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Diabetic foot ulcer (DFU) is associated with neuropathy and/or peripheral artery
disease of the lower limb in diabetic patients, affecting quality of life and leading to
repeated hospitalizations and infections. Importantly, approximately 26 million people
worldwide have a DFU annually, with around 20% suffering from moderate and severe
DFU resulting in amputation [1]. The multifactorial pathology of DFU makes its treatment
challenging. Standard of care includes debridement, infection control, optimization of
blood flow, and offloading; however, with these treatments, only 50% of patients heal
within 20 weeks and 50% recur within 18 months [2]. Therefore, there is an urgent need for
novel and effective therapeutic modalities.

In situ, factors that result in slow or nonhealing DFUs are the decreased number of
infiltrating macrophages, abnormal concentration of pro-inflammatory cytokines, reduced
concentration of reparative growth factors, reduced collagen synthesis, and, most impor-
tantly, the deranged neovascularization. Therefore, novel therapeutic approaches should
target three main mechanisms to resolve DFU, namely immunomodulation, neovascular-
ization, and matrix formation. On this basis, mesenchymal stem/stromal cell (MSC)-based
therapy has gained attention given its immunomodulatory, anti-inflammatory, anti-fibrotic,
pro-angiogenic properties [3–5], and effects on monocyte/macrophage phenotypic polariza-
tion [6]. These collective effects this therapy an attractive candidate to simultaneously alter
various stages of DFU healing. Specifically, MSC can contribute to DFU resolution by target-
ing both cellular and molecular mechanisms (reviewed in [7]). At the cellular level, MSC in-
duces fibroblast proliferation, ECM production, and endothelium/epithelium stabilization.
Also, MSC attenuates local inflammation by polarizing M1 pro-inflammatory macrophages
to M2 alternative phenotype and by increasing the production of regulatory T cells. Impor-
tantly, at the molecular level, MSC decreases the secretion of pro-inflammatory cytokines
such as IL-1, IL-6, TNF-α, and induces the secretion of anti-inflammatory molecules such
as IL-4, IL-10, and TGF-β. Finally, MSC suppresses pain by specifically modulating local
neurogenic inflammatory/immune responses. For example, substance P (SP), a neuro-
transmitter and a modulator of pain perception, is secreted locally and increases vascular
permeability, favoring immune cell infiltration, while directly affecting macrophage phe-
notypic polarization and migration to sites of inflammation. Based on our findings, SP
can be degraded by MSC highly expressing cell-membrane-bound (ectoenzyme) neutral
endopeptidase CD10/neprilysin, resulting in a reduction in inflammation and analgesia [8].
From 2008 to date, clinical trials have been performed that mainly administer MSC via
intramuscular and intradermal routes, with significant therapeutic outcomes regarding
wound healing and recurrence rate.

In parallel, as part of a continuous effort to unravel the MSC-based therapy underlying
mechanisms of action, the appearance of small extracellular vesicle (MSC-sEV)-enriched
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fractions within their secretome has started to contribute to that elucidation. MSC-sEVs
are nanosized (50–200 nm) vesicles generated via the endosomal pathway and secreted by
numerous cells in response to their surrounding milieu. Therefore, their cargo (i.e., proteins,
miRNAs, lncRNAs, circRNAs) and lipid shell may carry information that reflects particular
changes in the parental cells’ microenvironment, specifying intrinsic communications to
proximal or distal sites. From a clinical safety standpoint, xeno-free, regulatory-compliant
formulations for parental MSC processing, such as the human pooled platelet lysate, can
result in purified and hypo-immunogenic (lack of MHC-II and low expression of MHC-I)
MSC-sEVs. Specifically, MSC-sEVs can modulate the sequential stages of DFU healing by
regulating the functionality of cells in the in vivo niche involved in the attenuation of exces-
sive inflammation, ECM production and neovascularization. Upon delivery of MSC-sEVs
cargo, they activate the PTEN/Akt signaling pathway to polarize macrophages, activate
Erk1/2 or eNOS/AKT/ERK/P-38 and inhibit AP-1/ROS/NLRP3/ASC/Caspase-1/IL-1β
signaling pathways to promote endothelial cell function recovery and angiogenesis, and
activate PI3K/Akt or Rho-YAP signaling pathways to induce fibroblasts’ proliferation and
collagen production (reviewed in [9]). Interestingly, recent studies demonstrated the MSC-
sEVs’ senotherapeutic effects that induce the apoptosis of pro-inflammatory senescent cells
and mitigate the adverse effects of senescence-associated secretory phenotype signaling
in vivo [10]. For enhanced therapeutic outcomes, we and others have demonstrated the
ability to customize MSC-sEVs contents and identity (e.g., CD10High or CD146High) by
processing in vitro parental MSC with specific protocols tailored to a specific therapeutic
function (e.g., CD10-dependent SP degradation), which is designed to reduce inflamma-
tion/pain [11–13]. Customized MSC-sEVs contain therapeutic miRNAs and proteins that
are directly involved in macrophage polarization, T cell activation, and the regulation of
inflammatory cytokine transcription, as well as pro-angiogenic/reparative actions in vivo.
Therefore, a standardized “off-the-shelf” product with high reproducibility and low vari-
ability for allogeneic therapeutic schemes can evolve. Additionally, biomaterials can be
used as carriers for MSC-sEVs. Preclinical studies have showed that MSC-sEVs, combined
with hydrogels and other specialized biomaterials, control their release at the wound site
and promote wound angiogenesis, wound granulation tissue formation, re-epithelialization,
and collagen remodeling (reviewed in [14]).

Overall, up-to-date research findings suggest that MSC-sEVs are a promising ther-
apeutic modality for DFU. Specifically, MSC-sEVs can attenuate inflammation, promote
angiogenesis, and improve ECM formation. On this basis, the development of innovative
cell-free, sEV-based therapeutic approaches and the incorporation in their manufacturing of
regulatory-compliant practices can facilitate the translation of proof-of-concept preclinical
data into effective clinical protocols.
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