodal size and
diameter reports were provided, from which the center of mass coordinates were obtained
as distance information from the center scanning point of each image. The coordinates
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obtained by coordinate conversion through Equations (1)–(3) were required to localize the
nodule to the image:

x′ = Coordx·OrigSpax, (1)

y′ = Coordy·OrigSpay, (2)

z′ = (OrigSizez − Coordz)·OrigSpaz, (3)

In the above equation, Coordx, Coordy and Coordz represent the original distance
information of the image in x, y and z axes, OrigSpax, OrigSpay and OrigSpaz represent
the pixel resolution of the image before resampling, and OrigSpaz represents the size of
z-axis before resampling. The product x′, y′, and z′ results represent the voxel coordinates
of each image in the corresponding direction after a coordinate transformation.

After locating the position, the appropriate size of the Region of Interest (ROI) of the
lung nodule will be selected. According to the study [34] and statistics after data cleaning,
the diameter of the large nodule in the cross-section of the CT sequence is distributed
between 3.06–38.14 mm. In order to encompass all the nodules, the final setting of this
study cropped out the 40 × 40 size of the region of interest while setting nine layers. The
3D stereoscopic nodule images with a length and width of 40 mm each and a height of
9 mm were organized.

On the other hand, nine semantic characteristic ratings of nodules were extracted by
parsing the XML annotation file. At least one doctor reviewed and annotated each case of
CT concerning Shen’s method [13]. When more than one doctor annotates a nodule, the
average of the ratings of the multiple doctors was taken and then binarized to serve as a
Ground Truth Label (GTL).

The specific way is that when the rating score of 3 is regarded as uncertain samples, the
average score below 3 is labelled as benign positive samples with low malignant suspicion,
and higher than 3 is labelled as malignant negative samples with high malignant suspicion.
In order to maximize the use of the existing labelling, unlike other studies that directly
discarded uncertain nodules, this paper refers to the pathological information for further
control. We take those that contain the “gold standard” results as training labels. In this
way, we labelled an additional 80 samples, of which 30 were benign and 50 were malignant.

Acquiring pathological diagnostic data requires traumatic and costly surgical opera-
tions, making it difficult to obtain, and the amount of data is small. We selected samples and
screened them to maximize the use of annotation. Furthermore, semantic characteristics
data distribution is exceptionally unbalanced, compared with the number of the majority
of the categories in their respective attributes, which is too small to meet the needs of
data division and subsequent experiments, so binarization is adopted to overcome data
sparsity. Table 5 shows the results. Label 0 indicates positive samples that correspond to
the semantic characteristics that are not apparent, and label 1 indicates negative samples
that the semantic characteristics are evident.

Table 5. Data segmentation of semantic characteristics after binarization.

Datasets Label 0 Label 1

Lobulation 1424 355
Spiculation 1516 263

Subtlety 547 1232

Since the quality and quantity of data limits model training, data augmentation is
required to augment the data volume to reduce overfitting. Prior to this, data balancing
operations were performed. Specifically, based on Table 3, this study was finally carried
out using the on-the-fly pan, rotate and flip technique. The balanced benign samples were
2118 cases, and the malignant samples were 2078 cases. After that, data enhancement was
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done on this basis. Numerous techniques are explored in existing studies, such as basic,
deformable, deep learning or other data augmentation techniques [39]. In our paper, it is
due to the tendency to simulate the doctor’s full range of diagnostic state. It is proposed to
use the multi-view technique as an augmentation method. The 3D cubes of lung nodules
were based on axial, sagittal and coronal planes and rotated by 45 degrees on the coordinate
axis to generate nine viewing angles as observation angles. The total amount of augmented
lung nodule data reached 37,764 cases [40].

2.3. Semantic Characteristic Convolutional Neural Network

In the actual diagnostic process, to observe lung nodules in CT images from multiple
perspectives, radiologists can usually select different planes on the computer to understand
the morphology and distribution of the nodules. As a three-dimensional imaging technique,
the scanning angle of CT can be adjusted according to the needs, and multiple scans can
also be performed to understand the growth changes of the nodules. However, for images
from different patients with different devices in LIDC-IDRI, the orientation in medical
imaging is not fixed for all CT maps. Therefore, extracting nine views of the ROI region
for fusion to be used as data input can be used to simulate further diagnosis by doctors
using multiple views and maximize the extraction of information around lung nodules
with complex shapes.

As shown in Figure 3, the benchmark network model in this paper consists of a series
of convolutional layers, pooling layers and corresponding fully connected layers. The
input data is a 40 × 40 × 9 multi-view lung nodule 3D cube, which passes through the
first convolutional layer consisting of 64 convolutional kernels of size 3 × 3 × 3. The
second and third layers are residual modules [41] consisting of 32 convolutional kernels
of size 3 × 3 × 3, and the fourth convolutional layer consists of 16 convolutional kernels
of size 1 × 1 × 1. Immediately, the convolutional images are fed again into the kernel
of the 2 × 2 × 2 maximum pooling layers, which enters into four fully connected layers
after spreading processing to map the extracted features to the output space. The specific
calculation is as follows:

Xl
i = ∑j W l

ij · Xl−1
j + bl

i , (4)

where Xl
i denotes the ith output feature mapping in layer l, Xl−1

j denotes the jth input

feature mapping in layer l − 1, W l
ij denotes the 3D convolution kernel for connecting sums

in layer l, ∗ denotes the convolution operation, and bl
i denotes the ith bias term in layer l.

Rectified linear units (ReLUs) [42] are used as activation functions after convolution. It is
the fully connected layer that plays the role of classification in the network.

X f = W f X f−1 + b f , (5)

In this equation, W f denotes weighting matrix, and X f−1 denotes the neuron vector
of the previous layer of the fully connected layer, and b f is the bias term for this layer,
setting up a dropout layer after the full connectivity layer, which can improve network
generalization [43]. The model structure is shown in Figure 3 below.
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Semantic characteristics as a focus for radiologists and studies have shown that high-
accuracy predictions can be achieved using only semantic characteristics as inputs [41].
In this paper, we first try to add lobulation labels as an auxiliary task and then continue
adding spiculation and subtlety. Multiple classification tasks of malignancy degree and
semantic characteristics are processed simultaneously to form a multi-task learning model
(MTL). The correlation between the tasks is considered in the multi-task learning process.
Additional fully connected layers and SoftMax activation functions are added to the under-
lying network architecture to accommodate the added feature classification tasks, and the
Shared-Bottom (SB) is used to share the information about goodness and malignancy and
different semantic characteristics extracted during propagation, which ultimately improves
the performance of malignancy classification [44]. MTL needs to consider the correlation
and weight assignment between tasks. To jointly optimize the SCCNN during the network
training, a global loss function is proposed to maximize the probability of predicting the
correct label for each task.

Lossgobal =
t∈[2,4]

∑
t=2

λtLosst, (6)

In this equation, t is the tth subtask, which is determined by the number of semantic
characteristics that t ∈ [2, 4]. t ∈ [2,4] denotes that it takes on integers from 2 to 4. When
t = 1, it represents that the base CNN model only considers one factor, benign or malignant.
When t = 2, it represents that the model uses lobulation as a secondary task for classification.
When t = 3, it represents that the two semantic characteristics, lobulation and spiculation,
are used as secondary tasks at the same time. When t = 4, it represents that the three
semantic characteristics of lobulation sign, spiculation sign and subtlety are considered
simultaneously and they are used as a secondary task to assist in benign-malignant classifi-
cation. Losst corresponds to a separate loss function for the tth task, which is the individual
loss corresponding to the tth task. λt is the weight hyperparameter for the tth task. It is
based on the importance of the task in the total loss, and auxiliary tasks exist to better serve
the main task. Higher weights are assigned to malignant classification tasks, as they are the
result of being given greater expectations. Each loss component is defined as a weighted
cross entropy loss in the following equation:

L = − 1
N

N

∑
i

M

∑
j=1

yi,jlog
(

pi,j
)
, (7)

where N is the number of samples in a batch size and M is the number of categories. yi,j

is the true label for the ith sample in the jth class; it equals 0 or 1 here. pi,j represents
a prediction score for class jth. The probability distribution was transformed using the
softmax function. The global loss function is minimized during the training process by
iteratively computing the gradient of Lossgobal over the learnable parameters of SCCNN
and updates the parameters through back-propagation.

2.4. Attention Mechanisms

As the scale of tasks increases, there may be interactions between malignancy and
semantic characteristics. We hope the model can automatically learn the dependencies
between tasks and play the role of a carrier, just like an actual radiologist in the hospital.
The Convolutional Block Attention Module (CBAM) [45] is introduced in the stage of
feature extraction and fusion to improve the model performance.

The module has two sequential sub-modules, channel and spatial. Specifically, it sums
the weight vectors of the sequential outputs of the two sub-modules. After normalization
by sigmoid, it obtains a heat map of the same size as the input feature map. Multiply it
with the input feature map to get the adjusted feature map.

The goal of channel attention focusing is to find more meaningful features of the input
image. Squeezing the spatial dimension of the input feature map can help it to compute
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the channel attention efficiently. By using both global average-pooling and max-pooling,
it learns the relationships between the channels. Subsequent input into the two fully
connected layers recalibrate the channel feature responses to learn global information.

Mc(F) = σ
(

W1 ·
(

W0

(
Fc

avg

))
+ W1 · (W0(Fc

max))
)

, (8)

Fc
avg and Fc

max denote the descriptors of the input feature mappings after average-
pooling and max-pooling operations, which subsequently forward to the shared network.
W0 and W1 represent the weights of the shared network consisting of a multi-layer percep-
tron (MLP) with one hidden layer. σ denotes the sigmoid activation function. Eventually
an element-wise summation is performed to merge the output feature vectors to produce
Mc(F), which is the channel attention map.

The target of spatial attention focuses on the information between different locations
in the feature map. Since the size of the nodules ranges from 3 to 38 mm, an image with
a length and width of 40 mm is used in this study, making the lung nodule present in
the surrounding structural organization. The spatial attention module can consider the
spatial location, thus focusing on the target region, which operates by performing the
maximum pooling and average pooling operations on the feature maps output from the
previous step as well and selecting a 7 × 7 × 7 convolution kernel as the attention fuser
and dimensionality reduction. Ms(F) denotes the spatial attention mapping. The formula
can be expressed as:

Ms(F) = σ
(

f ·
([

Fc
avg; Fs

max

]))
, (9)

Finally, the output is fused with the original input for feature fusion with the following
equation:

F′ = [Ms(MC(F)⊗ F)]⊗ (MC(F)⊗ F), (10)

F denotes the original input image feature and ⊗ denotes the multiplication operation.
The mapping MC(F) acquired in the channel attention multiplies with F as input to spatial
attention and iterated, and their result F′ realizes the combination of channel and spatial
attention. Figure 4 illustrates the structure of the attention mechanism.
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3. Results
3.1. Evaluation Metrics

This study used the GPU NVIDIA Quadro K2200M to establish the experimental envi-
ronment. The deep learning model was implemented in Python 3.6 using the TensorFlow
1.9.0 and the Keras 2.1.6 toolkit. The Adam optimizer was used for the backpropagation
updating during the model training process [46]. This study used the early stopping strat-
egy to optimize the learning rate and prevent model overfitting, and the patience is 10.
We set the initial learning rate to 0.01, and the minimum learning rate was 1 × 10−6. The
mini-batch size was 64 after our many experiments.

To evaluate and compare the SCCNN effect on lung nodule malignancy prediction, an
ordinary 3D CNN was first implemented as a baseline model. Then, we used four metrics of



Bioengineering 2023, 10, 1245 12 of 20

accuracy (Acc), specificity (Spe), sensitivity (Sen), and the area under the receiver operating
characteristic (ROC) curve. They are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
, (11)

Sen =
TP

TP + FN
, (12)

Spe =
TN

TN + FP
, (13)

Precision =
TP

TP + FP
, (14)

Recall =
TP

TP + FN
, (15)

F1 = 2× Precision× Recall
Precision + Recall

, (16)

where TP, TN, FN, and FP denote true positive (true positive, TP), true negative (true
negative, TN), false positive (false positive, FP), and false negative (false negative, FN),
respectively, TP and TN represent the number of positive and negative samples that a
correctly classified, and FN and FP refer to the number of positive and negative samples
that were misclassified. ROC, as the curve formed by the true positive and false positive
rates, is a composite of Sen and Spe. The value of AUC assesses the credibility of the
classifier, and the value is proportional to the credibility.

3.2. Prediction Results of Models

The following Table 6 shows the metrics comparing SCCNN versus basic 3D CNN
performance.

Table 6. Performance comparison between original 3D CNN and SCCNN after stepwise synthesizing
highly relevant semantic characteristics. The bold value represents the optimal result based on the
same metrics.

Model Types AUC Acc Spe Sen

CNN 1 0.924 89.77% 89.65% 90.0%

SCCNN I 2 0.971 93.75% 93.82% 91.66%

SCCNN II 3 0.959 93.18% 92.24% 93.0%

SCCNN III 4 0.966 94.88% 94.82% 95.0%
1 CNN here refers to the base model that performs only benign and malignant classification task. 2 I-SCCNN refers
to SCCNN introduces lobulation on the basis of malignancy, totaling one semantic characteristics. 3 II-SCCNN
refers to SCCNN introduces lobulation and spiculation, totaling two semantic characteristics. 4 III-SCCNN refers
to SCCNN introduces lobulation, spiculation and subtlety, totaling three semantic characteristics. Bolded data in
the table indicate the highest value achieved under the indicator.

Through the visual inspection of the table, it can be seen that the accuracy of CNN
is 89.77%, which has the single task of benign-malignant classification. SCCNN reached
93.75% when it synthesized lobulation. It reached 93.18% after synthesizing lobulation and
the spiculation of semantic characteristics. It has achieved 94.89% when synthesizing lobu-
lation, spiculation, and subtlety. Compared with CNN, it has improved by five percentage
points, and AUC has also improved from 0.924 to 0.966. At the same time, the model can
additionally output the classification results of the semantic characteristics. The metric
assessments show that the proposed SCCNN achieved better performance for malignancy
prediction compared with the CNN approach. Table 7 shows the prediction results for
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semantic characteristics. Due to their more unbalanced data distribution, Precision and
F1 scores were used as evaluation metrics. These results denote that the SCCNN model is
able to learn feature representations that are predictive of semantic characteristics while
simultaneously achieving high performance in predicting nodule malignancy.

Table 7. Classification performance for semantic feature predictions.

Semantic Characteristics AUC Acc Pre F1-Score

Lobulation 0.884 92.04% 88.66% 87.11%

Spiculation 0.853 93.75% 93.13% 82.78%

Subtlety 0.691 89.77% 83.75% 77.44%

In addition, SCCNN was introduced with the CBAM attention module to automatically
focus on the more critical characteristics due to the increased amount of information. It
was conducted on SCCNN separately. Table 8 shows the results.

Table 8. Results of models introduced CBAM attention module. The bold value represents the
optimal result based on the same metrics.

Model Type AUC Acc Spe Sen

SCCNN-CBAM I 0.956 93.18% 92.24% 95.0%

SCCNN-CBAM II 0.957 92.05% 91.38% 93.33%

SCCNN-CBAM III 0.973 95.45% 94.83% 96.66%
The bolded data in the table indicate the highest value achieved under the indicator.

As can be seen, the AUC of the model synthesizing the three semantic characteristics
improved, rising to 0.973, and the ACC improved, rising to 95.45%, which is the best
performance. However, the metrics of SCCNN I decreased slightly, indicating that the
attention mechanism is more suitable for information-rich situations. When the input
data contains richer features, the attention module is able to fuse and focus on more
valuable information, effectively improving performance. However, in some cases the
additional calculations and parameters brought by themselves may increase the risk of
model overfitting and add unnecessary complexity, so it is necessary to consider the task
requirements and model complexity comprehensively.

Figure 5 shows the receiver operating characteristic (ROC) curve plots comparing
SCCNN-CBAM versus SCCNN versus 3D CNN performance. These plots represent the
intuitive trade-off between sensitivity and specificity. Through the visual inspection of the
ROC curves, it can be seen that SCCNN performs better than the basic CNN model.
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3D CNN. (SCCNN III was chosen to represent a model represented by a fusion of three semantic
characteristics: lobulation, burr, and subtlety).

4. Discussion
Existing Studies

We present the model named SCCNN which can incorporate specialized field knowl-
edge of medical imaging into the model architecture, predicting semantic characteristics
along with the primary task of nodules malignancy diagnosis. The following three strongly
related semantic characteristics were mainly considered: lobulation, spiculation and sub-
tlety. Our results in Section 3 show that it finishes the job of classification efficiently.

As shown in Table 9, the method proposed in this study was compared with the
existing methods.

Table 9. Performance comparison between this research method and existing research methods. The
bold value represents the optimal result based on the same evaluation metric of the same task.

Method AUC Acc Spe Sen Data Source Semantic Characteristics

Shen et al. [47] 0.856 84.2% 88.9% 70.5% LIDC
Five

(calcification, margin, subtlety, texture,
and sphericity)

Zhai et al. [48] 0.9559 N/A 88.87% 87.74% LIDC Not involved

Liu et al. [49] 0.979 93.5% 89.4% 93.5% Private data All nine semantic characteristics

Our method 0.973 95.45% 94.83% 96.66% LIDC Three
(lobulation, spiculation, subtlety)

Shen et al. [47] utilized a hierarchical design to incorporate semantic features into a
convolutional neural network to complete the classification of five semantic features in
the low-level task component. The high-level benign and malignant classification task
was accomplished by fusing the features extracted from the penultimate generative layer.
However, the five features covered the data imbalance, which may have affected the
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results. Zhai et al. [48] extracted nine directional nodal views and used multitask learning
to perform benign and malignant classification and image construction tasks. However,
semantic features were not considered, and the images stayed at the 2D level. The study
by Liu et al. [49] had lower Acc and Sen values than this study. However, the AUC was
slightly higher than this study because it adopted all of the semantic features provided
in the LIDC and set up the regression module for the features, which resulted in higher
complexity of the model.

The study takes the double case of benign and malignant nodules to demonstrate the
semantic characteristics and the visualization of benign-malignant results. It reflects the
interpretability of SCCNN in this way. Figure 6 illustrates the case of correct prediction.
As shown in Figure 6 below, the left side in Figure 6a shows the center slice visualization
image of a benign nodule in each of the nine views. The SCCNN correctly predicts it
as benign. The nodule sample seems to have rounded edges, with no stark contrast to
the surroundings, and no obvious lobulation or spiculation signs. The predictive and
true labels were the same, consistent with the judgment of a physician with specialized
domain knowledge.

Figure 6b shows the nodule predicted to be malignant by the model. It is also predicted
to have obvious lobulation, spiculation signs and clear contrast with the environment. The
image also shows that the edges are sharp and easy to observe. This prediction also
explains to some extent why the model combined with the domain knowledge of semantic
characteristics predicts it as malignant. The aim is to simulate the process of diagnosing
a nodule by a radiologist. Compared with the model that directly outputs benign and
malignant results, it provides more substantial explanatory and convincing results and
overcomes the black-box problem to a certain extent.
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Figure 6. Interpretability analysis of SCCNN prediction results, and it demonstrates a situation
where the prediction is correct. (a) The left side shows slices of the 9 views corresponding to the
benign nodule. The right side shows their corresponding semantic characteristics and malignancy
levels are on the right side for predictive and actual labels; (b) the left side shows slices of the
9 views corresponding to the malignant nodule. The right side shows their corresponding semantic
characteristics and malignancy levels are on the right side for predictive and actual labels.

Next, Figure 7 shows examples of the model’s prediction errors on tasks either the
semantic characteristic classification task or the benign and malignant classification task.
Figure 7a shows that the model predicts malignant samples as benign nodules but correctly
predicts a portion of semantic characteristics. Figure 7b shows that the model predicts
proper labels in malignancy but incorrectly in lobulation and subtlety. The reasons for this
may be that although the nodule appears smooth and round-like in one view, the multiple
views cause the shape displayed in several other views to be more elongated; the nodule’s
surroundings are complex, and it implicated in fine blood vessels or surrounding tissue
structures; and the semantic characteristics selected for the study are limited help in terms
of number and grading for malignancy determination. The semantic labels are beneficial
in interpreting the model’s predictions for malignancy, mapping the features used by the
network for the benign-malignant prediction task to establish domain knowledge about
lung nodules.

We also summarize the shortcomings of this study. Firstly, it is due to the imbalance
between classes. The data distribution of some semantic characteristics is seriously im-
balanced (e.g., calcification, internal structure), leading us to select only those with high
relevance as the object of study. Second, some semantic characteristics have very few
dependent subclass samples, also known as an intra-class imbalance. We had to binarize
the labels from their own five or six classes. Such an operation may cause some information
to be lost, and the essence is that the amount of medical image labelling is scarce and
difficult to obtain. It is also a common obstacle in developing medical image processing
in artificial intelligence. Finally, radiologists may also need to combine the patient’s age,
medical history, regular review results and other images when diagnosing lung nodules. In
future, this study will consider further data collection for model optimization, such as the
dynamic changes of the same nodule at different periods, multimodal examination results,
etc. It will assist the development of deep learning technology in lung nodule classification.
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Figure 7. Semantic characteristics or benign and malignant errors in SCCNN prediction. (a) An
example of a benign nodule with a successful malignant label prediction but two semantic character-
istics incorrectly predicted; (b) An example of a malignant nodule with a successful prediction of the
malignant label but an incorrect prediction of two semantic characteristics.

5. Conclusions

In this study, we propose a new SCCNN model that synthesizes semantic character-
istics for benign and malignant classification of lung nodules. The model uses semantic
characteristic prediction as a branched (auxiliary) task to improve the accuracy of pre-
dicting the malignancy of nodule samples in CT images. It also outputs predictions of
three semantic characteristics. SCCNN allows the shared convolutional module to learn
generalizable features between related tasks, extensively validated on the open-source
dataset LIDC-IDRI. The introduction of multiple views of CT images and an attention
mechanism also brings the scenario closer to reality. The interpretability of the model helps
clinicians to make further judgments. In future work, we hope to obtain a more valuable
dataset, including nodal images and richer semantic characteristics, and to delineate a more
detailed classification hierarchy.
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