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Abstract: Cupriavidus necator is a facultative chemolithotrophic organism that grows under both
heterotrophic and autotrophic conditions. It is becoming increasingly important due to its ability
to convert CO2 into industrially valuable chemicals. To translate the potential of C. necator into
technical applications, it is necessary to optimize and scale up production processes. A previous
proof-of-principle study showed that C. necator can be used for the de novo production of the terpene
α-humulene from CO2 up to concentrations of 11 mg L−1 in septum flasks. However, an increase
in final product titer and space–time yield will be necessary to establish an economically viable
industrial process. To ensure optimized growth and production conditions, the application of an
improved process design in a gas bioreactor with the control of pH, dissolved oxygen and temperature
including a controlled gas supply was investigated. In the controlled gas bioreactor, the concentration
of α-humulene was improved by a factor of 6.6 and the space–time yield was improved by a factor
of 13.2. These results represent an important step toward the autotrophic production of high-value
chemicals from CO2. In addition, the in situ product removal of α-humulene was investigated and
important indications of the critical logP value were obtained, which was in the range of 3.0–4.2.

Keywords: CO2 conversion; Cupriavidus necator; autotroph; terpenes; α-humulene; in situ product removal

1. Introduction

Cupriavidus necator, also known as Ralstonia eutropha or formerly Alcaligenes eutrophus,
belongs to the β-proteobacteria and is a Gram-negative, rod-shaped bacterium with peritri-
chous flagella [1,2]. C. necator is a facultative chemolithotrophic organism that grows under
both heterotrophic and autotrophic conditions [1]. In the absence of organic substrate,
the organism is able to utilize CO2 as its sole carbon source by using the Calvin–Benson–
Bassham cycle. This makes the use of C. necator economically and ecologically attractive, as
CO2 is a cheap and abundant carbon source [3]. By combining water electrolysis with the
ability to convert CO2, C. necator can also be used in bioelectrochemical synthesis, combin-
ing CO2 conversion with the sustainable generation of electrical energy to produce valuable
chemicals [4–6]. The ability to convert a wide range of waste streams into these high-value
products provides a great opportunity to develop a waste-based circular bioeconomy based
on C. necator [7–9].
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Under nutrient limitation (e.g., nitrogen limitation), the carbon is stored in C. necator
as the biopolymer polyhydroxyalkanoates (PHA) such as polyhydroxybutyrate (PHB).
Under chemolithotrophic conditions, C. necator can accumulate PHB as a carbon storage
component up to 80% of cell dry weight [10]. PHB is a homopolymer and belongs to
the PHAs. PHB has a crystalline structure that is described as stiff and brittle, but less
thermostable material [11]. With the exception of biodegradability, PHB biopolymers
are comparable to the petroleum-based polymers, polypropylene and polyethylene, and
represent an environmentally friendly alternative [11]. In addition, metabolically engi-
neered C. necator strains are capable of producing a wide range of industrially relevant
products, e.g., terpenes (e.g., α-humulene, β-farnesene, lycopene [5,12,13], alkanes and
alkenes [14,15], 3-hydroxypropionic acid [3], methyl ketones [16], iso-propanol [17] and
iso-butanol [18]. Besides its broad substrate and product spectrum, C. necator is character-
ized by fast growth up to high cell densities, making it an attractive host for biotechnological
applications. The facultative chemolithotrophy of C. necator facilitates genetic engineering
compared to obligate chemolithotrophs. In recent years, more and more genetic tools have
been developed [19–22]. The genetic tools for C. necator have been recently reviewed by
Panich et al. and Pan et al. [23,24].

In order to transfer the described potential of C. necator into technical applications,
it is necessary to optimize and scale up the production processes. Therefore, the transfer
from non-scalable septa flasks to controlled and scalable bioreactors was investigated.
Several authors have investigated approaches for the production of PHB. Our aim is to
optimize the production process for a higher-value product using the example of the
terpene α-humulene. α-Humulene has anti-inflammatory [25,26] and antibacterial [27]
properties. In addition, α-humulene is a precursor of the anticancer drug zerumbone,
which means that the product is also considered to have anticancer activity [28,29]. In
addition to its pharmaceutical properties, α-humulene is also found in plants like hops,
giving them their characteristic smell and taste [30]. Therefore, α-humulene can be used
in various applications. In the food and beverage industry, it can be used as a flavoring
agent [31,32], while in medical research, its therapeutic [33] and pharmacokinetic [34]
properties can be used. The starting point of our investigation was the ground-breaking
work of Krieg et al. [12], who demonstrated for the first time chemolithoautotrophic de
novo production of α-humulene from CO2. α-Humulene concentrations of up to 11 mg L−1

in autotrophic cultivation systems based on septa flasks were produced with 0.8 g L−1

biomass. However, an increase in final product concentration and space–time yield will
be necessary to establish an economically viable industrial process. In order to improve
the overall process, two strategies were investigated in detail. First, Krieg et al. used
n-dodecane as the second phase for the required in situ product removal (ISPR) [12].
Here, different solvents were screened regarding their biocompatibility and potential as an
extraction phase for α-humulene. The aim was to identify a more efficient, cost-effective
and eco-friendly solvent. In addition, an improved process design was investigated. This
included the implementation of the control of pH, dissolved oxygen, temperature and
pressure, as well as a controlled gas supply. The reactor system and the production of
α-humulene in C. necator are shown in the following schematic diagram (Scheme 1).
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same precursor acetoacetyl-CoA via the engineered mevalonate pathway (MVA) pathway or from 
glyceraldehyde-3-phosphate and pyruvate via the native methylerythritol 4-phosphate pathway 
(MEP). Here, a PHB-negative strain was used. The produced α-humulene was excreted in the media 
and afterward extracted by ISPR (in situ product removal). 
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Scheme 1. (A) Overview of the controlled bioreactor (MFC = mass flow controller, DO = dissolved
oxygen, for a detailed description refer to the Materials and Methods section). (B) Schematic pro-
duction of α-humulene forms CO2 in C. necator (CO2 is assimilated via the Calvin–Benson–Bassham
(CBB) cycle, which yields 1 molecule glycerate-3-phosphate (GP) per 3 molecules CO2 fixed. Carbon
can be stored in polyhydroxybutyrate (PHB) or used for α-humulene production starting from the
same precursor acetoacetyl-CoA via the engineered mevalonate pathway (MVA) pathway or from
glyceraldehyde-3-phosphate and pyruvate via the native methylerythritol 4-phosphate pathway
(MEP). Here, a PHB-negative strain was used. The produced α-humulene was excreted in the media
and afterward extracted by ISPR (in situ product removal).

2. Materials and Methods
2.1. Plasmid and Strains

The construction of the used pKR-hum plasmid was described previously [12]. The
strain C. necator H16 PHB-4 (DSM-541) was purchased from Deutsche Stammsammlung
für Mikroorganismen und Zellkulturen DSMZ (Braunschweig, Germany).

2.2. Solvent Selection and Testing

In the literature, the recovery of extracellularly released α-humulene from culture
broth has been performed by ISPR with n-dodecane [12,35]. In order to optimize the ISPR,
several alternative solvents were tested. Therefore, different deep eutectic solvents (DES)
and other promising solvents used in the literature for terpene extraction were compared
with n-dodecane in terms of biocompatibility during cultivation with C. necator pKR-hum.
Furthermore, the formation of a second liquid phase from the cultivation medium was a
criterion to be tested in order to facilitate the removal of the α-humulene-containing solvent
after the extraction process. Two DES systems, namely, tetrabutylammonium bromide
(TBAB):1-octanol [36] and D-menthol:lauric acid [37], have been identified as potential
alternatives to in situ product removal using n-dodecane, based on their applications in the
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literature and successful terpene extractions. Furthermore, the efficacy of acetophenone [38],
methyl butyrate [39] and 1-cyclodextrin as extraction solvents was evaluated [40].

2.3. Preparation of Deep Eutectic Solvents

D-menthol was used as hydrogen bond donor and lauric acid as hydrogen bond
acceptor. They were heated together in a molar ratio of 2:1 for 2 h at 50 ◦C in a closed vessel
until the solid components dissolved and a homogeneous liquid was formed [37]. TBAB
was heated together with 1-octanol in a molar ratio of 1:2 for 2 h at 80 ◦C in a closed vessel
until a homogeneous liquid was formed [36]. The deep eutectic solvents were then stored
at room temperature until use and added to the fermentation broth after inoculation at 20%
(v/v), similarly to the other extraction solvents tested.

2.4. Heterotrophic Cultivation for Solvent Selection

Lysogeny broth (LB) medium was used for the C. necator pKR-hum pre-cultures, which
were inoculated from glycerol stock and cultivated at 180 rpm and 30 ◦C overnight (Infors
HT Ecotron, Infors AG, Bottmingen, Switzerland). The media composition was 10 g L−1

NaCl, 10 g L−1 tryptone/peptone and 5 g L−1 yeast extract. Subsequently, the minimal
medium (MM) for the main culture was prepared according to Table 1 and inoculated to a
starting optical density (OD) of 0.1. Cultivation parameters were also 180 rpm and 30 ◦C
(Infors HT Ecotron, Infors AG, Bottmingen, Switzerland) with 20 mL volume in 250 mL
shake flasks. Trace elements were prepared as a stock solution in 0.05 M H2SO4 according
to Table 1 and added to the minimal medium at 1:20,000. In addition, the media were
supplemented with 15 µg mL−1 tetracycline hydrochloride for the recombinant C. necator
pKR-hum strain. Cell growth was recorded by measuring the backscattered light from the
suspension cells using the Cell Growth Quantifier (CGQ) from Scientific Bioprocessing
(SBI), Pittsburgh, PA, USA. Data were recorded every 60 s over the entire cultivation period.

Table 1. Composition of the minimal medium used (MM).

Medium
Component MM Concentration (g L−1) Trace Element Stock Concentration (g L−1)

Na2HPO4 2.895 FeSO4 · 7H2O 15.0
NaH2PO4 · H2O 2.707 MnSO4 · H2O 2.4
CaSO4 · 2H2O 0.097 ZnSO4 · 7H2O 2.4

K2SO4 0.170 Na2MoO4 · 2H2O 1.8
(NH4)2SO4 0.943 CuSO4 · 5H2O 0.48

MgSO4 · 7H2O 0.8 NiSO4 · 6H2O 1.5
D-Fructose 4.0 CoSO4 · 7H2O 0.04

Trace elements 1:20,000 from stock

2.5. Media Compositions for the Seed Train of the Bioreactor Process

The rich medium consisted of 2.75% (w/v) dextrose-free tryptic soy broth (TSB, Becton
Dickinson, Le Pont de Claix, France). Minimal medium A used for preculture in a flask was
described in [14]. Fructose (20 g L−1) was used as the only carbon source. NH4Cl (0.5 g L−1)
was used as nitrogen source to reach a biomass concentration of about 1 g L−1. Minimal
medium B used for the cultures in the bioreactor consisted of 0.19 g L−1 nitrilotriacetic
acid, 0.06 g L−1 ferrous ammonium citrate, 0.5 g L−1 MgSO4·7H2O, 0.01 g L−1 CaCl2·2H2O,
and 1 mL of trace element solution. The trace element solution composition was 0.3 g L−1

H3BO3, 0.2 g L−1 CoCl2·6H2O, 0.1 g L−1 ZnSO4·7 H2O, 0.03 g L−1 MnCl2·4H2O, 0.03 g L−1

Na2MoO4·2H2O, 0.02 g L−1 NiCl2·6H2O, 0.01 g L−1 CuSO4·5H2O. (NH4)2SO4 (2 g L−1)
was used as a nitrogen source to reach a biomass concentration of about 4 g L−1. After
autoclaving the above medium, 40 mL of a sterile phosphate solution containing 224 g L−1

of Na2HPO4·12H2O and 37.5 g L−1 of KH2PO4 was aseptically added to the bioreactor.
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2.6. Cultivation Conditions in the Seed Train of the Bioreactor Process

After thawing at room temperature, one glycerol stock was streaked on a TSB agar
Petri dish. The plate was incubated for 36 h at 30 ◦C. One isolated colony was used to
inoculate the first seed culture grown for 24 h in 5 mL TSB supplemented with 10 mg L−1

gentamycin and 200 mg L−1 kanamycin, in a 50 mL baffled Erlenmeyer flask. This culture
was used to inoculate a 250 mL Erlenmeyer baffled flask containing 50 mL of mineral
medium A. The seed was cultivated at 30 ◦C and 100 rpm for 18 h. The culture was
then centrifuged (5 min, 10,000× g), the supernatant was discarded and the cell pellet
was resuspended in 30 mL sterile fresh medium B to eliminate the residual fructose. The
suspension was then used to inoculate the bioreactor containing 300 mL of sterile mineral
medium B.

2.7. Autotrophic Culture Conditions and Bioreactor System

The cultivations were performed in a 500 mL total volume Xplorer®(https://www.
xplorersoftware.com/, accessed on 1 September 2023) bioreactor (HEL Ltd., Borehamwood,
UK) modified as described in [41]. The liquid working volume was 330 mL. The bioreactor
was fed with individual gases through three spargers in order to deliver air, pure CO2
and pure H2 independently. A fourth inlet gas was added in the headspace for pure
nitrogen supply as a safety system. Each gas inlet was controlled by a gas mass flow
meter. The bioreactor was equipped with pH, dissolved oxygen (DO), temperature and
pressure controllers. The Xplorer® software handled the online monitoring and control
systems of the reactor. Both CO2 and O2 in the outlet gases were analyzed using a Tandem
Pro gas analyzer (Magellan Instruments, Borehamwood UK). The bioreactor was safely
controlled by the oxygen concentration in the headspace in order to avoid any explosive risk.
The headspace was flushed with pure nitrogen if the O2 surpassed 5% in the headspace.
The DO level in the reactor was controlled below 5% of air saturation at atmospheric
pressure by varying stirring speed and/or inlet air flow rate and overpressure up to
5 bars. Stirring speed was kept at 795 +/− 15 rpm by magnetic stirring and temperature
was maintained at 30 ◦C using the poly-BLOCK (HEL Ltd., UK). For pH control, 5 M
(9.5%) ammonium hydroxide and 42.5% phosphoric acid were provided as base and acid,
respectively. Furthermore, ammonium hydroxide could serve as additional nitrogen source.
As the amount of feed solution added to the reactor and sample volume taken from the
reactor during cultivation was in the same range (approx. 25 mL), no volume correction
was performed. α-Humulene production was induced by adding 11 mM L-rhamnose at
18 h. At the same time, n-dodecane (20% v/v) was added by a syringe to the culture to
extract α-humulene. Samples were taken through a septum.

2.8. Characterization of the Fermentation Process

The cell growth was followed by spectrophotometric measurements at 600 nm with a
DR3900 spectrophotometer (Hach, Loveland, CO, USA) after a calibration against cell dry
weight measurements to evaluate cell growth. For cell dry weight determination, the culture
medium was harvested and filtrated on 0.2 µm pore-size polyamide membranes (Sartorius
AG, Göttingen, Germany), which were then dried to a constant weight at 60 ◦C under
partial vacuum (200 mmHg, i.e., approximately 26.7 kPa). Cell viability was measured
with a BD Accuri C6® flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) after cell
staining with propidium iodide (PI) dye (Molecular Probes, Invitrogen, Waltham, MA,
USA) commonly used to monitor membrane integrity as an indicator for viability.

2.9. Quantification of α-Humulene with GC-MS

To measure the α-humulene content in the solvents, 100 µL of the centrifuged extrac-
tant supernatant (5 min, 1000× g) was taken in GC glass vials. Subsequently, the vials were
stored at –20 ◦C and 900 µL of acetone was added shortly before the GC-MS measurement.
To prepare the calibration standards, α-humulene was dissolved in acetone from a stock
solution (PhytoLab, Vestenbergsgreuth, Germany). Samples were measured in GC-MS

https://www.xplorersoftware.com/
https://www.xplorersoftware.com/
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(7890B GC-MS system with 5977B GC/MSD, Agilent Technologies, Santa Clara, CA, USA)
with detection at airflow 450 mL min−1, N2 flow 45 mL min−1 and FID 250 ◦C. The oven
temperature profile according to Table 2 was set with a heating step at 16 ◦C min−1. Mea-
surements were performed with 100% acetonitrile as rinse solvent and a sample injection
volume of 1 µL using an HP-5ms column (Agilent 19091S-433—30 m × 250 µm × 0.25 µm,
Agilent Technologies, Santa Clara, CA, USA). Analysis was performed using the single ion
monitoring method (SIM) at 204.2 m/z for α-humulene and 218.4 m/z for zerumbone when
used as an internal standard.

Table 2. Oven temperature profile for quantification of α-humulene via GC-MS.

Temperature (◦C) Time (min)

70 0
70 1.5

200 9.625
200 10.125

2.10. Statistical Analyses

Concentrations of metabolites and biomass are given as the mean value of 2 to 3 in-
dependent analyses. The error on the specific growth rate (determined as being the slope
of ln [OD] = f(t)) was calculated as the standard deviation of the slope. The instantaneous
specific growth and α-humulene production rates were calculated upon the fitting process
of the experimental data and the derivative calculation.

3. Results
3.1. Identification of the Most Promising Solvent for In Situ Product Removal

As described above, various solvents were tested and their suitability as alternatives to
n-dodecane was investigated. In the first step, the influence on the growth of C. necator was
investigated. The heterotrophic growth of C. necator pKR-hum in a minimal medium was
reduced by the addition of the deep eutectic solvents compared to n-dodecane (Figure 1A).
The addition of 20% (v/v) of 1:2 molar TBAB:1-octanol resulted in no growth after inocula-
tion. The addition of 20% (v/v) of the 2:1 molar D-menthol:lauric acid mixture resulted in
reduced growth with a prolonged lag phase up to 20 h and a reduced final cell concentration
of 300–800 backscatter intensity after 40 h compared to 900–1050 backscatter intensity with
n-dodecane. Nevertheless, successful separation and formation of a second phase above
the minimal medium was observed for both deep eutectic solvents identical to n-dodecane.

When 20% (v/v) of the alternative solvents acetophenone and methyl butyrate were
added to the cultivation process, no growth was detected after inoculation compared to the
standard extraction solvent n-dodecane (Figure 1B). Both alternative solvents successfully
formed a second phase that separated from the minimal medium, with 20% (v/v) methyl
butyrate forming an upper phase identical to 20% (v/v) n-dodecane and 20% (v/v) ace-
tophenone forming a phase that appeared at the bottom of the shake flask. In addition,
a strong unpleasant odor was detected when acetophenone and methyl butyrate were
used as solvents compared to the menthol-containing deep eutectic solvent or n-dodecane.
Replacement of n-dodecane with 1-cyclodextrin in the experimental setup was rejected
because the addition of the soluble 1-cyclodextrin to the minimal medium did not form an
additional second phase, which was used as a decision criterion. The non-biocompatible
solvents (TBAB:1-octanol, acetophenone and methyl butyrate) must therefore have an
inhibitory effect on the growth of C. necator.

The biocompatibility of solvents can be assessed using logP values. The logP is the
logarithmic partition coefficient of a target compound in a biphasic system consisting of
octanol and water and is a measure of the hydrophobicity of a molecule [42,43]. The lower
the logP, the greater its hydrophilicity and thus its tendency to accumulate in the aqueous
phase, where microorganisms reside, and interfere with the physiological processes of the
cells [44]. The critical logP, which prevents further metabolic activity, is strongly dependent
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on the microorganism: e.g., for E. coli, the critical logP is reported to be 3.4 [45], whereas
S. cerevisiae has a critical logP between 4.0 [46] and 5.6 [47]. When comparing the logP
values, it is noticeable that n-dodecane (6.1), D-menthol (3.0) and lauric acid (4.2) have
much higher values than 1-octanol (3.0), acetophenone (1.6) and methyl butyrate (1.3).
Therefore, it can be assumed that the critical logP of C. necator is between 3.0 and 4.2.
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of different deep eutectic solvents for in situ product removal, with standard error (n = 3), (B) Het-
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for in situ product removal, with standard error (n = 3).

The heterotrophic growth behavior in Figure 2 shows a similar pattern between the
bacterial growth without solvent and the addition of 20% (v/v) n-dodecane, considering
the standard deviation. In both experiments, the length of the lag phase is about 10 h
and the cultures in exponential phases behave similarly. The experiment with 20% (v/v)
n-dodecane reaches an increased final backscatter value at 25 h. However, this increased
backscatter intensity value can be attributed to the additional n-dodecane, since an offline
optical density measurement at 600 nm for both experiments showed a value of 3.0 and
3.1, respectively, at the end of the cultivation. Therefore, the slightly increased backscatter
value can be explained by the addition of phase-forming solvents in general.
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3.2. Optimization of the Autotrophic α-Humulene in a Controlled Gas Bioreactor

Autotrophic α-humulene production was investigated in a dedicated gas bioreactor,
as described in [41] and using the above-mentioned C. necator strain [12]. The cultivation
was initiated by sparging the three independent gases (H2, air and CO2) in the reactor.
The initial condition was set at 77% H2, 4% O2 and 5% CO2 gas mixture in the reactor,
allowing a H2-rich and O2-low environment to be reached. The level of dissolved oxygen
was monitored throughout the cultivation by increasing the ratio of air/H2 flow rate and
the overpressure in the gas bioreactor in order to react to the increasing microbial oxygen
demand and to keep the headspace O2 level below 5% (Figure 3). During the cultivation
process, the gas flow rates ranged from 30 to 70 mL min−1 for H2, 6.7 to 45 mL min−1 for
air and 2 to 8 mL min−1 for CO2. The α-humulene production strain C. necator (pKR-hum)
was grown in the bioreactor for 50 h, the highest specific growth rates were obtained during
the ten hours before induction at 18 h with µ = 0.13 ± 0.01 h−1. Two hours after induction,
the growth rate decreased. Besides the heterologous gene expression, which reduced the
specific growth rate after induction, limitations in oxygen transfer occurred and limited
the process performance. The dissolved oxygen concentration was adjusted to between
1 and 3%, but starting from 42 h after inoculation the value was constantly zero. The
portion of the oxygen in the inlet gas flow could not be further increased because the lower
explosion limit was reached (exhaust gas with 4% oxygen in a hydrogen-dominant gas
composition). Furthermore, the reactor pressure limit of six bars was reached and the
total gas flow was already high with 120 mL min−1. As oxygen concentration had no
impact on heterotrophic α-humulene production, whereas cell growth was identified as
the most important parameter for the production of the target compound, the autotrophic
process was continued. The absence of growth inhibition by the presence of α-humulene
(up to 1 g L−1) or n-dodecane (up to 20%) was previously shown [12]. The final biomass
concentration reached after 50 h was 8.5 gCDW L−1. α-Humulene was detected after 24 h
at 2 mg L−1 and continued to reach a final concentration of 146 mg L−1 at the end of the
fermentation leading to an overall productivity of 4.6 mg L−1 h−1. Consumption of the
inducer L-rhamnose was excluded (data not shown). A slight decrease of approx. 5%
can be explained by the dilution due to base addition for the pH control. The specific
α-humulene production rate continuously increased during cultivation to the highest
value of 1.8 mg gCDW

−1 h−1 reached at the end of cultivation, corresponding to a specific
production of 16 mg gCDW

−1. The cell’s viability was assessed by flow cytometry during
the cultivation after staining the cells with propidium iodide (PI). The percentage of PI-
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unstained cells (viable cells), remained high at over 95% throughout the fermentation, even
after the reactor was pressurized. Only at the endpoint, the viability dropped to 81% of
PI-unstained cells.
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(C) Evolution of biomass (●), α-humulene concentrations (∆) and percentage of PI unstained cells 
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Figure 3. Autotrophic growth of C. necator and α-humulene production in the gas bioreactor: (A) Time
course of overpressure (thick line) and partial pressure of dissolved oxygen (dashed line). (B) Evo-
lution of the gas flow rates of H2 (solid thick line), Air (dashed line) and CO2 (solid thin line).
(C) Evolution of biomass (•), α-humulene concentrations (∆) and percentage of PI unstained cells (H).

4. Discussion and Outlook

In terms of the solvent evaluation, it could be shown that the addition of 20% (v/v)
n-dodecane for in situ product removal of α-humulene does not reduce bacterial growth
compared to its absence and is, therefore, a suitable biocompatible solvent. The alternative
solvents were all found to be non-biocompatible at the 20% (v/v) concentration tested, as
no bacterial growth occurred upon their addition. Only the deep eutectic solvent tested,
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consisting of D-menthol:lauric acid 20% (v/v), showed limited biocompatibility with a
longer lag phase and lower final cell concentration. Therefore, n-dodecane can still be
considered as the currently most promising solvent for ISPR in C. necator-based production
processes. It is therefore advisable to perform the testing of similar alkanes in the next
step. Table 3 shows a comparison of the process parameters resulting from previously
published cultivations in septum flasks and the control gas bioreactor presented here.
Using the controlled gas bioreactor, biomass concentration was improved by a factor of
3.2 and product concentration by a factor of 6.6. While the biomass-specific productivity
in the controlled bioreactor (mg gCDW

−1) was improved by a factor of 2, the space–time
yield was even further increased by a factor of 13.2. Thus, the promising results from the
cultivations in simple septa flasks could be significantly improved by using a controlled
bioreactor, as intended. Furthermore, it was shown that a safe cultivation process can be
carried out without safety risks using oxyhydrogen (Knallgas) gas and C. necator, which
is in agreement with the literature [10,41,48] and shows the high potential of also using
C. necator in technical reactors. Milker et al. showed the production of α-humulene up to
2 g L−1 using the same strain in a fed-batch mode with fructose as the carbon source [35].
Although this final concentration is 13.7 times higher than in the autotrophic system shown
here, the productivity of the processes is in a comparable range. The productivities of the
heterotrophic and autotrophic processes were 5.52 and 4.63 mg L−1 h−1, respectively.

Table 3. Comparison of incubation and production parameters for autotrophic α-humulene produc-
tion by C. necator (pKR-hum).

Septum Flask, n = 3 [12] Controlled Gas Bioreactor
[This Work]

Substrate feed (Fed)-batch Fed-batch
Externally provided gases H2, CO2, O2 H2, CO2, Air

Minimal medium at t = 0 (mL) 20 300
n-Dodecane (v/v) 20% 20%

n-Dodecane added At the beginning of cultivation At the induction time point
Inducer (mM) 11 11
Mixing type Incubating shaker Magnetic stirring

Mixing frequency (rpm) 180 795 ± 15
pH control No Yes (≥6.6)

CDW (g L−1) 2.69 ± 0.05 8.57
µ (h−1) 0.12 ± 0.00 0.13

α-humulene titer (mg L−1) 22.0 ± 2.2 146
Space-time yield (mg L−1 h−1) 0.35 ± 0.02 4.63

Specific productivity
(mg gCDW

−1) 8.62 ± 1.13 17.1

The next step is to further optimize production. This can be achieved by improving
the production load, for example, by optimizing the MVA path. There is also further
potential on the engineering side, where media optimization or a detailed study of the
factors influencing product formation in the bioreactor could be helpful.

5. Conclusions

By using a gas bioreactor with the control of pH, dissolved oxygen and temperature,
as well as a controlled supply of the required gaseous substrates CO2, H2 and O2, the
microbial α-humulene production with C. necator was drastically improved Although the
final product concentrations are still significantly higher in heterotrophic production with
the strain, this shows the enormous potential of autotrophic production with C. neactor.
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