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Abstract: The fusion of machine learning and biomedical research offers novel ways to understand,
diagnose, and treat various health conditions. However, the complexities of biomedical data, coupled
with the intricate process of developing and deploying machine learning solutions, often pose
significant challenges to researchers in these fields. Our pivotal achievement in this research is the
introduction of the Automatic Semantic Machine Learning Microservice (AIMS) framework. AIMS
addresses these challenges by automating various stages of the machine learning pipeline, with a
particular emphasis on the ontology of machine learning services tailored to the biomedical domain.
This ontology encompasses everything from task representation, service modeling, and knowledge
acquisition to knowledge reasoning and the establishment of a self-supervised learning policy.
Our framework has been crafted to prioritize model interpretability, integrate domain knowledge
effortlessly, and handle biomedical data with efficiency. Additionally, AIMS boasts a distinctive
feature: it leverages self-supervised knowledge learning through reinforcement learning techniques,
paired with an ontology-based policy recording schema. This enables it to autonomously generate,
fine-tune, and continually adapt to machine learning models, especially when faced with new tasks
and data. Our work has two standout contributions demonstrating that machine learning processes
in the biomedical domain can be automated, while integrating a rich domain knowledge base and
providing a way for machines to have self-learning ability, ensuring they handle new tasks effectively.
To showcase AIMS in action, we have highlighted its prowess in three case studies of biomedical
tasks. These examples emphasize how our framework can simplify research routines, uplift the
caliber of scientific exploration, and set the stage for notable advances.

Keywords: AI automation; biomedical; machine learning; microservices; knowledge graph; semantic
web services (SWS)

1. Introduction

The fusion of machine learning and biomedical and bioengineering research has
brought a paradigm shift in the way we understand, diagnose, and treat an array of health
conditions. With rapid advancements in technology and an influx of high-dimensional
data, the role of machine learning (ML), and especially AutoML, has become central to the
process of knowledge discovery in this field [1]. Providing a machine learning solution
often creates a burden for biomedical and bioengineering researchers, who must seek
additional support to develop or test different tools for each step of their study. The
burgeoning complexity of biomedical research underscores the need for the automatic
generation and optimization of machine learning models that can keep pace with this data-
driven evolution [2]. The impetus for our research stemmed from challenges faced by our
university’s biomedical research group. They grappled with integrating a myriad of tools,
algorithms, and domain-specific knowledge in their investigative pursuits. We responded
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by devising a framework tailored for these exact scenarios. This methodology represents
an innovative approach, unprecedented in its application across any other research domain.
Such distinctiveness makes our contribution particularly fitting for this special issue on
machine learning technology in biomedical engineering. In this paper, we investigate
the novel approach of applying an advanced ontology and context enforcement learning
approach that can support the automation of a machine learning process for biomedical
and bioengineering research. This work has great potential to be applied to other domain
areas, but the background ontology requires updating according to the domain knowledge.

The AutoML frameworks provide a robust solution to this rising demand. They offer
end-to-end pipelines that encompass all necessary steps from data preprocessing to hy-
perparameter tuning and model evaluation, automating labor-intensive and error-prone
manual tasks [3]. By significantly reducing the time taken for the model development pro-
cess, they allow researchers to focus on interpreting and applying results, thus accelerating
the pace of discovery in the biomedical and bioengineering field.

Despite the undeniable potential of AutoML, several gaps and challenges persist in
its implementation in biomedical and bioengineering research. First, biomedical data,
with their unique characteristics, including high dimensionality, heterogeneity, and inher-
ent noise, require specialized preprocessing and analytical approaches. Current general-
purpose AutoML frameworks may not adequately address these needs. Second, these
frameworks often lack interpretability, a crucial requirement in the medical field, where
understanding the decision-making process of a model is as essential as its predictive
accuracy [4]. Finally, integrating domain knowledge into the AutoML process remains an
open challenge, although it could greatly improve the quality of models generated and the
applicability of their predictions [5]. Addressing these challenges requires a novel frame-
work that enables machines to learn domain-specific knowledge and apply this knowledge
to automate decisions in the AutoML process.

This paper introduces an Automatic Semantic Machine Learning Microservice frame-
work designed to bridge these gaps. We refer to each microservice in our framework as
AIMS, and these should be implemented based on domain-specific knowledge. It is tailored
to the specific needs of biomedical and bioengineering research and places emphasis on
enhancing model interpretability, incorporating domain knowledge, and handling the
intricacies of biomedical data. Our proposed framework aims to streamline the research
process, augment the quality of scientific exploration, and provide a foundation for sig-
nificant self-learning AutoML in biomedical research. Additionally, three case studies are
tested and discussed at the end.

2. Related Work, Limitations, and Technology Background

In the work of the biomedical and bioengineering research community, the most
important challenge is to search for different tools that work on different datasets and tasks.
Our research also begins by examining existing automation technologies and tools.

2.1. Related Work and Current Limitations

There is a multitude of AI tools currently available to aid biomedical research, and
various automation frameworks have emerged to streamline the process. For instance,
machine learning platforms like Google’s TensorFlow [6] and scikit-learn [7] have been
widely utilized in biomedical research for tasks such as image analysis, genomics, and
drug discovery.

Google’s AutoML [8], TPOT (a tree-based pipeline optimization tool) [9], and H2O’s
AutoML [10,11] are some of the popular AutoML tools used for automating the machine
learning pipeline. These platforms optimize the process by automating tasks like data
preprocessing, feature selection, model selection, and hyperparameter tuning, which are
traditionally labor-intensive and error-prone. AutoML offers expedited results, bypassing
much of the manual work involved in traditional machine learning, which is especially
advantageous for prototype testing or gauging initial user reactions to AI applications.
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Moreover, AutoML solutions are less prone to becoming obsolete, as they can stay updated
with rapid advancements in AI technology, largely due to the investment capacity of major
tech vendors. Additionally, AutoML platforms, being hosted solutions, reduce the overhead
of building surrounding infrastructure. TPOT aims to simplify the construction of ML
pipelines by merging a versatile expression tree depiction of these pipelines with random
search techniques like genetic programming. It leverages the scikit-learn library in Python
as its foundation for machine learning functionalities. H2O’s AutoML streamlines the
machine learning process by autonomously training and fine-tuning various models within
a time frame set by the user. Additionally, H2O incorporates several model interpretability
techniques applicable to both AutoML collections and distinct models, such as the leader
model. These explanations can be effortlessly produced with a singular function, offering
an intuitive means to probe and elucidate the AutoML models.

Other than these general-purpose tools, there are also specialized AI platforms tai-
lored for biomedical research. DeepChem [12], for instance, is a machine learning library
specifically designed for drug discovery and toxicology, offering specialized features not
available in general-purpose libraries.

However, while these tools have made significant strides in advancing biomedical
research, there are several limitations associated with their use.

General-purpose ML and AutoML tools, such as TensorFlow and Google’s AutoML,
are not specifically designed for handling the unique characteristics of biomedical data,
such as high dimensionality, heterogeneity, and inherent noise. This often necessitates
significant manual preprocessing before data can be fed into these tools [13].

Furthermore, these tools often lack interpretability, an essential requirement in biomed-
ical research, where understanding the decision-making process of a model is as important
as its predictive accuracy [4].

While specialized tools like DeepChem offer features tailored for biomedical appli-
cations, they do not cover the entire spectrum of biomedical research and are limited in
their scope. Additionally, the automatic integration of domain knowledge into the machine
learning process is an ongoing challenge and is not well addressed by current tools [4].

Therefore, there are many recent discussions on multiple biomedical task handling
with self-learning, self-optimizations, and self-configuration processes, such as [14], focus-
ing on data science processing automation with optimization, and [3], focusing on feature
selection and model training.

2.2. Multiple-Task AI System Research

Making the system automatic by learning the solution knowledge about the different
tasks is also challenging. Industrial AI leading research groups such as Google AI and Meta
AI understood that data-driven AI technologies have issues with performing complex tasks,
for example, creating human conversations with contextual understanding or detecting
early signs of disease from images. In addition, data-driven AI is resource-intensive
and suffers from algorithm bias [15]. Thus, the multiple-task-enabled AI systems with a
knowledge-driven approach present a pathway toward a solution to these problems. Why
is it thought that a knowledge-driven approach is necessary and crucial for a multiple-task
system? There are two reasons:

• The information acquired from different tasks may present value that can be used as
the basis to build new ML models for new tasks without requiring high-cost processing
to recapture the same feature characteristics.

• Updating knowledge through validation is a relatively consistent process that will be
less prone to bias from noisy data.

Upon completion of this research, two new ideas from Google and Meta were published.
Google presents an experimental process based on knowledge mutation [16,17]. Here,

knowledge refers to base neural network transformers. To begin with, the experimental
environment contains transformers which can work on different tasks (different image
datasets for the classification problems). Then, when a new task arrives, the most related
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transformer will be triggered to perform a mutation process. The mutation process can
edit the base model by inserting a new layer, removing a layer, or doing both according
to the performance optimization. In the end, a new mutated adapter is created to enable
dealing with a similar task next time. Whenever a new task with a new dataset arrives, the
mutation process is executed based on the latest mutated model.

The Meta research group presents a world model approach to acquiring knowledge,
very much in the spirit of actor–critic reinforcement learning [18]. The system architecture is
a combination of smaller modules—configurator, perception, world model, cost, short-term
memory, and actor—that feed into each other. The world model module is responsible for
maintaining a model of the world that can then be used to both estimate missing information
about the world and predict plausible future states of the world. The perception module
will receive signals to estimate the current state of the world and, for a given task, the
configurator module will have trained the perception module to extrapolate the relevant
signal information. Then, in combination, the perception, world model, cost, short-term
memory, and actor modules feed into the configurator module, which configures the
other modules to fulfill the goals of the task. Finally, the actor module is handed the
optimal action to perform as an action. This has an effect on the real world which the
perception module can then capture, which in turn triggers the process to repeat. That is,
each action will produce a piece of state-changing knowledge feedback to the world model
for continuous learning.

Both Google and Meta’s visions derive from the previous hyperparameter-optimization-
based AutoML processes [19]. For example, AutoKeras [20], a neural architecture au-
tosearch framework, is proposed to perform network morphism guided by Bayesian opti-
mization and utilizing a tree-structured acquisition function optimization algorithm. The
searching framework selects the most promising Keras implemented NN for a given dataset.

The above experimental results show improvements in tackling complex AI tasks and
possible pathways toward human-level AI systems. However, there are two main limitations:

• The knowledge definition is too narrow and only uses the generated neural network
as the knowledge limits the capability of recording all valuable outcomes through the
learning experience.

• There is no unified knowledge representation structure for knowledge inference
(machine thinking).

Do we already have a knowledge representation framework from our AI research over
the past 70 years? The answer is yes.

2.3. Knowledge Representation and Reasoning

Knowledge representation and reasoning (KRR) are always the core research areas in
AI systems [21]. Knowledge representation and reasoning (KRR) is a core area of artificial
intelligence (AI) that deals with how to symbolically represent information in a way that
a computer system can use to reason about the world. This involves understanding
and emulating human-like thinking and the ability to make deductions, inferences, or
predictions. KRR aims to enable machines to represent knowledge in a manner that they
can reason with, as humans do. Here are the main components:

Knowledge representation (KR): This is about how to store, retrieve, and modify
knowledge in an intelligent system. Various paradigms like semantic networks, frames,
rules, and ontologies have been developed for this purpose.

Semantic networks: Graph-based structures used to represent knowledge, where
nodes represent concepts and edges represent relationships between concepts.

Frames: Data structures for representing stereotypical situations. They contain at-
tributes (or slots) and associated values.

Rules: Represent knowledge in terms of if–then statements.
Ontology: Define a set of representational primitives with which to model a domain of

knowledge. Ontologies are used in modern AI applications, especially in the semantic web.
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Knowledge reasoning: This is about using the stored knowledge to draw conclusions,
make decisions, or infer new knowledge.

The knowledge-enhanced machine learning approach attracts less attention than the
data-driven approaches. However, KRR is still key in developing the future generation of
AI system development [22]; even Deep Neural Networks (DNNs) can create KRR, just in a
different form [23]. In our vision, KRR should not only extract knowledge from data but also
learn knowledge from system actions that can support the reasoning process. Knowledge
reasoning can be seen as the fundamental building block that allows machines to simulate
humankind’s thinking and decision making [24]. With generations of development on
KRR, the current most promising approach is the knowledge graph (KG) [24], derived from
the semantic web [25] community. A knowledge graph has two layers of representation
structure: 1. predefined ontology and vocabularies and 2. instances of triple statements
(e.g., dog is animal, where the dog is an instance and is is a predict, while animal is a
concept vocabulary defined in the ontology). The reasoning part is to apply the logical side
of the ontology, such as description logic (e.g., Is the dog an animal? The reasoning result is
’yes’) [26]. There have been many complex types of ontologies developed in the last decade
to solve different KRR problems and applications. The most important development of
ontology-driven reasoning is to encode dynamic uncertainty [27], probability [28], and
causality [29]. Therefore, the KG-based KRR framework can be applied to implement our
proposed vision.

2.4. Services and Machine Learning Ontologies

The web services community has researched autoconfiguration or service composition
for many years by applying a variety of dynamic integration methods. There are two trends
in service composition research:

• Directly extracting the services description file (e.g., WSDL) and Quality of Services
(QoS) into a mathematical model with a logical framework for composing services such
as a linear logic approach [30] and genetic algorithms [31,32]. The major limitation
is that there are no formal specifications for modeling and reasoning. Therefore, the
processes are mostly hard-coded to match the logic framework.

• The other trend is to apply semantic web standards for semantically encoding service
descriptions and their QoS properties (semantic web services (SWS)) [33,34]. The main
benefit is that semantic annotation has an embedded logical reasoning framework to
deal with composition tasks.

On the one hand, the semantic web services (SWSs) trend has greater strength for
integrating the KRR approach with the same semantic infrastructure and reasoning logic.
Currently, there are three standards of OWL-S: composition-oriented ontology, WSMO
(task–goal matching-oriented ontology), and WSDL-S (invocation-oriented ontology). On
the other hand, there are two differences between our vision’s microservice and normal
SWSs. The first one is that AIMS has simpler input and output requirements to perform
an efficient composition process. The other is that the purpose of each microservice is to
deal with data analytic or machine learning tasks. Therefore, the AIMS ontology needs to
be defined by modifying current machine learning ontology standards. Researchers have
realized that there is a need to have a machine learning ontology, and some recent proposals
in this domain are the Machine Learning Schema and Ontologies (MLSO), which introduces
twenty-two top-layer concepts and four categories of lower-layer vocabularies (the detailed
ontology design is in [35]), and the Machine Learning Ontology (MLO), which proposes
to describe machine learning algorithms with seven top-layer concepts of Algorithm,
Application, Dependencies, Dictionary, Frameworks, Involved, and MLTypes [36].

The existing ontology and schema provide a foundational base that can be integrated
and augmented to define a more comprehensive schema for generating automotive AI
solutions in the biomedical domain. The primary enhancement required is to effectively
present the knowledge acquired from each task. Additionally, a self-learning policy is
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essential to aid machines in comprehending the task context and devising the most optimal
pathway to offer a solution.

2.5. Generative AI

Recently, generative AI technology, such as ChatGPT and its associated APIs, has
marked a significant advancement in AI research. These technologies are primarily de-
signed to engage in text-based conversations, providing solutions to queries and problems
in a natural, human-like manner. This form of AI has shown tremendous utility in diverse
fields, from customer service to education, demonstrating its versatility.

However, when applied to more complex domains like biomedical research, there
are notable limitations. Specifically, the ability of these models to generate code or au-
tomated solutions for multistep biomedical problems is limited. The key issue lies in
the representation and understanding of data tokens within these problem spaces. In
biomedical research, data tokens can represent complex and highly specific biological or
medical entities, procedures, or relationships, which can be challenging for AI models
to comprehend.

Generative AI models like ChatGPT operate best when dealing with structured data
and clear-cut problem domains. Yet, biomedical research often involves dealing with
unstructured or semistructured data, highly domain-specific language and concepts, and
complex multistep processes.

Another significant challenge for generative AI, particularly in highly specialized
fields such as biomedical research, is the integration and expansion of domain-specific
human knowledge within the existing large language model.

Generative AI models are usually trained on extensive and diverse datasets, covering
a broad range of topics and languages. As a result, they can effectively generate text that
mimics human language in many situations. However, these models typically lack the
ability to learn continuously or integrate new knowledge once they have been trained.
Their knowledge is essentially frozen at the point of their last training update.

This limitation becomes particularly problematic when attempting to apply these
models in rapidly advancing fields such as biomedical research, where new discoveries and
innovations continually push the boundaries of existing knowledge. As the model cannot
natively integrate this new information, it struggles to provide up-to-date and accurate
solutions to complex, domain-specific problems. This limitation also extends to learning
from user interactions over time, a process which could theoretically allow the model to
fine-tune its responses and become more accurate.

Furthermore, the vast and generalized knowledge base of these models can be a
double-edged sword. While it allows them to engage with a wide variety of topics, it can
also lead to dilution of specialist, domain-specific knowledge. The models may struggle to
produce in-depth, nuanced responses to specialized queries due to the sheer breadth of
their training data.

In summary, while generative AI has shown significant promise, its limitations in
integrating and extending domain-specific human knowledge, coupled with its inability to
learn continuously, present considerable challenges for its application in specialized fields
like biomedical research. Overcoming these challenges will require novel approaches to
model training and updating, making it an exciting area for future AI research and devel-
opment. A potential strategy could involve using pretrained, domain-specific transformers
as a base model. This would facilitate the use of customized small research datasets to
efficiently produce a high-quality model. However, this approach necessitates a base model
framework to select the most suitable transformer effectively.

2.6. The Gaps

By reviewing the current state of the art, we found that there are research gaps
remaining to achieve our goal:
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• Self-supervised knowledge generation during the machine learning process and so-
lution creation: In the past, knowledge generation system mainly referred to expert
systems that acquire knowledge from human expertise or systems that transform
existing knowledge from one presentation to the other. Enabling the understanding of
common knowledge in the biomedical domain is crucial. Reference [29] presents an
automatic process of disease causality knowledge generation from HTML-text docu-
ments. However, it still does not fully address the problem of how to automatically
learn valuable knowledge from the whole task–solution–evaluation machine learn-
ing life cycle. Considering human-level intelligence, we always learn either directly
from problem-solving or indirectly through other human expertise (e.g., reading a
book or watching a video), or a combination of both (e.g., reflecting on the opinions
of others).

• Provisioning a knowledge-guided auto-ML solution: In contrast to the first gap, there
are no significant research works on using knowledge to assist in providing an AI
solution. Again, compared with human-level intelligence, we always try to apply
acquired knowledge or knowledge-based reasoning to solve a problem. We can
consider that the transformer process [37] is a step forward in this direction. We can
treat well-trained AI models as a type of knowledge to apply to different tasks in a
similar problem domain. However, there is still no defined framework that can specify
what knowledge is required and how to use the knowledge to find a solution to new
tasks [16].

3. The Framework Architecture

Figure 1 represents our vision of self-supervised knowledge learning with the AIMS
engineering approach. The left part of the Figure 1A presents the initial settings of the
intelligent environment. The initial environment only contains default AIMS information,
such as purposes, I/O requirements, and invokable URI (detailed AIMS metadata ontology
is introduced in the next section). However, the initial settings are ready to perform
four things:

Sensitivity: Internal

Microservices

Intelligent System Environment

Knowledge space only 
contains the initial 

information 
about the microservices

Interactive 
interface to 

take input data 
and task

Interactive 
interface to 

provide output

Intelligent System Environment

Knowledge Space

Grows bigger whilst trying to self-
configure microservices to solve 

tasks

Interactive 
interface to 

take input data 
and task

Interactive 
interface to 

provide output

Runtime cost 
optimisation 

(decision making)

Action

Reasoning

Microservices

A B

Figure 1. The vision of the self-knowledge learning approach with semantic ML microservices.
(A) shows the initial environment of the framework without any knowledge learning. (B) shows the
knowledge growing after learning from the actions that tried to provide an solution to the given tasks.

• Registering new AIMSs (Automatic Semantic Machine Learning Microservices) from
outside the environment. The registration process is through the interactive interface
according to the defined microservice ontology (see Figure 2). Therefore, human
involvement in machine learning microservice engineering is a core part of this vision,
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which defines humans as educators to teach basic skills and capabilities to deal with
different tasks. Then, the environment will reuse these skills and capabilities to acquire
knowledge. The knowledge will provide powerful reasoning sources to independently
deal with complex tasks, decision making, and creating new pipelines. Specific to
the biomedical research, the registration ontology can refer to biomedical engineering
ontologies, including Disease Ontology, Foundational Model of Anatomy (FMA),
Human Phenotype Ontology (HPO), and many others [38].

Sensitivity: Internal

AI Microservice

xs: String

xs: String

Controlled 
Vocabulary

xs: String

xs: String

xs: String

Controlled 
Vocabulary

Input

Output

name

description

dependency

framework

input

output

category

license

invoking path

Parameter

xs: String

Controlled 
Vocabulary

Controlled 
Vocabulary

xs: String

pid

iocategory

iodatatype

ioshape

Figure 2. AI Microservice Registration Ontology.

• Taking tasks with a variety of inputs, such as CSV data files, images, text, and audio
data: The environment autoconfigures on the default AIMSs and provides solutions to
the tasks. The success or failure outcome will be recorded as knowledge. Microservice
autoconfiguration refers to the automated setup and configuration of individual
microservices in a pipeline to serve a machine learning task in our context. The
microservice human engineering process will start if there are no suitable AIMSs to
deal with the task.

• The environment can compose multiple AIMSs to complete a task if one single mi-
croservice cannot achieve it.

• The environment can start learning, representing, and storing knowledge in the
knowledge space as knowledge graph data. The knowledge is derived from processing
input data, the autoconfiguration process, and task outcomes. The knowledge size
will increase and thus provide better optimizations, autoconfiguration, and feedback
to the system user.

To realize the vision presented in Figure 1, we discuss the related existing technologies
and their research outcomes that can be adapted into our research next.

4. Self-Supervised Knowledge Learning for Solution Generation

The self-supervised knowledge learning approach involves three types of autoconfig-
uration transfer learning methods. Figure 3 presents the overall learning framework.

The first method is knowledge space searching and transferring: A task with a dataset
(referred to as a task-context) arrives, and there is no previous knowledge related to the
task-context. Therefore, the knowledge space will be searched to try to find a possible
microservice that can match the context to complete the task or search for a pipeline
(workflow) that contains multiple I/O compatible AIMSs together towards the best and
successful completion which can be optimized. The task context and the optimized solution
are recorded as task input and output knowledge.
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Sensitivity: Internal

EvaluationNew Model
Raw Data + Task 

Specification

New Raw Data + 
Task Specification

KRR

Context
Policy

Knowledge Graph Repository

Auto-configuration strategy

P B O

B B BP P P

Auto-configuration

… …

Solution KR

Reward KRTask Context KR

P: Process Microservice Function
B: Base Microservice Function
O: Optimisation Microservice Function

Figure 3. The vision of the self-knowledge learning approach with AI microservices.

The evaluation will generate rewards for the policy knowledge space (we demo a
detailed process in the sections Experimental Implementation and Scenario Evaluation and
Lesson Learned). In addition, the knowledge learned from the process will be recorded to
update the world knowledge space.

The second one is the mutation of a previously generated context-matched solution
(a composition transfer learning process; we demo a detail process in the section Scenario
Evaluation and Lesson Learned). If the new task context matches with a previously
recorded task context in the knowledge space, then the previous solution will be loaded to
adapt to the new datasets and the optimization process. Finally, a new mutated solution
is created and recorded as new knowledge with the new evaluation rewards and world
knowledge of the KRR environment.

The third one is the continuous learning mutation method based on the reinforcement
learning approach. With the growth of the KRR statements, the automutation will take
place using world knowledge to retrain the solutions according to the rewards. The third
learning method takes place offline only but continues carrying out an update when KRR
is updated.

5. Experimental Implementation

Figure 4 shows a three-layer implementation of the vision. This structure reflects to
our vision that AI system should have three major capabilities of learning knowledge,
reasoning (thinking), and reacting to the problem. The figure also shows how these layers
map to the automotive solution provisioning process.

• The request layer takes tasks and inputs from AI applications to trigger the solution
searching and self-learning processes. Task context is semantically encoded to enable
starting the policy knowledge to explore the environment for learning, creating, or
finding solutions.

• The reasoning layer takes the request layer’s semantic reasoning tasks for semantic
matching, reasoning, and performing the reinforcement learning mechanism. Finally,
the policy will be recorded in the knowledge graph layer. In addition, the newly
added AIMSs are registered to the environment with semantic annotations through
knowledge registration and generation components.

• The knowledge graph layer remembers the knowledge data in the knowledge graph
triple store based on different types of knowledge schemata.
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Sensitivity: Internal

Knowledge Graph Layer

Reasoning Layer

Request Layer

AI Application Layer Human-level AI 
Mapping 
Problem

Action

Thinking and 
Learning
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Execution, step 
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matching

Knowledge 
representation 
and generation

Reasoning and 
learning rules

Task input and 
KG schema

Output KG 
schema

Policy record KG 
schema

World KG 
schema

Figure 4. Self-supervised knowledge learning and reasoning framework design.

5.1. Knowledge Ontology Implementation

AIMS registration ontology defines nine parameters (see Figure 2).

• Name— Must be no duplication in the system, and the registration process will check
the name’s legibility.

• Description—A short presentation of the AIMS for human understanding.
• Framework—Indicates the programming framework used to develop the AIMS. Nor-

mally, it should be just one framework as AIMS is designed to be decoupled and
ideally single responsibility.

• Dependency—Describes the required programming libraries that need to be precon-
figured to enable the AIMS to work. The schema includes id, library install port URI
and version.

• Input and output—Specifies the parameters that should be in the input and output
messages.

• Category—Tells what AI-related domain the ms works on, such as supervised classifi-
cation, unsupervised clustering, image classification base model, and more.

• License—Identifies the use conditions and copyright of the AIMS.
• Invoke path—Contains the portal for accessing the AIMS. The path can be a local path

or URI of a restful API.

Each given task triggers a context knowledge creation that collects knowledge of
the following:

• The type of input data—A controlled variable that majorly includes normal dataset
(e.g., tableau data stored in a CSV file, image, or text).

• Task domain—Free text to record the specific application domain.
• Desire output type—Records the output required to complete the task successfully.
• The parameters—The dataset or data presents the initial characters of the input data.

For example, the number of columns and column names of the tableau data will be
remembered as part of the context knowledge of the task.

The output of the performed task can be categorized into two types, failure and success.
Both failure and success need to update the policy knowledge link to the task-input context.
Failure has no solution registered to the knowledge but records which AIMSs have been
successfully invoked (can be an empty list) until the step that cannot continue going further.
So, the failure experience will tell the system administrators (people) what AIMS(s) are
required to create a solution. The success registers the solution location and changes the
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policy with the reward value. If the solution contains a workflow of composed AIMSs, then
the workflow will also be registered as knowledge with the normalized rewards for each of
the AIMSs.

The policy ontology is designed as follows:

• Policy context—Links to a task-context.
• Policy state—1 is success and 0 is failure, the binary state only presents whether

the whole workflow is work or not but inside the workflow context that shows
the continuous measure of individual component’s potential contribution toward to
success in other possible solutions (see Figure 5).

• Solution iloc—The location where the solution can be loaded and executed.
• Workflow—Presents a pipeline solution that composes multiple AIMSs.
• Solution reward—The reward value stored for the policy that can be the recommended

guidance for supporting the creation of a new task solution.

Figure 5. Reinforcement learning policy generation for the knowledge layer.

The can be rewarded in a failure pipeline if the individual step is invoked and running
successfully. Therefore, the rewarded micorservice can be reused when searching for the
alternative success composition solution. Figure 5 shows that failure workflow at run-
time provide one of three rewards to the successful individual microservices, but no final
solution model is created comparing it with the second searching which created a successful
workflow pipeline and recalculated rewards to all four microservices. The successful
workflow will reward the total reward value 1 divided by the number of microservices (n)
involved (n—order number).

The world knowledge ontology presents the facts learned from the task solution
creation process and outputs. There are three types of world knowledge recorded in the
current environment:

• Feature optimization outcomes—The features selected in the optimization are valuable,
and these features will be reused to create a classification model if the new dataset
features are the same.

• Answers for a certain text topic—A generated text answer for a question. The an-
swer quality will be reported as a reward value feedback from humans back to the
policy knowledge.

• Image RBG vectors—Map to a classification label. The reward process is the same as
the answers.

More world knowledge can be expanded in the environment. By having these com-
monsense and policy records, reinforcement can be performed to improve the solution
accuracy incrementally.

5.2. Environment Initialization

The experiment environment is developed by Python in a local single-computer
environment. We simplified the AIMS as a .py module in the environment to be invoked
and registered. We initialized the environment with three types of AIMSs:
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1. Data processing AIMSs that include CSV files to a Panda service, data training and
split services, data quality control services, data normalization services, image process
services, and data quality control services.

2. ML AIMSs that include clustering services, classification services, GPT-neo-1.3B text
generation services [39,40], ViT image classification transformers [41], and Seanborn
visualization services.

3. RFECV optimization services.

6. Scenario Evaluation and Lessons Learned
6.1. Heart Disease Classification Scenario

Figure 6 presents one of our use-case scenarios in the medical domain. The task context is
as follows:

• Input: 335 clinical CSV heart disease files labeled 0 (no disease) and 1 (confirmed disease).
• Domain: Medical.
• Desire output: An optimized classification pipeline model.

Figure 6. Scenario 1—Heart disease classification solution building and knowledge learning process.

Additionally, the columns of the data are as follows:

• Age: The person’s age in years.
• Sex: The person’s sex (1 = male, 0 = female).
• cp: Chest pain type—value 0: asymptomation, value 1: atypical angina, value 2:

nonanginal pain, value 3: typical angina.
• trestbps: The person’s resting blood pressure (mm Hg on admission to the hospital).
• chol: The person’s cholesterol measurement in mg/dL.
• fbs: The person’s fasting blood sugar (>120 mg/dL, 1 = true; 0 = false).
• restecg: Resting electrocardiographic results.
• thalach: The person’s maximum heart rate achieved.
• exang: Exercise-induced angina (1 = yes; 0 = no).
• oldpeak: ST depression induced by exercise relative to rest (ST relates to positions on

the ECG plot.
• Slope: The slope of the peak exercise ST segment—0: downsloping; 1: flat; 2: upsloping.
• ca: The number of major vessels (0–3).
• thal: A blood disorder called thalassemia.
• target Heart disease (1 = no, 0 = yes).

The application domain is medical, and the desired output is an optimized classifi-
cation pipeline model. Figure 6 illustrates the process. The procedure commences with
the input of a CSV file containing the Heart Disease dataset, accompanied by a query
pertaining to the generation of a predictive model. Following this, the framework attempts
to retrieve relevant knowledge via the request layer and its associated functions, as shown
in Figure 4. Given the absence of pre-existing knowledge, the system initiates a reasoning
process through the reasoning layer. This layer, utilizing the knowledge representation
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of existing microservices, crafts a workflow. The formulated workflow incorporates four
AI microservices: data loading from the CSV, data partitioning, creation of a classification
pipeline, and optimization. The culmination of this process results in a model boasting an
accuracy rate of 96.8%. Throughout the procedure, various knowledge components are
assimilated and documented within the system’s environment. The unique insight derived
from the general knowledge context is that eight features are deemed more significant than
other columns in determining the classification results. These features are sex, cp, thalach,
exang, oldpeak, slope, ca, and thal. The reason these columns are highlighted as the most
crucial is because the optimization microservice identified them in generating the most
accurate model.

6.2. Parkinson Disease Classification Scenario

The second task context is as follows:

• Input: CSV Parkinson’s disease clinical example data with labels 0 (no disease) and
1 (confirmed disease).

• Domain: Medical.
• Desired output: An optimized classification pipeline model.

Figure 7 depicts the scenario in which a similar task of classifying Parkinson’s disease
is fed in; the framework starts searching for a solution. As the system environment has
preknowledge, gained through the previous heart disease classification, and since the only
difference is the dataset when compared with the heart disease classification context, the
framework can use the classification pipeline and retrain it to be optimized for the new
dataset. We can call this process a composition transfer learning process. The novelty is
that the system environment can solve different tasks by applying contextual knowledge
of the problem. Thus, the framework can automatically deal with all types of data if the
required models are semantically registered in the framework. Through this composition
transfer learning, the whole automatic pipeline can produce a 94.6% accurate model.

Figure 7. Scenario 2—Parkinson’s disease pipeline transfer classification process.

6.3. A Complex Scenario: Mouse Brain Single-Cell RNASeq Downstream Analysis

In this section, we use a clustering analysis case study to highlight how the proposed
framework can solve a real-world downstream single-cell data analysis task. The clustering
analysis of single-cell data offers a powerful tool for a myriad of applications, ranging
from understanding basic biological processes to the development of clinical strategies for
treating diseases. The clustering analysis task works on a mouse brain single-cell RNASeq
dataset. The dataset is publicly available through a workshop tutorial at [42]. There are
five sequential processing and analysis steps:
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1. Data semantic transforming and loading: For instance, applying AnnData structure [43],
where AnnData stores observations (samples) of variables/features in the rows of a
matrix (see Figure 8).

2. Data quality control: This aims to find and remove the poor-quality cell observation
data which were not detected in the previous processing of the raw data. The low-
quality cell data may potentially introduce analysis noise and obscure the biological
signals of interest in the downstream analysis.

3. Data normalization: Dimensionality reduction and scaling of the data. Biologically,
dimensional reduction is valuable and appropriate since cells respond to their envi-
ronment by turning on regulatory programs that result in the expression of modules
of genes. As a result, gene expression displays structured coexpression, and dimen-
sionality reduction by the algorithm such as principle component analysis can group
these covarying genes into principle components, ordered by how much variation
they explained.

4. Data feature embedding: Further dimensionality reduction using advanced algo-
rithms, such as t-SNE and UMAP. They are powerful tools for visualizing and under-
standing big and high-dimensional datasets.

5. Clustering analysis: Groups cells into different clusters based on the embedded features.

Figure 8. AnnData Structure.

Based on the above five steps, we developed four extra microservices, which include
AnnData loading, two feature embedding services (t-SNE and UMAP), and clustering
services (Louvain graphical clustering algorithms). The other existing microservices which
can be involved should be different types of normalization (PCA or CPM algorithm) and
K-mean clustering algorithms.

The microservices were semantically registered into the framework through the inter-
face. Figure 9 depicts an example of a quality control microservice semantic description in
the knowledge graph repository.
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Figure 9. Quality control microservice semantic description.

With all the microservices registered, researchers can start expressing the analysis task
to stop, interact, and provide feedback at any stage during the process of automatically
creating the solution. The researchers can also see visualizations of outputs produced by
different steps. Therefore, researchers can provide preferences for selecting microservices if
there are options.

A realistic example is that a researcher can specify a clustering task applied to the
mouse brain single-cell RNASeq dataset. The framework will first try to see if a single
microservice can complete this task. The answer is ’no’, because no semantic-matched
microservice can take the RNASeq CSV input and provide the clustering output. At
this juncture, the microservice that can take the RNASeq CSV will be invoked to process
the data into the next step with the output of AnnData. If there are multiple choices in
the composition sequence, all possibilities will be invoked to run, unless the previous
knowledge in the policies has a priority. The possibilities have multiple solutions at the
end for researchers to analyze in order to give professional feedback to the system. The
feedback will help greatly with the knowledge graph policies. For example, suppose the
researcher gives feedback to the system that UMAP is the better embedding method than
t-SNE but has no priority on the clustering methods. In that case, the framework will
produce two possible clustering results, shown in Figure 10.

Figure 10. Two clustering outcomes from automatic processes.

7. Discussion

By evaluating the performance of the test scenarios, we believe the combination of KRR
and automation of AIMSs offers a viable strategy for developing human-level AI systems.
We created an environment with AIMSs capable of handling text, CSV files, and images
as default settings. This environment supports data splitting, classification, prediction,
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and optimization AIMSs. These findings suggest the system’s capability to generate and
optimize solutions for various tasks by applying or creating knowledge. However, there
remain some challenges that future work needs to address:

• The advantage of using a triple KG structure to encode KRR elements lies in its
unification, standardization, and adaptability across diverse applications. Nonetheless,
as the KG expands, its referencing efficiency diminishes, particularly with intricate
graph queries. This inefficiency is exacerbated when different knowledge types are
stored separately, making union queries on the graph resource-intensive. A proposed
solution is to embed the knowledge graph into a more efficient vector space [44]. To
achieve this, we plan on investigating state-of-the-art embedding techniques, such
as graph neural networks, that can maintain the relationships between entities while
offering efficient querying.

• The current system architecture does not support multimodal inputs pertaining to a
singular task (multimodal machine learning). While humans can seamlessly integrate
visual, auditory, and other sensory data to accomplish tasks, machines struggle to
synthesize multiple data types [45–47]. Moving forward, we aim to explore fusion
techniques, both at the feature and decision levels, to facilitate more comprehensive
input processing.

• During the initial stages of our manuscript’s preparation, Google released research
papers detailing the mutation of neural networks (NNs) to handle diverse image
classification tasks [16,17]. These papers have illuminated the potential of not just
mutating data or services but also the possibility of adding or removing NN hidden
layers as a form of knowledge storage for future considerations. Our intent is to delve
deeper into the dynamics of such mutations and explore frameworks that allow for
flexible and dynamic architectural changes in neural networks.

8. Conclusions

Our proposed Automatic Semantic Machine Learning Microservice (AIMS) frame-
work presents a novel approach to managing the complex demands of machine learning in
biomedical and bioengineering research. The AIMS framework utilizes a self-supervised
knowledge learning strategy to ensure automatic and dynamic adaptation of machine
learning models, making it possible to keep pace with the evolving nature of biomedical
research. By placing emphasis on model interpretability and the integration of domain
knowledge, the framework facilitates an improved understanding of the decision-making
process, enhancing the relevance and applicability of the generated models. A significant
finding of this research is our demonstration that knowledge-based systems can play a
pivotal role in self-learning AI systems for biomedical research. Such systems offer the
capability to store domain-specific knowledge with reusability and bolster the reinforce-
ment learning processes for machines. Furthermore, the potential of these systems extends
beyond biomedical research, suggesting applicability to AI applications in other domains.

The three case studies presented underscore the framework’s effectiveness in various
biomedical research scenarios, demonstrating its capacity to handle different types of data
and research questions. As such, the AIMS framework not only offers a robust solution
to current challenges in biomedical and bioengineering research but also sets a promising
direction for future developments in automated, domain-specific machine learning. Further
studies are required to evaluate the AIMS framework’s performance across a wider range
of biomedical and bioengineering applications and to refine its capabilities for even more
efficient and precise knowledge discovery.
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