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Abstract: Pulmonary auscultation is essential for detecting abnormal lung sounds during physical
assessments, but its reliability depends on the operator. Machine learning (ML) models offer an
alternative by automatically classifying lung sounds. ML models require substantial data, and public
databases aim to address this limitation. This systematic review compares characteristics, diagnostic
accuracy, concerns, and data sources of existing models in the literature. Papers published from
five major databases between 1990 and 2022 were assessed. Quality assessment was accomplished
with a modified QUADAS-2 tool. The review encompassed 62 studies utilizing ML models and
public-access databases for lung sound classification. Artificial neural networks (ANN) and support
vector machines (SVM) were frequently employed in the ML classifiers. The accuracy ranged from
49.43% to 100% for discriminating abnormal sound types and 69.40% to 99.62% for disease class
classification. Seventeen public databases were identified, with the ICBHI 2017 database being the
most used (66%). The majority of studies exhibited a high risk of bias and concerns related to patient
selection and reference standards. Summarizing, ML models can effectively classify abnormal lung
sounds using publicly available data sources. Nevertheless, inconsistent reporting and methodologies
pose limitations to advancing the field, and therefore, public databases should adhere to standardized
recording and labeling procedures.

Keywords: machine learning (ML); deep learning (DL); electronic auscultation; lung sounds;
public databases

1. Introduction
1.1. Context and Objectives

Respiratory conditions are among the most common diseases associated with substan-
tial morbidity and mortality [1], representing a growing health burden. Rapidly and reliably
diagnosing pulmonary diseases is vital for establishing appropriate medical management
and preventing further respiratory decompensation. Most conventional diagnostic tools
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(e.g., chest radiographs) can only be performed intermittently, and the standard physi-
cal exam (e.g., visual inspection and percussion) offers limited diagnostic accuracy [2–4].
Pulmonary auscultation is a noninvasive, safe, inexpensive, and easy-to-perform way to
rapidly evaluate patients with pulmonary symptoms, making it an essential component of
the clinical examination [5]. However, auscultation is operator-dependent and subject to
inherent interobserver variability [2,3].

Deep learning (DL) is a subfield of machine learning (ML) and has seen increased
exploration with the recent increasing computational power and large database availabil-
ity [6]. In lay terms, ML allows a machine to learn rules and insights from input data, thus
allowing it to apply those rules to generate predictions from data in new situations [7]. DL
takes advantage of its multilayered architecture by sequentially feeding the representations
into multiple layers, generating more distinguishable data points. This process allows the
machine to learn highly complex functions [6].

ML and DL have shown encouraging results in healthcare when diagnosing diseases,
primarily by analyzing images. For instance, radiology and pathology have benefitted
from DL in disease diagnosis [8]. By utilizing large databases, classification algorithms
have become increasingly accurate for detecting abnormalities in images and classifying
them into multiple disease types [9], promising to reduce physician burnout and enhance
test interpretations. Similarly, ML and DL can process audio signals and therefore classify
sounds, such as those captured by auscultation, offering to aid clinicians in detecting and
classifying heart [10] and lung [11] pathologies.

Respiratory sounds (RS) comprise relevant diagnostic information for pulmonary
diseases [12]. These are heard over the chest wall and originate from the air movement in
and out of the lungs during the respiratory cycle. RS interpretation in auscultation is often
used in diagnosing lung pathologies, such as obstructive or restrictive respiratory diseases.
As expected, these sounds are nonstationary and nonlinear, prone to noise contamination,
making it hard for clinicians to detect abnormalities [13]. The diagnostic value of aus-
cultation in detecting abnormal RSs could be improved if an objective and standardized
interpretation approach is implemented [14,15]. This review aims to assess the diagnostic
accuracy of ML and DL algorithms in abnormal lung sound detection and classification
and evaluate the differences in methodology and reporting in the published literature to
identify common issues that potentially slow down the progress of this promising field.

1.2. Process of Automated Abnormal Lung Sounds Classification

DL can recognize lung disorders and abnormalities based on RS analysis. These
computer-assisted techniques increase the objectivity in detecting and diagnosing adventi-
tious or pathological sounds. Figure 1 illustrates an overview of the automatic abnormal
lung sounds classification process, which typically includes the following steps: audio
recording, file preprocessing, feature extraction, and classification.
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1.2.1. Lung Sound Recording

Lung sounds are typically recorded for training healthcare workers and for research
analysis; these audio samples can be broken down to objectively describe their duration,
waveform, and frequency components [16]. Recordings are obtained in one of two ways,
either directly by trained personnel that perform the auscultation with a device designed
or adapted (with a microphone) for sound recording or by attaching sensors to the subject’s
chest, which allows prolonged or continuous recording [17]. The most used sensors
are piezoelectric microphones, contact microphones, electret microphones, and the more
widely distributed electronic stethoscopes [11]. However, this step is subject to variability
among study designs due to differences in auscultation points, recording devices, and
environmental conditions.

1.2.2. Audio Preprocessing

Preprocessing is an essential step, as it allows to modify the samples to better fit the
purpose of the intended analysis, reduce the storage burden, and facilitate the extraction
of features [18]. Among the components of preprocessing is denoising, which aims to
eliminate signals that correspond to interference sources such as background noise, heart-
beats, and movement [19] while preserving the valuable information; consequently, the
resulting signal is cleaner and more suitable for further analysis. The most widespread
denoising techniques are discrete wavelet transform (DWT), singular value decomposition
(SVD), and adaptive filtering, which provide robust denoising but can be computationally
expensive [20]. Smoothing is another approach, where multiple techniques are used to
minimize the fluctuations in a signal, regardless of noise [21]. Other preprocessing methods
include segmentation to separate breath cycles into their corresponding phases and ampli-
tude normalization to reduce amplitude variations attributable to factors like a gain of the
recording tool or subject demographics [22]. The adequate preprocessing of the audio files
impacts the overall accuracy of the models [20].

1.2.3. Feature Extraction

Feature extraction is identifying a set of unique properties from a signal that will be
used for comparison in the classification stage. In this step, a large input signal with many
redundant components can be transformed into a smaller set of representative features able
to describe the original signal accurately to facilitate and expedite the classification step [23].
In general, the features are extracted from one of the following: time, frequency, and time–
frequency domains [11]. Some of the established techniques for feature extraction include
autoregressive models, characterized for their short training time and low variance); mel-
frequency cepstral coefficients (MFCCs), which are effective for reducing dimensionality
but may not capture all the nuances of complex data; and spectral and wavelet-based
features, which offer multiresolution analysis and precise feature localization [11].

1.2.4. Classification

ML and DL algorithms can classify the preprocessed signals and extracted features
based on their characteristics, allowing them to differentiate between normal and abnormal
sounds automatically. Two ways exist to feed the data into the model: holdout validation
and cross-validation. In holdout validation, the dataset is divided into fixed splits of train-
ing, validation, and testing sets. The model uses training data to learn the parameters; then,
the validation data allows the algorithm to search for the optimal set of hyperparameters
for the model; finally, the test data is hidden during the whole model building and is used
to assess the performance [24]. In the cross-validation approach, multiple partitions of the
dataset are generated, allowing each partition to be used multiple times and with different
purposes, potentially improving the statistical reliability of the classification results [25].
The goal of classification is to divide the sound signals into normal or abnormal [11], and
more complex algorithms may go as far as differentiating between types of sounds or even
underlying conditions. The performance metrics are derived from the results of this step,
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and measures such as accuracy or sensitivity can be calculated. Of note, the performance
metrics not only depend on the used classifier but on all the previous steps.

1.3. Public Lung Sound Databases

The increasing popularity of artificial intelligence (AI) in biosignal classification coex-
ists with a significant interest in developing public databases that provide the much-needed
clinical data essential for developing classification models. Previous reviews have stated
that biosignal databases have a clear tendency to use electrocardiogram (ECG) data [26].
Nonetheless, publicly available databases have been essential in developing abnormal lung
sound [11] and cardiac [10] classification models. Undoubtedly, the interest in automatic
lung sound detection has resurfaced mainly due to the widespread growth in ML and DL
techniques, as well as the apparition of the mentioned publicly accessible databases [27],
which narrow the gap between ML developers and available lung sound audio data. De-
spite the surge in the usage of large lung sound databases for DL algorithms development,
a systematic evaluation has yet to examine the accuracy and reporting variations in the
corresponding papers published in the last ten years.

2. Materials and Methods
2.1. Bibliographic Search

The systematic review was performed following the recommendations of the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [28]. The
comprehensive literature search for articles published between January 1990 and Decem-
ber 2022 was carried out by an experienced specialist medical librarian (D.J.G.) on five
databases, including MEDLINE, Embase, Cochrane Central Register of Controlled Trials,
Web of Science, and Scopus. The full search strategy can be found in the Supplementary
Files. This was confirmed by two authors independently (J.G.-M. and A.L.). The final study
protocol was registered on the OSF server: https://osf.io/8sf5w.

2.2. Eligibility Criteria

For inclusion criteria, we defined studies that (a) proposed an ML classifier for the
detection of adventitious and pathological lung sounds in adults; (b) used publicly available
(online or CD) lung sounds databases; and (c) reported at least one performance metric for
adequate classification, such as sensitivity, specificity, or accuracy. Book chapters, review
papers, abstracts of communications or meetings, letters to the editor, commentaries to
articles, unpublished works, and study protocols were excluded. Studies focused on the
pediatric population or using nonpublic audio recordings were excluded. A complementary
search using the references in the included papers was also conducted. Table 1 includes the
detailed eligibility criteria.

Table 1. Population, Intervention, Comparator, Outcome, and Study Design (PICOS) eligibility
criteria for the systematic review.

Parameter Inclusion Criteria Exclusion Criteria

Population

• Total or majority of adult (age ≥ 17) cohort.
• Underlying pulmonary disease, causing

abnormal respiratory sounds.
• Audio files obtained from a publicly

available database.
• Manuscripts published in English.

• Studies focusing on pediatric cohorts.
• Focus on cardiac auscultation sounds.
• Audio files obtained from private databases.
• Audio files self-collected for the purpose of

the study.
• Manuscripts published in languages other

than English.

Intervention
• Use of at least one machine learning algorithm to

classify abnormal respiratory sounds. • No machine learning algorithm used.

https://osf.io/8sf5w
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Table 1. Cont.

Parameter Inclusion Criteria Exclusion Criteria

Comparator
• Labeling of abnormal sounds provided by the

source database. • No labeling provided by the source database.

Outcomes

• Report of at least one of the following
performance metrics: accuracy, sensitivity,
and specificity.

• No performance metric report.

Study Designs

• Machine learning algorithm development,
comparison, validation, and
hyperparameter tuning.

• Book chapters.
• Reviews.
• Abstracts.
• Letters to the editor.
• Unpublished work.
• Study protocol.

2.3. Article Selection

Abstracts were screened by H.-Y.W. and J.G.-M. using the inclusion criteria. Full texts
were independently reviewed in duplicate by eight reviewers organized in pairs (H.-Y.W.,
S.H., Y.P., A.T., J.G.-M., I.A., I.K., and A.L.). Disagreements were resolved during consensus
meetings with a third reviewer (V.H.). Covidence software [29] was used for data collection.
The studies’ outcomes were reported as the diagnostic accuracy for abnormal sound or
pathology detection (sensitivity, specificity, and accuracy, when available). The types of
performance measures reported depended on the approach of each study.

2.4. Data Extraction

The study details for the included articles were abstracted by ten independent researchers
(H.-Y.W., S.H., Y.P., A.T., K.L., D.V., S.Q., J.G.-M., I.A., and I.K.) using a standardized data
extraction form, and each article was assessed by two different researchers. The reviewers
resolved discrepancies by consensus or in consultation with a third party, as needed. The data
abstracted included the baseline details (year of publication and first author); study design
(type of lung sound or pathology evaluated, DL algorithm used, feature extraction techniques,
training/validation/test split, and evidence of external validation); dataset characteristics
(number of recordings, auscultation points, the sensor used, and reference standard); and the
performance metrics (reported as accuracy, sensitivity, and specificity).

2.5. Quality Assessment

We assessed the risk of bias (ROB) and applicability concerns for every included
study using a modified QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2)
instrument [30]. Ten researchers independently assessed the included articles. The quality
assessment for each article was performed at least by two authors. Final adjudication
and discrepancies were solved by consultation with a third author (A.L.). Given the poor
standards of quality assessment (QA) reporting for AI-based diagnostic accuracy studies
and the lack of validated QA tools [31], we modified the QUADAS-2 instrument to fit the
purposes of this review. The four core domains for ROB evaluation were maintained, and
new signaling questions tailored for this review were assessed. Given that the eligible
studies used audio files from publicly available lung sound databases, such data sources
were accessed when possible. This allowed for the assessment of the ROB during the audio
recording creation of the database. When the corresponding lung sound database was not
accessible anymore, the signaling question was answered as “N/A”, indicating a lack of
information. The ROB for each domain was judged as low only when the answers to all
signaling questions were “yes”; conversely, the ROB was deemed high in the presence of at
least one signaling question responded to as “no”. If at least half of the signaling questions
of a domain could not be assessed due to a lack of information, the ROB for the domain
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was deemed “unclear”. When the reference standard used to determine the sound ground
truth classification was interpreted by a human or expert, this was listed as a potential
source of bias and the corresponding question responded to as “no”. Applicability concerns
were evaluated in the reference standard, index test, and patient selection domains, as
recommended by the original QUADAS-2 instrument [32]. Notably, a significant portion
of the studies used databases known to contain pediatric patients; therefore, these studies
were classified as having a “high” risk regarding applicability.

3. Results

A standardized approach was used for this systematic review. A database search
identified a total of 3143 records. The removal of 650 duplicates left 2493 articles. Of these,
2311 articles were excluded based on title and abstract screening. From the screening,
182 full-text articles were assessed for eligibility. The main reasons for exclusion were not
using audio recordings from publicly available databases and not proposing a ML/DL
algorithm for abnormal lung sound classification. A few studies developed an algorithm
but did not test it with patient data or lacked a performance metrics report. This study
selection resulted in a total of 62 articles included in the qualitative synthesis. Figure 2
depicts this process in detail. Supplementary Table S1 presents the characteristics of each
included study, namely the classifier and database used, best obtained performance metrics,
and classification categories.
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Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram.

3.1. Sources of Lung Sound Recordings

As mentioned earlier, this review focuses on studies that used abnormal lung sound
recordings from public databases as opposed to studies that recorded their own audio
samples for the study. Creating such databases involves a series of features, including
data recording protocol, recording and storage hardware, time and place of collection, and
audio file labeling. Having a number of features, these biosignal repositories are prone to
heterogeneity in every aspect, as well as inconsistencies, even within the same database.
For this reason, the characteristics of the databases were retrieved for quality assessment,
as stated in the Methods section.
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As AI applications in healthcare continue to expand, the amount of available data
repositories continues to grow. In this review, 17 different data sources were identified.
Forty-nine articles used recordings from a single source, whereas thirteen combined audio
files from multiple sources. The most frequently used online databases were the Inter-
national Conference in Biomedical and Health Informatics (ICBHI) 2017 database [27]
(66%) and the Respiration Acoustics Laboratory Environment (R.A.L.E.) Lung Sounds
database [33] (23%), whereas other databases such as the King Abdullah University Hos-
pital (KAUH) database or the Stethographics Lung Sound Samples were used much less
often. Some studies used not currently available online databases [34,35] or only CD-
accessible [36–39] databases, which prevented the quality assessment of their creation
process. It is worth noting that the introduction of databases like the one by Rocha et al. [27]
in 2017 led to a surge in the production of articles, as observed in Figure 3, which describes
the number of studies per year of publication.
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3.2. Features of Lung Sounds Databases

The ICBHI 2017 database contains recordings from 126 individuals, obtained by two
groups of researchers using the AKG C417L Microphone (AKGC417L), 3M Littmann Classic
II SE Stethoscope (LittC2SE), 3M Littmann 3200 Electronic Stethoscope (Litt3200), and Welch
Allyn Meditron Master Elite Electronic Stethoscope (Meditron) at university hospitals in
Portugal and Greece [27]. Respiratory experts annotated the lung sounds as “crackles,
wheezes, a combination of them, or no adventitious respiratory sounds”, and the patients
had conditions such as asthma, bronchiectasis, bronchiolitis, COPD, and upper and lower
respiratory tract infections. As mentioned earlier, lung sounds from this database were used
by most articles, as it is an open-access, readily available database that covers a wide range
of diseases and abnormal sounds. In addition, the database authors suggest calculating a
series of standard performance metrics, further facilitating the comparison and validation
of new classification models.

The other frequently used source was the R.A.L.E. Lung Sounds database [33]. These
researchers from Canada used the 3 M Littmann3200 Electronic Stethoscope (Litt3200)
and Welch Allyn Meditron Master Elite Electronic Stethoscope (Meditron) to capture over
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50 recordings of lung sounds, including wheezes, rhonchi, crackles, squeaks, squawks,
and pleural friction rubs, annotated by respiratory experts. This database is commercially
available; a license must be acquired before access. Although this resource has been
available for over 20 years, a significantly smaller number of the included studies opted to
use it. The license includes access to clinical cases and quizzes related to lung sounds.

Notably, one-quarter of the reported databases are only accessible via the physical
acquisition of a CD-ROM [40–44], which impairs the quality assessment and the description
of characteristics in this review. Finally, seven of all the mentioned databases were not
accessible when this review was performed, in all cases due to outdated internet sources.
Therefore, their characteristics could only be derived from the included articles’ descriptions
in studies where combined databases were described as a whole, preventing a distinction
between sources and halting their separate assessments. Further features of all the databases
are described in Table 2.

Table 2. Abnormal lung sounds sources are mentioned in the included articles. Some databases are
no longer accessible or their characteristics are not described. (Contents are sorted by availability, last
column, and country of origin, second column).

Database or Author Name Country
Participants
Number
(Total (M/F); HC)

Abnormal Lung Sounds
Labeled Pathologies Labeled Availability 1 Ref.

R.A.L.E. Lung Sounds 3.2 Canada 70 (-); 17 Crackles, Wheezes, Squawk,
Stridor, Rhonchi

Asthma, COPD, Bronchiolitis,
Laryngeal web, Bronchogenic
carcinoma, Lung fibrosis,
Cystic fibrosis.

Available
online [33]

ICBHI 2017 Challenge
Database

Greece,
Portugal 126 (46/79); 26 Crackles, Wheezes, Crackles

+ Wheezes

Asthma, Bronchiectasis,
Bronchiolitis, COPD,
Pneumonia, LRTI, URTI

Available
online [27]

KAUH database Jordan 120 (43/69); 35

Crackles, Wheezes,
Crepitations, Bronchial
sounds, Crackles + Wheezes,
Crackles + Bronchial

Asthma, Pneumonia, COPD,
Bronchitis, Heart failure,
Lung fibrosis, Pleural
effusion

Available
online [45]

RespiratoryDatabase@TR Turkey 77 (64/13); 30 Crackles, Wheezes Asthma, COPD Available
online [46]

Thinklabs Lung Sounds
Library

United
States - Crackles, Wheezes, Pleural

rub, Rhonchi, Stridor

Asthma, Bronchiolitis, COPD,
Laryngomalacia, Pulmonary
edema

Available
online [47]

East Tennessee State
University Pulmonary Breath
Sounds

United
States - Crackles, Pleural rub, Stridor,

Wheezing, Rhonchus - Available
online [48]

ASTRA database France - - - CD-ROM [40]

Auscultation Skills: Breath &
Heart Sounds

United
States - - - CD-ROM [41]

Fundamentals of Lung and
Heart Sounds

United
States - - - CD-ROM [42]

Heart and Lung Sounds
Reference Library, Wrigley

United
States -

Bronchial, Bronchovesicular,
Rhonchi, Pneumonia,
Wheezes, Bronchophony,
Crackles, Stridor,

- CD-ROM [43]

Understanding Lung Sounds,
Lehrer

United
States - Crackles, Wheezes - CD-ROM [44]

Bahoura 1999 France - - - Undefined [49]

Hsiao 2020 Taiwan 22 (12/10); - Crackles, Wheezes - Undefined [50]

Bogazici University Lung
Acoustics Laboratory Turkey - - Bronchiectasis, Interstitial

lung disease Undefined -

CORA database Ukraine - - Bronchitis, COPD Undefined [51]



Bioengineering 2023, 10, 1155 9 of 19

Table 2. Cont.

Database or Author Name Country
Participants
Number
(Total (M/F); HC)

Abnormal Lung Sounds
Labeled Pathologies Labeled Availability 1 Ref.

Stethographics Lung Sound
Samples 2

United
States - - - Undefined -

3M Littmann Lung Sounds
Library

United
States - - - Undefined -

Mediscuss Respiratory
Sounds 2 - - - - Undefined -

Abbreviations: M: Males; F: Females; HC: Healthy Controls; COPD: Chronic Obstructive Pulmonary Disease;
LRTI: Lower Respiratory Tract Infection; URTI: Upper Respiratory Tract Infection. ETSU: East Tennessee State
University; ICBHI: International Conference on Biomedical and Health Informatics; KAUH: King Abdullah
University Hospital; R.A.L.E: Respiratory Acoustics Laboratory Environment. 1 Availability at the time of
submission. 2 This database was mentioned in one of the included articles but could not be found in this review.

3.3. Types of Sounds Analyzed

All eligible articles in this review targeted pulmonary sounds, but their algorithms
classified sounds differently. Thirty-eight studies (61%) created algorithms that classified
sounds into normal or adventitious lung sounds, with the most common ones being crack-
les and wheezes, although some algorithms also identified rhonchi or stridor. Twenty-one
studies (34%) classified recordings into different diseases, namely with chronic obstruc-
tive pulmonary disease (COPD), asthma, pneumonia, and bronchiectasis being the most
common ones. Finally, three studies (5%) created separate algorithms to distinguish adven-
titious lung sounds and lung pathologies.

3.4. Classification Models

Table 3 contains the most used classifiers in this review, a general description, and the
included references corresponding to each model. As explained earlier, these techniques are
the final step in the process, and they allow to classify the abnormal sounds into different
categories based on the similarities and differences of their features.

Among the included manuscripts, the most used classifiers were artificial neural
networks (ANN) and their subtypes and support vector machines (SVM). These techniques
are examples of supervised learning algorithms, which must be trained with labeled
data before classifying the unseen data points [52]. These two models can generalize
appropriately these unseen data points by minimizing the risk of overfitting, resulting
from having a model that learned in a way that can only apply to the training sample and
poorly generalizes to unseen data [53]. Notably, many variations of ANN were tested in
the included studies, ranging from the basic multilayer perceptron (MLP), composed of a
series of fully connected layers [54], to the more complex recurrent neural networks (RNN)
and convoluted neural networks (CNN). Ensemble methods such as Random Forests and
Boosting algorithms, which combine multiple learning algorithms to improve estimates
and the classification performance [55], were occasionally used in the manuscripts.

Table 3. The most used machine learning classification techniques.

Name Features Refs.

ANN

CNN
RNN
DNN
DBN
MLP

Inspired by networks of neurons, ANN models contain multiple
layers of computing nodes that operate as nonlinear summing
devices. These nodes communicate with each other by connection
lines; the weight of each line is adjusted as the model is trained [56].

[18,35,36,38,57–91]
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Table 3. Cont.

Name Features Refs.

SVM This maximal margin classifier aims to find the hyperplane in an
N-dimensional space that distinctly classifies the data points [92]. [14,37,59,63,65,66,78,87,93–99]

k-NN
This classifier intends to classify a set of unlabeled data by
assigning it to the class that contains the most similar labeled data
points [100].

[14,39,59,63,65,98,99]

DT

This technique classifies data by posing questions regarding the
item’s features. Each question is represented in a node, and every
node directs to a series of child nodes, one for each possible answer,
forming a hierarchical tree [101].

[59,87,98,102–104]

DA

This unsupervised learning technique intends to transform the
features from a data point into a lower dimensional space, hereby
maximizing the ratio of the between-class variance to the
within-class variance, which results in maximized class separability
[105].

[87,106,107]

RF

Random Forest is a classifier that builds multiple decision trees by
using random samples of data points for each tree and random
samples of the predictors; the resulting forest provides fitted values
more accurate than those of a single tree [108].

[78,109]

GMM

Mixture models are derived from the idea that any distribution can
be expressed as a mixture of distributions of known
parameterization (such as Gaussians). Then, an optimization
technique (such as expectation maximization) can be used to
calculate estimates of the parameters of each component
distribution [110].

[34,35,111]

HMM

The hidden Markov model creates a sequence of GMM models to
explain the input data. Its main difference from GMM is that it
takes account of the temporal progression of the data, whereas
GMM treats each sound as a single entity [112].

[111,113–115]

GB
The main idea behind boosting techniques is to add a series of
models into an ensemble sequentially. At each iteration, a new
model is trained concerning the error of the whole ensemble [116].

[99,117]

LR

Logistic regression is a technique that describes and tests
hypotheses about relationships between a categorical (outcome)
variable and one or more categorical or continuous predictor
variables [118].

[63,119]

NB

This supervised learning algorithm is based on the Bayes theorem.
This technique works on probability distribution. The features
present in the dataset are used to determine the outcome, but they
are not related to other features [120].

[39]

Abbreviations: ANN: Artificial Neural Network; CNN: Convoluted Neural Network; RNN: Recurrent Neural
Network; DNN: Deep Neural Network; DBN: Deep Belief Network; MLP: Multilayer Perceptron; SVM: Support
Vector Machine; k-NN: k-Nearest Neighbors; DT: Decision Tree; DA: Discriminant Analysis; RF: Random Forest;
GMM: Gaussian Mixture Model; HMM: Hidden Markov Model; GB: Gradient Boosting; LR: Logistic Regression;
NB: Naive Bayes.

3.5. Performance Metrics

The evaluation of the ability of a model to adequately classify lung sounds into the
appropriate category yields a series of metrics. It is of utmost importance to remember
that the performance of a model not only depends on the ML/DL classifier but also
on all the steps that precede it (audio recording, preprocessing, feature selection, and
model training). These metrics are helpful when comparing different models that use
the same data sources but, understandably, are not a reliable way to compare models
across different databases. Some databases, like the ICBHI 2017 Challenge [27], suggest
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that researchers use specific performance metrics to evaluate their models; nonetheless,
for this review, the evaluated performance metrics were accuracy and/or sensitivity and
specificity. The accuracy for classification into abnormal sound categories ranged between
49.43 [102] and 100.00 [18]. Meanwhile, the sensitivity and specificity ranged between
17.80 [90] and 100.00 [18,65] and 59.69 [113] and 100.00 [38,64], respectively. On the other
hand, the lowest and highest accuracies for models that classified sounds into disease
classes were 69.40 [99] and 99.62 [69]. For the same studies, the sensitivity ranged between
28.00 [77] and 100.00 [63], whereas the specificity ranged between 81.00 [77] and 100.00 [88].
Remarkably, the reported metrics were highly heterogeneous between studies, limiting
direct comparisons.

3.6. Quality Assessment

Given the lack of a validated tool for the quality assessment of diagnostic studies
that use artificial intelligence, we optimized a version of the QUADAS-2 tool to evaluate
the risk of bias and applicability concerns. After using this tool, all the studies were
classified as having an overall high ROB, with most concerns over the patient selection and
the reference standards. The high ROB in these domains directly relates to using public
databases to obtain audio files. These sources often do not follow a specific sound recording
protocol, use multiple devices, and rely on interpretation by an individual to assign labels
to each recording. In addition, the characteristics of each database are rarely available,
further halting the quality assessment process. None of the included studies had concerns
regarding applicability in the index test domain, while almost all the studies had serious
or unclear concerns in the patient selection and reference standard domains. The concern
arose due to the poor description of the patient population in the included papers and/or
data sources, which creates a risk of including pediatric patients, for example. Also, using
expert annotation as a reference standard precludes the reliability of the labels for each
study, raising concerns in this domain. Tables S2 and S3 in the Supplementary Files contain
the individual assessment results of the risk of bias and applicability concerns, respectively.
Figure 4 summarizes the quality assessment findings.

4. Discussion

Our systematic review provides a comprehensive update on using contemporary ML
and DL models. To the best of our knowledge, this work offers a much-needed update
that highlights the advances in automatic lung sound classification during the last six
years, focusing on the introduction of large public databases that have encouraged further
research in the field. The apparition of large public data sources in recent years has led to an
increasing number of studies to share their lung sound audio samples, ideally facilitating
comparisons between models. Nonetheless, a detailed description of the databases and
studies is necessary to identify the emerging issues in the field and the progress made so
far. Supplementary Table S1 highlights the models identified in our systematic review with
the best accuracy, sensitivity, and specificity performance metrics.
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Figure 4. Quality assessment summary plots for the risk of bias (top) and applicability concerns
(bottom). Presented as the number of articles with high, unclear, or low risk/concerns across each
domain of the modified QUADAS-2 tool. (Green: low risk of bias; red: high risk of bias; yellow:
unclear risk of bias).

4.1. Clinical and Scientific Relevance

Machine learning (ML) and deep learning (DL) techniques are of increasing impor-
tance and great functionality in the identification and classification of normal and abnormal
lung sounds [121], although, historically, a bedside clinician has been the key decider for
identifying and classifying various normal and abnormal lung sounds, such as vesicular
lung sounds, crackles, and wheezes. This information carries various degrees of diag-
nostic certainty, depending on the experience level and skill set. The inability to identify
and accurately classify lung sounds could significantly impact the delay in diagnosis and
downstream management [122]. Güler et al. described the initial work of utilizing a neural
networks-genetic algorithm approach to advance the field in the lung sounds classifica-
tion [123]. Additionally, they employed a multilayer perception neural network employing
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a backpropagation training algorithm to predict normal or abnormal lung sounds (such as
crackles or wheezes), ultimately yielding a model with promising performance, with correct
classification rates of up to 93% for all lung sounds. Early studies like the aforementioned
served as the groundwork for future authors that intended to improve the methodology
and capabilities of their models.

The traditional methods of lung sound analysis depend heavily on the expertise
of bedside clinician, which has a significant subjectivity. Their results could be prone
to interobserver variability, and the same observer could potentially classify the same
lung sounds differently. ML and DL algorithms could minimize that variability and
could provide objectivity, offering several advantages. In addition to this, the ML and
DL methods could extract the relevant features from lung sound recordings, capturing
characteristics that were not picked up by pulmonary auscultation [124,125], such as
the frequency content, temporal patterns, and spectral properties, to name a few. These
additional characteristics could further enrich a training dataset’s diversity and variability,
enabling accurate classification and identification for future studies.

With the technical advances in computing, machine learning in deep planning models
such as support vector machines (SVM), Random Forests, and neural networks have been
utilized at an increasing pace to label and classify lung sound data [126]. The increasing
fidelity and improvement in the performance of the resulting models could provide accurate
diagnostic and predictive enrichment for specific disease states, such as pneumonia, pleural
effusions, consolidations, and airway diseases (rhonchi and wheezing), among others.

Deep learning models such as neural networks (NNs) could provide the benefit of
real-time monitoring of lung sounds. If developed and validated clinically, these models
could be used for real-time lung sound monitoring in acute care settings (such as hospitals)
and remote monitoring environments such as nursing homes, rehabilitation facilities, or
even at home [119,127]. The real-time analysis could allow for the early detection of disease
states, enabling an actionable point of timely intervention and overall improvement in
healthcare delivery. Potential challenges that could be anticipated include difficulty in
noise reduction, thereby impeding the signal-to-noise ratio and diluting the diagnostic
information present in the audio signals. With the advent of precision and personalized
medicine, these machine learning and deep planning models can be trained on high-
quality datasets with high signal-to-noise ratios, thereby allowing the further design of
personalized models that could consider individual variations in lung sounds, accounting
for age, sex, body habitus, disease progression, ethnicity, and other factors contributing to
patient-to-patient variability [128–130].

4.2. Opportunities and Barriers

Utilizing machine learning and deep learning techniques in this realm has several
strengths and advantages. ML and DL algorithms will enable the automated analysis of
lung sounds, thereby relying less on human subjective nature and interpretation. This
automation will improve efficiency with a reduction in interobserver variability. ML and
DL models also excel in recognizing complex patterns in data that are either unknown
or difficult to recognize by humans; this concept also holds true in lung sound identifica-
tion [131,132]. As highlighted above, one of the biggest advantages will be the real-time
monitoring of patients’ lung sounds remotely in a hospital setting and their community
(at home). This will facilitate the early detection of physiological abnormality, and we will
provide an actionable point of timely intervention. Adaptability and self-limiting from new
data will allow for continuous improvement in performance and fidelity over time. Despite
all the advantages highlighted above, these ML and DL models have inherent weaknesses.
The availability of high-quality and labeled lung sound datasets can be a challenge, as
highlighted by many manuscripts included in our systematic review. Heterogeneity in the
database creation process inevitably leads to a scenario where comparisons between models
are not possible. Stakeholder engagement for creating well-annotated datasets with patient
populations can be time-consuming and expensive. Databases lacking in diversity could
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affect the generalizability and potentially increase healthcare disparities in diagnostics and
healthcare delivery. Physiologically, lung sounds could vary significantly due to various
patient factors such as body habitus, body position, patient movement, disease timeline,
and recording conditions. This variability in lung sound recording could present hurdles
in realizing consistent and accurate classification if not accurately annotated.

4.3. Strengths and Limitations

The strengths of this review include the extensive literature search, as well as the
individual evaluations and detailed descriptions of the data sources. Furthermore, we
developed a new approach to the quality assessment of the included articles, given the
lack of validated assessment tools for diagnostic accuracy studies that use artificial intel-
ligence. Our study was limited by the impossibility to perform a meta-analysis, given
the heterogeneity in the performance reporting and data sources. Similarly, we could not
access a large portion of the older databases, preventing us from evaluating and describing
their characteristics. Notably, our review focused on studies in English that used public
databases as their source of audio samples, excluding those published in other languages
and those that opted for a different approach, such as collecting their own sounds. Al-
though omitted in our work, these studies may provide valuable contributions to the
development of the field.

4.4. Future Work

As noted, while the machine learning and deep learning techniques have, so far, offered
valuable strengths in the accurate identification and classification of lung sounds, improved
efficiency, and provided the possibility of real-time remote monitoring, they also face
certain limitations. To harness the full potential of these techniques in healthcare, we need
to overcome the challenges surrounding data availability, data security, accurate labeling
and interpretation, and domain expertise. As evidenced by the results of this review, public
databases are an essential component in the progress of the field of automatic lung sound
classification, but researchers interested in developing their own database should aim
to create a standardized approach to the recording, storage, and share processes, which
will ultimately lead to more reliable comparisons between models. Utilizing ML and DL
techniques for lung sound analysis could raise ethical concerns regarding patient privacy,
data security, and other regulatory oversight needs [133]. Therefore, these concerns should
be clearly addressed when developing public databases.

5. Conclusions

In conclusion, we see a rising trend of more ML and DL techniques demonstrating
promise in appropriate identification and classification, increasing the accuracy for various
lung sound characteristics. Automating the analysis process and enriching the currently
publicly available databases could offer a precious source of objective and accurate diag-
nostic utility. With further advancements in computational prowess, these techniques have
the potential to provide better-personalized precision medicine and accurate assessments
of respiratory conditions, aiding in diagnosis, monitoring, and treatment.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering10101155/s1, Table S1: List of the included
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