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Abstract: The paper proposes a federated content-based medical image retrieval (FedCBMIR) tool
that utilizes federated learning (FL) to address the challenges of acquiring a diverse medical data
set for training CBMIR models. CBMIR is a tool to find the most similar cases in the data set to
assist pathologists. Training such a tool necessitates a pool of whole-slide images (WSIs) to train the
feature extractor (FE) to extract an optimal embedding vector. The strict regulations surrounding data
sharing in hospitals makes it difficult to collect a rich data set. FedCBMIR distributes an unsupervised
FE to collaborative centers for training without sharing the data set, resulting in shorter training times
and higher performance. FedCBMIR was evaluated by mimicking two experiments, including two
clients with two different breast cancer data sets, namely BreaKHis and Camelyon17 (CAM17), and
four clients with the BreaKHis data set at four different magnifications. FedCBMIR increases the F1
score (F1S) of each client from 96% to 98.1% in CAM17 and from 95% to 98.4% in BreaKHis, with
11.44 fewer hours in training time. FedCBMIR provides 98%, 96%, 94%, and 97% F1S in the BreaKHis
experiment with a generalized model and accomplishes this in 25.53 fewer hours of training.

Keywords: breast cancer; content-based medical image retrieval (CBMIR); convolutional auto-encoder
(CAE); federated learning (FL); computer-aided diagnosis; histopathological images; digital pathol-
ogy; whole-slide images (WSIs)

1. Introduction

Breast cancer accounts for 25% of all cancers in women worldwide. According to the
American Cancer Society, a woman is diagnosed with breast cancer in the world every
14 s. In the year 2020, approximately 2.3 million women were diagnosed with breast cancer
globally, and 685,000 lost their lives due to it [1]. Histopathology is commonly used in
the diagnosis and treatment of various diseases, including cancer. A biopsy, which is the
removal of a small piece of tissue from the body, is usually required for histopathological
examination [2]. Human error in histopathology refers to mistakes or inaccuracies made
during the process of examining tissues or cells under a microscope [3]. Some examples of
human errors in histopathology include sampling errors, processing errors, technical errors,
interpretation errors, and reporting errors [4]. To minimize human errors in histopathology,
it is essential to follow strict protocols and guidelines, perform regular quality control
checks, and ensure that all personnel involved in the process are properly trained and
competent [5]. The authors in [6] analyzed the accuracy of breast cancer diagnosis in
102 cases and found that there were diagnostic errors in 15.7% of cases. The most common
types of errors were misclassification of tumor type and misinterpretation of pathology
slides. Digital pathology could help pathologists to improve the accuracy and efficiency of
cancer diagnosis, reduce the risk of errors, and enhance patient care.
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Digital pathology is a technology that uses digital images of tissues and cells to aid
in the diagnosis and management of diseases [7]. Deep learning (DL) has revolutionized
computer-aided diagnosis (CAD) in digital pathology and has opened the door to improve
cancer diagnosis while decreasing the pathologist’s workload [8].

Content-based medical image retrieval (CBMIR) is a recent DL-based methodology
that allows pathologists a quick and precise search in previously diagnosed and treated
cases [9]. In CBMIR, image features, such as texture, shape, color, and intensity, are
extracted from the query and data set; then, a similarity measure is applied to compare
the query features with the features of the database [10]. The retrieved images are ranked
according to their similarity to the query image, and the most relevant images are displayed
to the user.

To further illustrate the advantages and practicality of CBMIR in the field of histopathol-
ogy and cancer diagnosis, consider a scenario where a patient is diagnosed with cancer,
and grading it accurately poses a challenge for pathologists. In traditional cancer diagnosis
methods, the pathologist would need to physically send the glass slide containing the tissue
sample to another hospital, which could be located in a different city or even a different
country. This process is not only expensive and time-consuming but also carries inherent
risks, such as the loss or damage of the glass slide during transportation. Moreover, it adds
additional stress to the patient’s already difficult situation.

By implementing world-wide content-based medical image retrieval (WWCBMIR),
these challenges can be effectively addressed, and the process of a cancer diagnosis can be
significantly expedited without compromising accuracy. Through the use of digital pathol-
ogy, where whole-slide images (WSIs) are digitized and stored electronically, pathologists
can access and analyze the images remotely [2]. The WWCBMIR enables pathologists
to retrieve similar cases and relevant information from a vast database of histopatholog-
ical images without the need for the physical transfer of slides. This approach not only
reduces costs and saves time but also minimizes the potential risks associated with the
transportation of delicate tissue samples. Figure 1 shows how a WWCBMIR can provide
unprecedented access to K number of patches with the most similar patterns, allowing the
pathologists to make a more confident diagnosis.

Figure 1. An overview of the use case of a worldwide CBMIR. Pathologists send their query (Q) to
the worldwide CBMIR since they need a second opinion to make a more confident decision. Then,
the model retrieved top K similar images (S-R), and the pathologists can obtain a second opinion
from whole over the world.

One of the advantages of CBMIR from the pathologist’s (user) perspective is that it is
not a completely black box for them. CBMIR allows pathologists to find similar patterns
among the retrieved images and the queries based on their knowledge. This provides more
reliable information than a label for pathologists, which makes CBMIR more beneficial for
pathologists than a classification.

An actual context needs a global CBMIR, which demands a generalized data set with
a variety of images of different quality, magnification, color, size, etc. The performance of
CBMIR relies on a vast amount of data, which is difficult to collect in the medical field due
to patient privacy and time costs. In order to create a vast centralized data set, DL experts
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need to transfer their WSIs. However, these images are gigapixels with high storage sizes.
In addition to the challenges of transferring a heavy data set for DL experts, patient privacy
policies and other regulatory obstacles on the medical side make it more challenging to
create a sufficient data set.

Federated learning (FL) represents a possible solution to tackle this problem by col-
laboratively training DL models without transferring WSIs [11]. Multiple institutions can
safely co-train DL models in digital pathology using FL, achieving cutting-edge perfor-
mance with privacy assurances [12]. FL brings an opportunity to share the weights for
multi-institutional training without sharing patient data and images. However, there are
still some privacy risks since the training parameters and model weights are distributed
among collaborators [13].

DL models give information that goes beyond the scope of human vision, and FL
solves the problem of data sparsity by connecting international hospitals while complying
with the data privacy policies, irrespective of the country of origin. This benefit can remedy
the health care limitations due to the lack of facilities (staining materials, scanners, etc.)
and experience (students, recently graduated pathologists, etc.). Moreover, it can tackle the
lack of data sets of labeled WSIs because of data privacy.

In this paper, we minimized the WWCBMIR to an international CBMIR by leveraging
FL. The experiments were conducted through the collaboration of two countries and three
cities to examine the feasibility and challenges associated with implementing a WWCBMIR.
This international CBMIR was trained with the data collected from different hospitals and
answered the needs of clients. Clients might be expert pathologists or a student. Our main
contributions include the following:

• We proposed a novel international FL-based CBMIR, which is named FedCBMIR, to
aid pathologists in breast cancer diagnosis.

• An unsupervised network was used as a feature extractor (FE) to extract the features
of the images for the tasks trained with scanty data sets.

• We proposed a custom-built convolutional auto-encoder (CAE) to learn the dependen-
cies and extract the features of the images with higher discriminating values.

• In order to address patient data privacy concerns, we employed the privacy preserva-
tion capability of FL. This approach ensures that the data in each institution remains
decentralized and confidential, as there is no need to be shared with a central server.

• Through extensive tests on varying data set distributions among individual clients,
we verified the robustness of our proposed solution. It proved to be independent of
the data quality held by each client.

2. Related Work

Recently, researchers have directed their attention toward both FL and CBMIR and
have invested their efforts in exploring these fields. This section provides a succinct
overview of some of the notable studies.

2.1. Content-Based Medical Image Retrieval (CBMIR)

CBMIR has been a subject of extensive research since the advent of large-scale databases
nearly two decades ago, as noted by Wang [14]. Several studies have made significant
contributions to this field. Tabatabaei [15] achieved an accuracy rate of 84% in CBMIR
using the largest patch-annotated data set in prostate cancer. Kalra [16] proposed Yottixel,
a method for representing the Cancer Genome Atlas whole-slide images (TCGA WSIs)
compactly to facilitate millions of high-accuracy searches with low storage requirements
in real time. Conversely, Mehta [17] proposed a CBMIR system for sub-images in high-
resolution digital pathology images, utilizing scale-invariant feature extraction. Lowe [18]
utilized scale-invariant feature transform (SIFT) to index sub-images and reported an 80%
accuracy rate for the top-five retrieved images. Lowe’s experiments were conducted on
50 ImmunohHistoChemistry (IHC) stained pathology images at eight different resolutions.
Additionally, Hegde [19] used a manually annotated data set pre-trained on a deep neural
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network (DNN) to achieve top-five scores for patch-based CBMIR at different magnification
levels. The primary focus of recent studies has been on enhancing the performance of CB-
MIR in different types of cancer; however, there are still several challenges that can impede
its effectiveness. These challenges include data privacy, as medical data is confidential and
subject to strict privacy regulations, making it arduous to share and access large data sets
for model training. FL can alleviate this issue by facilitating distributed model training
on local data without compromising privacy. Another challenge is data distribution; as
medical data is frequently dispersed across numerous locations, it is difficult to train models
on a centralized data set. FL enables the training of models across multiple distributed
data sets without aggregating the data in a central location. In addition, medical data sets
can be heterogeneous, varying in terms of imaging modalities, quality, and annotation
protocols, which can impede the development of robust and accurate models. FL can
mitigate this challenge by allowing models to be trained on diverse data sets in different
qualities, improving their performance and generalization ability. Furthermore, medical
data sets can be large and complex, necessitating significant computational resources to
train models. FL can distribute the computational workload across multiple devices and
locations, enhancing scalability and reducing training time.

2.2. Federated Learning (FL)

In recent years, FL has achieved impressive progress that enhances a wide adoption
of DL from decentralized data [11,20,21]. FL is a distributed machine learning approach
that can effectively handle decentralized data without raw data exchange to train a joint
model by aggregating and distributing local training. Many existing algorithms can be
adopted to aggregate updates from distributed clients. Typical examples include Feder-
atedAveraging, viz FedAvg [11], and adaptive federated optimization methods [21], e.g.,
FedAdagrad, FedYogi, and FedAdam. Some popular FL frameworks, such as TensorFlow
Federated (TFF) (https://www.tensorflow.org/federated (accessed on 23 September 2022)),
PySyft [22], and Flower [23] provide a set of robust tools for building privacy-preserving
ML models. In addition, Jupyter-Notebook-based tools, such as [24], also help simplify the
FL setup and enable its deployment of a cross-country federated environment in only a few
minutes. Daniel Truhn in [25] employed homomorphic encryption to protect the model’s
performance while training by encrypting the weight updates before sharing them with the
central server. Firas Khader in [26] presented a technique of “learnable synergy”, where
the model only chooses pertinent interactions between data modalities and maintains
an“internal memory” of key information. Micah J. Sheller [13] investigated how FL among
ten institutions is 99% as efficient as that derived using centralized data. One recent work
related to content-based image retrieval is introduced in [27], where FLSIR was proposed,
and it enables secure image retrieval based on FL and additive secret sharing. Nevertheless,
it is not for clinical applications. Although the combination of CBMIR and FL is a relatively
new area of research, it has the potential to greatly improve healthcare outcomes. By
offering healthcare professionals quick access to accurate and relevant medical image data
while maintaining patient privacy, the integration of these techniques can have a significant
impact on the field.

The following sections address how the proposed FedCBMIR approach can revolu-
tionize how medical images are searched and utilized, leading to improved diagnoses and
treatment plans.

3. Experiments

In this section, the proposed FedCBMIR tool is introduced along with the training
details and the two data sets used in our study. Figure 2 (BreaKHis images) provides
an overview of the CBMIR workflow, starting from the initial stage at a hospital and
concluding with the presentation of the top K similar patches to the user. In the medical
session, a cancer patient’s tissue is obtained, scanned, and divided into patches for storage.
In the offline session, the FE is trained, and the extracted features from the database are

https://www.tensorflow.org/federated
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saved and indexed. In the online session, a pathologist uploads an image to the CBMIR
model, where the well-trained FE extracts its features. These features are then used by the
search engine to retrieve the top K similar patches from the stored database in the medical
session. Finally, in the visual session, the pathologist can reach similar patches and their
corresponding labels for further investigation based on their knowledge.

Figure 2. A comprehensive illustration of the entire process in a CBMIR, demonstrating the utilization
of DL models to acquire images from a hospital and offer a second opinion for pathologists.

In this paper, the proposed FedCBMIR, as shown in Algorithm 1 (more informa-
tion: https://flower.dev/docs/framework/how-to-implement-strategies.html (accessed
on 23 September 2022)), addresses the described challenges and provides a second opinion
for pathologists in writing their reports for a cancer diagnosis. FedCBMIR is inspired by
a great vision of a WWCBMIR that effectively manages decentralized medical images by
utilizing local training for multiple tasks while avoiding the need for raw data exchange.
FedCBMIR takes advantage of FL since it can give CBMIR a higher chance of generalizing
its capabilities by accessing multi-central images from different hospitals. A generalized
CBMIR framework needs more effective content of the images as the key factor in the field
of CBMIR.

In this paper, we cope with the challenges of CBMIR with two different experiments
and evaluate it in three scenarios. In our first experiment (EXP 1), we mimic a case of two
institutions that have different breast cancer WSIs in completely different image preparation
processes. This case occurs when two institutions have a limited number of images, but
they need a well-trained model to obtain a supportive idea on their query tissue. This
experiment was assessed this experiment on CAMELYON17 (CAM17) and BreaKHis at
40×magnification. Then, in the second experiment (EXP 2), we extended our work with
patches at different magnifications by feeding our FedCBMIR framework with BreakHis
data set at 40×, 100×, 200×, and 400×magnification. The magnification problem in WSI
analysis is the subject of our second experiment. Algorithm 1 shows FedCBMIR step by
step. The novelty of this work relies on providing well-trained models that can retrieve
similar patches for each client in different countries. Regarding the use of FL in CBMIR, all
clients, regardless of their data privacy policies, can train the model with a limited number
of patches and find similar patches to their queries more accurately than local training.

https://flower.dev/docs/framework/how-to-implement-strategies.html
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Algorithm 1 FedCBMIR(FedAvg)
Server (Aggregator) Client (CBMIR)

Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M / The number of clients
R / The communication rounds
E / The local epochs
B / The local batch size
η / The local learning rate
ω0 / weights

H / hyperparameters
M / model structure
Dm / local data set of client
m

Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: for all round r = 1, 2, ..., R do
2: Sr = (random set of M clients)
3: for all client m ∈ Sr do
4: ωm

r+1 = ClientUpdate(m, ωr)

ClientUpdate: / execute on client m
5: train Dm with modelM structure
6: β← (split Pm into batches of size B)
7: for all local epoch i = 1, 2, ..., E do
8: for all batch b ∈ β do
9: ω = ω− η∇ι(ω; b)

return ω to server

Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FederatedAveraging: / execute on server

10: ωr+1 = ∑M
m=1

nm
n ωm

r+1

The performance of FedCBMIR was validated on histopathological images using
a CAE in a cross-institutional distributed environment. FL was used as a collaborative
learning paradigm in which the CAE can be trained across different institutions without
explicitly sharing data sets.

3.1. Materials

Hematoxylin and eosin (H&E) is a type of histopathological staining. H&E has been
popular for almost a century because it may indicate morphological changes [28]. The
images in the data sets used in this paper were stained by H&E.

3.1.1. BreaKHis

BreaKHis contains 7909 histopathological images of breast tumor tissues that were
provided by a collaboration with the P&D Laboratory—Pathological Anatomy and Cy-
topathology, Parana, Brazil. This data set was collected from 82 patients at four magnifica-
tions (40×, 100×, 200×, and 400×) with 2480 benign and 5429 malignant cases. As can be
understood in Table 1, the number of images in benign and malignant cases is imbalanced.
The most considerable portion of the data set belongs to the images at 100×magnification
(https://www.kaggle.com/datasets/ambarish/breakhis (accessed on 23 September 2022)).

Table 1. The distribution of BreakHis data set.

Magnification Benign Malignant Total

40× 625 1370 1995

100× 644 1437 2081

200× 623 1390 2013

400× 588 1232 1820

Total 2480 5429 7909

https://www.kaggle.com/datasets/ambarish/breakhis
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3.1.2. CAMELYON17 (CAM17)

The CAM17 data set belonging to the CAMELYON17 challenge, as described by [29], is
designed to detect breast cancer metastasis in lymph node sections. It comprises 1000 WSIs
obtained from five distinct hospitals. Each hospital contributed data from 20 patients, with
five slides per patient, and annotations for cancer regions were provided for a subset of
50 WSIs. In this paper, images from four hospitals were used for training and validating the
model, and the images of Hospital 5 were fed into the model as a test set. Non-overlapping
224 × 224 (at 40×) pixel patches with at least 70% tissue were used for experiments on this
data set. In the experiments of this paper, the data set was considered as a binary data set,
including Cancerous (annotated) and Non-Cancerous (not annotated) images.

3.2. Data Distribution

The CLoud ARtificial Intelligence For pathologY (CLARIFY) project (http://www.
clarify-project.eu/ (accessed on 23 September 2022)) has a multi-institutional paradigm. In
this work, according to the connections between different institutions in CLARIFY, four
institutions (three universities and one company) in three cities in two countries gathered
to mimic the practical situation of FL in CBMIR.

In EXP 1, in order to distribute the data into two nodes, we assume that Tyris (TY)
(Spain, Valencia) and the Universiteit van Amsterdam (UvA) (Amsterdam, The Nether-
lands) have CAM17 and BreaKHis 40×, respectively. As can be seen in Table 2, TY caries
out training the FedCBMIR on a GPU resource in the type of NVIDIA GeForce RTX 3090.
The GPU used in UvA is the NVIDIA Tesla T4, which has fewer CUDA cores, slower mem-
ory clock speed, and lower memory bandwidth compared to the GPU used in TY. These
different GPUs are chosen to mimic the real condition of different hospitals or research
centers having different GPU performance.

In EXP 2, regarding mimicking the real-world data limitation, the four magnifications
of the data set were distributed into four nodes. To accomplish this, each institution
(client) in this paper has BreakHis at only one magnification to train their model (Table 3).
Universidad de Granada (UGR) (Spain, Granada), TY, UvA, and Universidad Politécnica de
Valencia (UPV) (Spain, Valencia) trained the custom-built CAE with BreakHis 40×, 100×,
200×, and 400×, respectively. To replicate real-world conditions where clients may not
have access to high-performance GPUs, our experiment includes three distinct GPU types
across four institutions. This ensures alignment with practical scenarios and provides a
comprehensive evaluation of different GPU capabilities.

Table 2. Data distribution in EXP 1. The information of each institution participating in EXP 1,
including their location, the name of their center, the data associated with their data distribution, and
the GPUs employed by each client for training and searching tasks.

Client Region Institution Data Set GPU Type

1 Valencia, Spain TY CAM17 NVIDIA GeForce
RTX 3090

2 Amsterdam, The
Netherlands UvA BreakHis 40× NVIDIA Tesla T4

http://www.clarify-project.eu/
http://www.clarify-project.eu/
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Table 3. Collected information on each client in EXP 2, including their country and city, the name of
the center, the related data due to the data distribution, and the GPUs used for training and search
tasks by each client.

Client Region Institution Magnification GPU Type

1 Granada, Spain UGR 40× NVIDIA GeForce
RTX 3090

2 Valencia, Spain TY 100× NVIDIA GeForce
RTX 3090

3 Amsterdam, The
Netherlands UvA 200× NVIDIA Tesla T4

4 Valencia, Spain UPV 400× NVIDIA TITAN V

3.3. Training the Convolutional Auto-Encoder in Each Node

One of the most crucial elements of CBMIR that influences search engine results is
the FE. The objective of content-based image search is to efficiently compare an extracted
feature from a query image to every image in a database to identify the matches that are
most similar.

Lack of annotated images and bias are the two major challenges that need to be
considered in the integration of DL into cancer diagnosis. Three factors have the potential
to cause bias in medical studies: data-driven, algorithmic, and human bias. To tackle these
obstacles, a custom-built CAE is configured as the FE in this paper as a generative model
where it is trained to reconstruct its input in an unsupervised way. The proposed structure
of CAE contains a skip layer to jump over the layers to not only lead the model to converge
faster and minimize the training errors but also boost the representation power and tackle
the vanishing problem. Also, it has a residual block in its bottleneck to enable the training
of deeper and more accurate CAE.

Figure 3 shows its architecture with convolutional filters in the size of [32, 64, 128, 256]
in the encoder and, respectively, [128, 64, 32, 3] in the decoder. In this custom-built CAE,
a residual block with the filter size of [64, 32, 1, 256] takes place between the encoder and
decoder. This takes the originally extracted features from the backbone as its input and pro-
vides a new feature map that contains the context relations between its feature input. In our
experiments, a skip layer connect a layer in the encoder to the corresponding layer in the de-
coder. The bottleneck delivers one feature vector with 200 features (Fi = { f1, f2, f3, ..., f200})
from each encoded input image i. The model aims to achieve the lowest mean squared
error (MSE) by comparing input (I) and output (O) and is penalized if the reconstruction O
differs from I. Once the unsupervised training is completed by discarding the decoder part,
a powerful automatic FE is available to extract the desired features.

Figure 3. The structure of the custom-built CAE. The stride in the encoder = [1, 2, 2, 2], in the bottleneck
= [1, 1, 1, 1], in the decoder related to the encoder = [2, 2, 2, 1]. The kernel size of the layers in all parts
of the structure and for each layer is 3.

3.4. Local Training

Figure 4 (BreaKHis images are used to plot the figure.) explains the whole pipeline
of the proposed CBMIR that each institution must follow to retrieve similar patches. In
the offline session, images in the training and validation set are fed into the FE to extract
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and save their features as in the previous cases. All the Fis are collected in a dictionary
D = [F1, F2, ..., Fn] in the middle of this figure.

In the online session, pathologists upload their patch as a query image (Q) and expect
to receive top K similar patches. In practice, each Q needs to feed to the FE and map to
its feature vector FQ. Then, FQ feeds to the distance metrics in order to compare with the
Fis saved in D. To accomplish this, in our experiments, as soon as the pathologists upload
their Q, the Q image is fed to the FE to extract FQ with 200 features. Then, the Euclidean
function applies on both FQ and the Fis in D to measure their similarity and deliver top K
similar patches.

Figure 4. The pipeline of CBMIR. It contains three important sections, namely (1) FE, (2) indexing
and saving, and (3) similarity measure and search.

3.5. Federated Learning Configuration

In order to train the CBMIR following a federated strategy, different experiments have
been conducted on FedAvg and FedAdagrad. In our cases, with some experiments, it is
found that FedAvg performs better than FedAdagrad. Thus, this work adopts FedAvg to
aggregate distributed updates from local clients, as shown in Algorithm 1:

ωr+1 =
M

∑
m=1

nm

n
ωm

r+1 (1)

where M indicates the number of clients, r presents the communication round. For a client
m with nm samples, the local updates are arbitrary: ωm

r+1.
FLOWER [23], as a primary framework, is applied to configure the FL experiments.

Two FL experiments were conducted, as shown in Figure 5a,b. The first experiment consists
of two distributed training nodes located in TY and UvA (see Figure 5a). In the two
communication rounds, the learning rate is set as 0.000001, 5 local epochs for CAM17 per
round, and 100 local epochs for BreakHis 40×. Also, FedCBMIR is extended with more
clients, as shown in Figure 5b. The system consists of four separate nodes, each of which
is trained using the BreaKHis data set at different magnifications. The training process
involves three communication rounds and a learning rate of 0.000001, and each client
performs 100 local epochs per round. Table 3 lists all four distributed processing nodes’
information in the training phase.
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GPU: NVIDIA GeForce RTX 3090 
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Figure 5. The FedCBMIR pipeline consists of four main steps. Step 1: the server initializes weights,
and then sends to client for local training. Step 2: client starts local training. Step 3: client updates
local weights to the server side. Step 4: the server side aggregates and updates the distributed weights.
(a) An overview of the FedCBMIR pipeline with two clients training, fed with BreaKHis 40× and
CAM17 data sets. (b) An overview of the FedCBMIR pipeline with four clients training over clusters
at universities and companies with BreaKHis in four different magnifications.

4. Discussion and Results
4.1. Evaluation

To allow for an adequate comparison of the model’s performance, three metrics were
selected: accuracy (ACC), precision, and F1 score (F1S), in addition to presenting the
confusion matrix (CM). Accuracy assesses how well a model correctly retrieved similar
patches to the query [30]. Precision measures the accuracy of positive predictions, which is
vital when false positives are costly. The F1S combines precision and recall into a single
metric [31]. In this paper, to evaluate the proposed FedCBMIR, each of the images in the
test set was considered a query. Across the entire training and validation set, the model is
meant to detect similar patches.

It is worth considering what “accuracy” means in the context of a CBMIR. The accuracy
of CBMIR depends on what we are looking for and what is displayed by the search engine.
In order to determine the performance of the experiments, the top K score of retrieving
images of the same histologic features are engaged from prior research. The evaluation
method will consider a correct answer from the model whenever it finds at least one correct
image within the K set [15]. In this paper, we set K = 5, which evaluates the performance
of our model to correctly present at least one correct result in the top K retrieved images.

ACC@K =
1
N

N

∑
i

ε(αi, TOP(ans[: K])) (2)
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In this equation, N denotes the number of query patches, and αi represents the label
of the i-th query patch. The function TOP(ansi[: K]) retrieves the top k most similar results
for the query and outputs 1 if any of these results match with the query, and 0 otherwise.
In other words, if TOP(ansi[: K]) belongs to the set of labels of the i-th query, denoted by
αi, the function ε() returns 1.

4.2. Results of EXP 1

For this particular experiment, BreaKHis 40× and CAM17 data sets were aggregated to
train the model. As a result, each client (UvA and TY) could develop a well-trained model
to retrieve their respective images. The underlying assumption made in this experiment is
that neither client had an agreement in place for sharing or accessing each other’s images.
Table 4 provides a comprehensive view of the model. As it is mentioned above, CAM17
was provided by five hospitals. To perform this evaluation, the CAM17 images from
Hospital 5 were isolated from the images in the other four hospitals that were utilized for
the training and validating task. Each image from Hospital 5 serves as a query in the testing
assignment, and the platform’s function is to seek patches with a similar pattern from
the other four hospitals. Table 4 illustrates that the accuracy of local training of CAM17
without aggregating with BreaKHis is less than the FedCBMIR with aggregated data.
This table indicates that FedCBMIR using the FedAvg approach achieved better results
than FedCBMIR using FedAdagrad. As a result, FedAvg was selected as the aggregation
technique for the subsequent experiments.

Table 4. Comparison of the test set between the performance of CBMIR and FedCBMIR in EXP 1 as a
result of aggregating CAM17 and BreaKHis 40× with 2 communication rounds. Hours and seconds,
respectively, are used to measure the periods of training and searching.

Data Model Accuracy Precision F1S
Training

Time
Searching

Time

CAM17
(TY)

CBMIR 0.96 0.96 0.96 8.7 h 0.28 S

FedCBMIR
(Fedavg) 0.981 0.970 0.981 6.21 h 0.29 S

FedCBMIR
(FedAdagrad) 0.98 0.97 0.98 7.92 h 0.30 S

BreaKHis
40×

(UvA)

CBMIR 0.93 0.94 0.95 9.33 h 0.018 S

FedCBMIR
(Fedavg) 0.978 0.969 0.984 6.59 h 0.024 S

FedCBMIR
(FedAdagrad) 0.94 0.92 0.96 6.11 h 0.04 S

In terms of time and accuracy, local training of the CBMIR model on BreaKHis40× and
CAM17 requires 9.33 and 8.7 training hours, resulting in an accuracy of 93% and 96% in
the test set, respectively. However, FedCBMIR was trained more efficiently and achieved a
higher accuracy level of 98.1% in retrieving similar patches in CAM17, and 97.8% accuracy
for UvA, with a reduction of 2.49 and 2.74 h in training time, respectively. In order to have
two distinct models on both data sets separately, 18.04 h are needed, while FedCBMIR
trains two generalized models on both data sets in 6.59 h (Max(6.21 h, 6.59 h) = 6.59 h).
This means FedCBMIR provides more generalized models for clients 11.44 h faster.

Training time and accuracy are essential factors for DL scientists in building an optimal
model, whereas accuracy and searching time are crucial for pathologists in retrieving
similar patches. The table shows that the TY client can obtain a second opinion with labels
and similar patches in only 0.28 s per image. Upon examining the “Training time” and
“Searching time” columns, it becomes evident that the utilization of FL has no noticeable
impact on the searching time, while it substantially influences reducing the training time.
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Figure 6 represents three random queries in the test set of CAM17 with their top-
five retrieved images among the training and validation sets. Figure 7 represents the
comparison of image search results with two CMs in the test set of CAM17 as a result of
local training (CBMIR) and FedCBMIR.

Figure 6. Three random queries from Hospital 5 of CAM17 (test set). Corresponding to each query,
the top 5 images are shown from four other hospitals with the most similar patterns to the query. The
green and red lines around the retrieved images explain the correct and wrong retrieved images.

(a) (b)
Figure 7. (a) shows the results of local training on CAM17 in the TY server. (b) is the result of the
searching task in CAM17 by applying the well-trained FedCBMIR model from the first experiment.

4.3. Results of EXP 2

In EXP 2, the performance evaluation of the proposed framework was conducted using
two distinct scenarios. The first scenario, Sen1, assumed that the clients did not have access
to images from other clients, and it was only allowed to share the model weights during the
training phase. This scenario was designed to test the performance of the framework when
the participating clients faced technical limitations in sharing large amounts of medical
imaging data. In this scenario, each client had to train their model on their local data, and
the models’ weights were shared with other clients. Then, the weights were combined
and trained using the entire data set from all participating clients. Finally, the model was
evaluated on each client’s local test set.

Sen1 mirrors the situation where clients can only obtain patches that are similar to
their Q at the same magnification. Because there is no explicit agreement among the
institutions, the model is obliged to search for similar cases in a few cases at that particular
magnification.

Table 5 summarizes the results of the proposed FedCBMIR on the BreaKHis data set at
all four magnifications. This table shows the accuracy and precision of the retrieved images
at each magnification, achieved by each client after training their models for 300 epochs
within their server and without using FL. The highest accuracy of 95% for the retrieved
images at 40× magnification was achieved by the client at UGR in 9.37 h, while client 3
spent 8.59 h to achieve a minimum accuracy of 89% and precision of 87%, which is the
lowest among all the clients.
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Table 5. Obtained results of CBMIR on 40×, 100×, 200×, and 400× at K = 5. We measure ACC,
Precision, and F1S in the test set of each client at their corresponding magnification. The FedCBMIR
was trained with the FedAvg strategy with 5 communication rounds in EXP 1. Time is reported
in hours.

Client Model Training Time Accuracy Precision F1S

1
CBMIR 9.37 h 0.95 0.93 0.96

FedCBMIR 6.82 h 0.97 0.96 0.98

2
CBMIR 5.45 h 0.90 0.88 0.94

FedCBMIR 5.78 h 0.94 0.92 0.96

3
CBMIR 8.59 h 0.89 0.87 0.93

FedCBMIR 6.65 h 0.92 0.89 0.94

4
CBMIR 8.95 h 0.92 0.89 0.94

FedCBMIR 6.83 h 0.96 0.94 0.97

As demonstrated in Table 5, using the proposed approach, the four models were
trained in a federated setting, which took (Max(6.82 h, 5.78 h, 6.65 h, 6.83 h) = 6.83 h)
hours to complete the training process, which is much faster than training one by one that
took 32.36 h in total, thereby reducing the total training time around 25.53 h. This reduction
in training time is particularly significant for large data sets and can facilitate more rapid
and accurate diagnoses and treatments of cancers.

The performance evaluation of the proposed framework in the test set was compared
with local training CBMIR and FedCBMIR, as shown in Figure 8. Each CM is associated
with a specific magnification and reports the top-five accuracy values using Sen1 in its
search stage. The results of the Sen1 in the test set are presented in Figure 8, where each
client receives the top-five images on average in 13.84 s. Table 6 presents a comprehensive
comparison of various state-of-the-art CBMIR methods on the BreaKHis data set at 40×
magnification. It is evident that FedCBMIR achieved the highest performance in both
experiments conducted in this paper (EXP 1 and EXP 2). Notably, in EXP 1, where the
model was trained by sharing weights with the CAM17 client, FedCBMIR exhibited su-
perior performance. Previous studies by [32,33] utilized a hash method on BreaKHis 40×
images and reported results in 16-bit, 32-bit, and 64-bit formats. Since the best-reported
performance was achieved with the 64-bit format, we compare our results solely with this
format, excluding 16-bit and 32-bit comparisons.

Quantifying mitosis count is a crucial criterion in breast cancer diagnosis [34]. The
availability of advanced technology, such as high-resolution scanners, is not always guaranteed
in every part of the world. Figure 9 demonstrates that as the magnification level increases, a
smaller area of the tissue is displayed, and more relevant information becomes visible.

Figure 10 shows a comparison between the proposed method and its obtained results
under EXP 1 and EXP 2 Sen1 condition. The methods mentioned in the figure were
applied to a binary breast tissue microscopic image data set built in [32,35]. In paper [33],
20 retrieved images were taken into consideration in evaluating their proposed method.
In Figure 10, since the authors in [33] did not name their two methods, we named them
Method1 and Method2, then compared their results with the top 20 retrieved images with
our results at the top 5 images. As can be understood from the bar charts in Figure 10,
FedCBMIR in both experiments could overtake the other methods, and they have higher
precision in the retrieval performance. It is important to mention that Method1 and
Method2 in [33] are supervised and reached 87% and 89.5% precision by proposing a
supervised hashing method with multiple features, while FedCBMIR with an unsupervised
FE obtained precision equal to 97% and 96% for both EXP 1 and EXP 2, Sen1.
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Table 6. A comparison is presented between the average precision values of state-of-the-art papers
and the results obtained in the reported experiments of this paper (EXP 1 and EXP 2, Sen1).

Methods
CBMIR,

EXP 1
FedCBMIR,

EXP 1
FedCBMIR,
EXP 2, Sen1 Method [36] MCCH [37]

KSH,
64 Bits [32]

JKSH,
64 Bits [33]

Precision 0.93 0.97 0.96 0.95 0.94 0.91 0.87

(a). 40× (b). 100× (c). 200× (d). 400×

(e). 40× (f). 100× (g). 200× (h). 400×

Figure 8. (a–d) show the CMs as a result of local training and searching at the same magnification.
(e–h) are the CMs of FL models. The reported results are with top K retrieved images. In all CMs,
"0” and “1” indicate “Benign” and “Malignant”, respectively. “True labels” and “Predicted labels”
correspond to the query and the retrieved labels, accordingly.

Figure 9. BreaKHis images at four different magnification levels (40×, 100×, 200×, and 400×). The
higher magnification offers increased access to relevant information with a reduced field of view.

Figure 10. An indirect comparison between the results of FedCBMIR in both experiments and some
recent methods for different amounts of K.

The proposed Sen2 approach can serve as an important tool for pathologists in de-
veloping nations to overcome the limitations of their scanners by enabling them to access
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tissue images at higher magnifications. FedCBMIR can facilitate cross-border collabora-
tions, where pathologists from different regions can share their knowledge and expertise
by analyzing similar patches at higher magnifications. In contrast to CBMIR, FedCBMIR in
Sen2 allows pathologists to retrieve similar cases at all four magnifications, not just from
the same magnification as their query (Q). However, sharing images with a single server
is not feasible due to storage and privacy concerns. To address this issue, the proposed
FedCBMIR can retrieve similar patches at the same and higher magnifications.

Table 7 proves that the proposed FedCBMIR is highly robust to receiving a query at a
specific magnification and retrieving the top-five similar patches at all four magnifications.
Each client fed the test set at the corresponding magnification and received the top-five
retrieved patches at all four magnifications.

Table 7. The ACC, precision, and F1S for the second scenario of the EXP 2, Sen2 with K = 5.

Client Accuracy Precision F1S

1 0.94 0.92 0.95

2 0.95 0.93 0.96

3 0.95 0.93 0.96

4 0.95 0.92 0.96

The results of feeding the model with five random queries at 40× magnification by
following (Sen2) are presented in Figure 11. The 40× is selected because it is the lowest
magnification in the data set, and it is easier to measure the number of mitoses in images
with higher magnifications. By feeding the model with images at 40×, pathologists can
receive the top-five similar images at 40×, 100×, 200×, and 400×, which can significantly
reduce the time and effort required to obtain a second opinion. The proposed approach
has the potential to improve the speed and accuracy of cancer diagnosis and treatment.
As such, it can serve as a user-friendly platform for pathologists to address their concerns
more. Furthermore, it has the potential to be a valuable tool for telepathology in the future.

One of the challenges in collecting WSIs for use in DL models is the variability in color
distribution due to differences in the staining material used across different hospitals and
over time [38]. This variability can have a significant impact on the accuracy and reliability
of DL models. However, an important finding from the results shown in Figure 11 is that
the proposed approach, Sen2, is not affected by differences in color distribution resulting
from the staining process at different hospitals. This is a noteworthy result, as it indicates
that the proposed approach can effectively overcome one of the major challenges associated
with collecting and utilizing WSIs in telepathology. By eliminating the impact of color
distribution variability, Sen2 provides a more robust and reliable platform for pathologists
to obtain accurate and consistent diagnoses, regardless of the specific staining materials
used at different centers.

The proposed approach can contribute significantly to improving the accuracy and
speed of disease diagnosis, particularly in regions where access to advanced technology is
limited. In this way, Sen2 has the potential to bridge the gap in healthcare and provide a
more equitable and accessible healthcare system for all.

All the experimental results in both experiments and scenarios have verified that the
proposed FedCBMIR has covered both the concerns of DL scientists and pathologists with
a fast-trained and accurate CBMIR, which is more generalized.
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Figure 11. Five lines of random histopathological WSIs with their magnifications. The first column is
the query, and the following five columns show the retrieved images. This figure brings a proper
overview of Sen2. The retrieved image with the same and different labels as the query is indicated by
the green and red borders, accordingly.

5. Conclusions

The present study proposes a FedCBMIR approach that addresses two significant
challenges in digital pathology faced by pathologists and engineers. By retrieving the top-
five similar images in a short amount of time, the proposed method reduces the workload of
pathologists and decreases the time and cost associated with developing a high-performing
DL-based method.

To evaluate the proposed approach, two experiments (EXP 1 and EXP 2) were con-
ducted, with EXP 2 containing two scenarios. EXP 1 aimed to provide a generalized model
with Camelyon17 (CAM17) and BreaKHis 40× for clients that do not have enough images
to train a model effectively. FedCBMIR in EXP 1 provides precision of 97.0% and 96.9% for
training an unsupervised feature extractor 11.44 h faster.

EXP 2 comprised two scenarios: Sen1, where image institutions are not in agreement
for sharing images, and Sen2, where images are delivered in different magnifications for
institutions that lack the equipment to scan tissues at higher magnifications. The proposed
method reached 98%, 96%, 94%, and 97% F1S for each client in Sen1. In Sen2, the BreaKHis
data set was distributed across four institutions, resulting in accuracy rates of 97%, 94%,
92%, and 96% for pathologists at magnifications of 40×, 100×, 200×, and 400×, respectively.
The average retrieval time was 13.84 s, and the well-trained models required 25.53 fewer
hours to train the four generalized models.

On one hand, WWCBMIR provides a chance to have a more accurate diagnosis for
less-developed countries.
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On the other hand, FedCBMIR can be a valuable tool for new graduate pathologists
in their training and professional practice, offering benefits such as improved education,
decision-making, research, and time efficiency.

Overall, this work offers a promising tool for hospitals to enhance diagnostic accuracy
and medical education and reduce the workload of pathologists by decreasing training time
and increasing accuracy compared to CBMIR methods. FedCBMIR aids in recognizing rare
cases by connecting hospitals from the whole of the world. Although FedCBMIR tackles
the challenges of data privacy, limited clinical context, and algorithm accuracy, the ongoing
issues, such as dependence on image quality and security concerns, are still challenging
for both hospitals and AI experts. Therefore, both hospitals and engineers must weigh the
advantages and drawbacks while considering WWFedCBMIR as a tool.

6. Future Work

To further enhance the performance of FedCBMIR for breast cancer diagnosis, it may
be worthwhile to explore the use of additional data sets. This could include larger data sets
with a greater number of labeled images, as well as data sets that encompass a wider range
of malignancy levels and tumor subtypes. With the incorporation of these data sets into the
FL process, it may be possible to improve the accuracy and robustness of a CBMIR.

In addition to expanding the data sets used in federated CBMIR, it may also be
valuable to incorporate other types of clinical data into the system. Patient demographic
information and clinical history could provide additional context and help to further refine
the diagnostic process. Exploring the integration of these types of data could be a promising
avenue for future research.
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