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Abstract: Ammonia is an important chemical that is widely used in fertilizer applications as well as in
the steel, chemical, textile, and pharmaceutical industries, which has attracted attention as a potential
fuel. Thus, approaches to achieve sustainable ammonia production have attracted considerable
attention. In particular, biological approaches are important for achieving a sustainable society
because they can produce ammonia under mild conditions with minimal environmental impact
compared with chemical methods. For example, nitrogen fixation by nitrogenase in heterogeneous
hosts and ammonia production from food waste using microorganisms have been developed. In
addition, crop production using nitrogen-fixing bacteria has been considered as a potential approach
to achieving a sustainable ammonia economy. This review describes previous research on biological
ammonia production and provides insights into achieving a sustainable society.
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1. Introduction

In recent years, rapid population growth and industrial development have increased
the use of several fossil fuels and have increased the amount of waste and environmental
pollutants, leading to destruction of the global environment and causing global warming,
ocean acidification, and so on [1]. In alleviating this situation, researchers, governments,
companies, and other organizations are greatly interested in improving the global environ-
ment, and the Sustainable Development Goals have been set forth [2,3]. Fossil fuels are
the most significant energy source in the modern world, which are converted to electrical
energy primarily through thermal power generation. Various natural energy sources have
been used as alternatives to fossil fuels, including wind, hydro, solar, and geothermal
energy [4–6]. In addition to these renewables, biomass as fuel has also received increas-
ing attention. Biomass includes perennial plants, forestry waste, algae, and food waste
(municipal solid waste), which are also recognized as carbon-neutral fuels. However, the
supply of biomass is greatly affected by weather, time, location, and economics, making it
unstable [7–13]. In addition, biodegradable materials could be used as sources of biofuels,
and ammonia is expected to be used as a biofuel (Figure 1) [14].

1.1. Industrial Uses and the Need for Ammonia

Ammonia is an important compound in a variety of industries [15]. Fixed nitrogen,
such as ammonia, is essential for crop growth, and increasing the amount of nitrogen
circulating on the planet allows for population growth [16]. The production of ammonia is
highly important to sustain life, and about 80% of ammonia is used in the production of
fertilizers. Ammonia is also used for refrigerant gas or the synthesis of various chemicals
such as plastics, explosives (trinitrotoluene, nitroglycerin, and nitrocellulose), textiles (rayon
and nylon), agricultural chemicals, dyes (for cotton, wool, silk, etc.), and so on [17–19]. In
recent years, ammonia-fueled batteries have also been devised [18,20–24].
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The potential application of ammonia as fuel has received increasing attention [8,25–29].
Hydrogen has low transport efficiency because of its low volumetric energy density
(3 W h·L−1) and higher calorific value per liquid wight (141.9 MJ/kg) [30]. Therefore,
approaches to converting hydrogen to a more transport-efficient substance have been inves-
tigated. Ammonia has a flammable range of 16% to 25% (v/v), which can be transported
more safely than hydrogen [31,32]. Liquid ammonia contains hydrogen atoms per volume
and energy density (MJ L−1) that are 1.7 and 1.5 times higher than that of liquid hydro-
gen, respectively [33,34]. Hydrogen has a low boiling point of −253 ◦C, and it requires
considerable energy to liquefy. By contrast, ammonia has a boiling point of −33.4 ◦C, and
it can be easily liquefied by using general-purpose refrigeration equipment and can be
handled easily. Thus, it has been considered for use as a carrier for hydrogen in a hydrogen
society [32,35–37]. In addition, the hurdle to the industrial application of ammonia is lower
than that of hydrogen because the infrastructure for storage and transportation of ammonia
has already been established.

1.2. Chemical Method for Ammonia Production

The Haber–Bosch process is a typical example of ammonia nitrogen fixation, and
55% of the world’s ammonia is produced by this method [38]. This method requires
the cleavage of the triple bond of the nitrogen molecule, which uses a large amount of
energy [15,39]. The energy used by the Haber–Bosch process is equivalent to 2–3% of the
world’s annual fossil fuel use, and it accounts for 1.4% of the global annual carbon dioxide
emissions [38,40]. Carbon dioxide is a well-known greenhouse gas (GHG), and its reduction
is strongly desired because of environmental issues of growing concern in recent years.
Therefore, the Haber–Bosch process has been improved upon in recent years, particularly
in catalyst improvements. Moreover, the development of catalysts that allow reactions to
proceed under conditions closer to ambient temperature and pressure has been considered.
Compared with iron catalysts, Ru-based catalysts enable the fixation of ammonia at lower
pressure (90 atm), and they have about 20 times higher catalytic efficiency [41]. However,
ruthenium has become increasingly expensive in the last decade, thereby hindering its
industrial use [42–44]. The performance of catalysts has been greatly studied and further
developed, including the development of several molybdenum-based catalysts that mimic
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the active center of nitrogenase (a nitrogen-fixing enzyme) for the synthesis of ammonia at
ambient temperature and for pressure in microorganisms [45,46].

At present, most of the hydrogen required by the Haber–Bosch process is obtained
by electrolysis. In general, the operation of a water electrolysis unit requires a continuous
supply of highly purified water. Furthermore, 9 tons of highly purified water is required
to produce 1 ton of hydrogen. Based on these data, 233.6 million tons of water per year is
required to produce 1 ton of ammonia using hydrogen obtained from water electrolysis [47].
With the progression of global warming, improving the global environment is necessary [2].
Therefore, attempts are being made to supply ammonia in a sustainable manner using
natural energy (green energy) such as wind and solar power generation [48,49]. Ammonia
using hydrogen produced from green energy is known as “green ammonia” [50].

In addition to wood biomass, the amount of food waste has continued to grow exces-
sively in recent years, particularly in developed countries [51,52]. Food waste produces
considerable amounts of GHGs and environmental pollutants through landfilling and incin-
eration [53]. Thus, many attempts have been made to obtain energy from food waste [13].
In particular, okara is an abundant food waste, and its various uses are being consid-
ered [54,55]. Attempts to produce ammonia from food waste by physicochemical methods
have also been studied [56–58]. For example, considering that glutamic acid is a common
source of nitrogen in food wastes, researchers have targeted glutamic acid contained in
sewage sludge and meat and bone meal, and they succeeded in producing ammonia with
35–51% efficiency at 800 ◦C and 0.5–1.0 g g−1 carbon content by automated gasification [56].
This reaction is dependent on the catalytic metal ions in the food waste, which may need
to be optimized for each feedstock. The addition of LaFeO3 as a catalyst resulted in an
efficiency of 54 vol% [57]. Therefore, this approach could potentially produce 10% of the
ammonia used in Europe [56].

Several studies have developed sustainable methods to produce ammonia, most of
which include green power generation methods, chemical synthesis methods, and sustain-
able ammonia production using biological methods [59–61]. Various methods of recovering
ammonia from food wastes have also been used, and research is progressing toward practi-
cal application [62]. Alternatively, we focus on sustainable ammonia production methods
such as biological methods—bacterial and yeast methods—and explore their application
potential (Figure 2).
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2. Engineered Bacterial Method for Ammonia Production

Microorganisms can degrade and synthesize a wide variety of compounds by applying
engineering methods such as directed evolution or genome editing [63–66]. Based on
previous reports, pharmaceuticals that cannot be digested by the human body are broken
down by microorganisms in the environment [67]. Considering their capability to degrade
and synthesize not only natural substances but also man-made substances, microorganism
have been used to synthesize a variety of substances (Figure 3) [68,69].
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2.1. Bioengineering of Nitrogen Fixation and Metabolic Engineering for Ammonia Production

Compared with the Haber–Bosch process, the use of nitrogenase is highly sustainable
because it can produce ammonia at room temperature and pressure [70]. The amount of
nitrogen fixed by forage legumes accounts for 17.2 × 107 tons of nitrogen per year [71–73].
Thus, approximately 21% of the nitrogen is produced by nitrogen fixation [74].

Two main species of microorganisms possess nitrogenases. One species is the genus
Rhizobia, which parasitizes legumes, and the other species is the genera Azotobacter and Kleb-
siella, which can grow without parasitizing plants and are the main focus of research [75,76].
Nitrogenase utilizes considerable energy, requiring eight molecules of ATP to produce one
molecule of ammonia, and it is easily deactivated by oxygen exposure [77]. Nitrogenase is
composed of multiple subunits; the roles of each subunit are interrelated, and the molecular
mechanism is complex. Thus, the reaction mechanism remains unclear [78,79].

Attempts to produce ammonia using nitrogenase have been pursued, starting with the
construction of a heterologous expression system for the nitrogenase subunits from Klebsiella
oxytoca in E. coli [80]. This nitrogenase uses molybdenum as a cofactor, but Azotobacter
vinelandii exists as a nitrogen-fixing bacterium with a nitrogenase that uses vanadium and
iron. Various attempts have already been made with some success to construct heterologous
expression of this nitrogenase gene cluster in E. coli and yeast, to elucidate the mechanism
by which it is protected from oxygen, and to increase its activity [81–83]. For example,
heterologous expression of the nitrogenase complex of A. vinelandii has been successful in E.
coli, and the minimum number of genes required for nitrogen fixation has been elucidated.
A. vinelandii possesses an Fe nitrogenase complex, which consists of 21 subunits, and this
nitrogenase complex is actively expressed in only 10 genes in E. coli [84]. Furthermore,
Paenibacillus sp. is composed of 20 subunits of the Fe-type nitrogenase and functions with a
set of nine genes. However, the activity of the heterologously expressed nitrogenase was
approximately 10% compared to the nitrogenase of the wild type [85]. Further studies have
shown that adding Klebsiella oxytoca NifSU (Fe-S cluster assembly) and Paenibacillus electron
transporter genes (pfoABfldA) to this minimal gene set improved the expression, yielding
50.1% of the activity of the wild type [85]. A further attempt was made to reconstitute them
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by combining fourteen nitrogenase-related genes from K. oxytoca into five gene cassettes
and cleaving the subunits with a protease from the tobacco etch virus. As a result, this E.
coli could grow only nitrogen molecules in the air without oxygen [84].

Various theories have been proposed to investigate the mechanism through which
nitrogen-fixing bacteria fix nitrogen without inactivating nitrogenase under aerobic con-
ditions; Pseudomonas stutzeri A1501 forms a cyst made of a polysaccharide membrane to
protect oxygen, thereby protecting nitrogenase from oxygen [86]. A. vinelandii also produces
polysaccharides to protect nitrogenase from oxygen by localizing the polysaccharides to
the plasma membrane [83].

Apart from the aforementioned methods that can directly improve ammonia produc-
tion capacity, attempts have been made to increase the ammonia supplied to plants by
enhancing the ability of nitrogen-fixing bacteria to bind to plants, which has reached practi-
cal application [87]. For example, by ingesting Pseudomonas protegens Pf-5 X940, 15 nitrogen
isotope dilution analyses showed that corn and wheat produced significant amounts of
fixed nitrogen by this organism. In addition, the colony in wheat plants was formed on the
root surface of Pf-5 X940 expressing GFP [88].

Recently, for industrial applications, various companies such as Ginkgo Bioworks and
Pivot Bio, Inc., have been studying the potential use of nitrogen-fixing microbes. Pivot Bio,
Inc., performed a study that used nitrogen-fixing bacterium of the genus Enterobacter sp.
with genetic engineering [89]. These bacteria dis not have enough glutamine because of the
low level of expression of the transcription factor GlnR. Thus, when increasing intracellular
glutamine, these bacteria synthesized ammonia in the presence of more nitrogenase than
the wild type [89]. In addition, corn (Zea mays) seeds with these bacteria were pre-infected
and provided a steady nutrient supply [89]. In 2019, the average corn N uptake was
higher when inoculated with Proven™ than that without nitrogen fertilizer application,
with yields of 0 kg N ha−1 (treated with fertilizer) and 10.9 kg N ha−1 yields (added with
bacteria), but this difference was not statistically significant [90].

Many other attempts have been made to use anaerobic microflora to produce ammo-
nia [13,61,91]. A number of methodologies for ammonia recovery have also been proposed,
including evaporating the solution after fermentation and increasing the pH [92,93].

2.2. Ammonia Production from Food Waste by Using Bioengineering Methods

Several methods have been reported for producing ammonia from food waste and
other biomass using engineered E. coli and Bacillus [54,94–97]. For example, Bacillus subtilis
is used to hydrolyze protein biomass with its own protease and to efficiently produce amino
acids, and ammonia and alcohol are highly produced from amino acids using metabolic en-
gineering methods [94]. In particular, the authors knocked out the codY gene, a regulator of
branched-chain amino acids in the B. subtilis metabolic pathway. Furthermore, the authors
knocked out bkdB, a lipoamidoacyltransferase, which inhibits the conversion of 2-keto acids
to acyl CoA. Then, 2-keto acids are decarboxylated by heterologously expressed 2-keto acid
decarboxylase to provide biofuel accumulation. Furthermore, the overexpression of the
alpha-ketoisovalerate decarboxylase gene leuDH accelerated ammonia production. Conse-
quently, the biofuel production, including ammonia by deamination from media containing
amino acid, produced 46.6% of a theoretical yield [94]. Ammonia production from amino
acids using E. coli has also been attempted [96,97]. Considering the strong ammonia assimi-
lation capacity to keep the cell in homeostasis (about 20% of nitrogen compounds is stored
in the cell) of E. coli, attempts were made to knock out genes involved in ammonia assimila-
tion. For example, knockout of the glutamine synthetase glnA was predicted to increase the
production of ammonia. Furthermore, overexpression of the decarboxylase gene kivD was
used to bias the equilibrium reaction between ammonia and amino acid production toward
the ammonia-producing side. As a result, the production of ammonia from a medium
containing amino acids succeeded with a theoretical yield of 47.8% [97]. However, the
abovementioned studies were primarily experiments using amino acid–containing media
and not actual food wastes. Therefore, researchers investigated ammonia production from
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six different culture media and four different food wastes using E. coli to promote the use of
actual food wastes [96]. In addition, metabolic profiling showed a correlation between the
concentration of substances such as sugars, organic acids and amino acids in the medium,
and ammonia production suggested that glucose inhibits the production of ammonia. The
M9 yeast extract medium containing sugar at various concentrations showed a negative
correlation with ammonia production. Therefore, researchers knocked out the glucose
transporter gene ptsG, which transports major sugars such as glucose in E. coli, deduced the
expression of phosphoenolpyruvate- and phosphotransferase-related genes, and succeeded
in producing ammonia from the medium containing amino acid and sugar with about
73% yield. Furthermore, ammonia was successfully produced from pretreated soybean
residue with a conversion efficiency of about 47% and a high ammonia concentration of
approximately 35 mM [96]. In these studies, ammonia was produced in the cells, indicating
a trade-off between microbial growth and ammonia production. Moreover, a study using
metabolically modified B. subtilis for ammonia production reached a plateau at day 6, and
it did not increase at day 7 [95]. These results indicated that the produced ammonia was
used for cell growth. Therefore, extracellular ammonia production can simultaneously
improve production and growth.

3. Engineered Yeast Method for Ammonia Production

In addition to E. coli, many attempts have been made to produce ammonia using
yeast [98,99]. Numerous attempts have also been made to investigate the heterologous
expression of nitrogenases in yeast. For example, the nitrogenase subunit NifB is required
for the formation of MoFe clusters at the nitrogenase active center; however, this protein
is insoluble in mitochondria of budding yeast [100]. Two combinatorial libraries were
constructed for optimization. One library consists of six subclusters including nifUSX and
fdxN, and the other library includes 28 NifB genes extracted from the public database
and showed different levels of expression based on a factor design [101]. Consequently,
NifB genes derived from the archaea Methanocaldococcus infernus or Methanothermobacter
thermautotrophicus were activated in the mitochondria of yeast [101]. Nitrogenase subunits
derived from K. oxytoca within plant mitochondria were also used to attempt expression.
In addition, NifF, NifM, NifN, NifS, NifU, NifW, NifX, NifY, and NifZ could be expressed
in a soluble form, whereas NifB, NifE, NifH, NifJ, NifK, NifQ, and NifV are insoluble.
However, the NifM activity decreased by 10% compared with the previous study because
of N-terminal processing after transportation to the mitochondria [102,103]. Furthermore,
a NifD protein derived from K. oxytoca contains a mitochondrial targeting peptide (MTP)
recognition sequence that undergoes processing, making functional expression difficult
in mitochondria, and R98 has been identified as an important residue of this cleavage. As
a result, R98P shows to be resistant to processing, and high levels of activity are retained
in the mitochondria [104]. Another study found that the Y100Q mutant is resistant to
processing within plant and yeast mitochondria [105]. In their search for efficient NifH
expression, 32 different NifHs were expressed in tobacco and yeast mitochondria and it
was found that NifH from the thermophilic bacterium Hydrogenobacter thermophilus is the
most active form [106]. Thus, the expression of nitrogenase subunits from thermophilic
bacteria is a potential approach that is worthy of further study because the temperature in
mitochondria could reach 50 ◦C [106]. Genetic diversity can be used to identify the most
appropriate Nif protein components from large sequence pools to manipulate eukaryotic
nitrogenases [107]. Cloning techniques such as codon optimization of gene synthesis
and other synthetic biology tools such as metabolic engineering methods allow for the
construction of multi-protein pathways containing the proteins’ various sorts of origins.
For example, the NifH protein obtained from H. thermophilus was found to be soluble in
the mitochondria of Saccharomyces cerevisiae and Nicotiana benthamiana, which accumulate
at higher levels than A. vinelandii [107]. Therefore, functional nitrogenases in plant cells
could be constructed in the future to create practical crops that can fix nitrogen on their
own [108]. Recently, researchers have also performed heterologous expression of an active



Bioengineering 2023, 10, 82 7 of 14

nitrogenase in the chloroplasts of the cyanobacterium Synechococcus elongatus PCC7942,
creating an algae that can fix nitrogen using energy from photosynthesis [109].

Metabolically engineered yeast can produce large amounts of ammonia because its of
exposure to high concentrations of ammonia, thereby causing growth defects [110]. Yeast-
based methods for producing ammonia from food waste have primarily used cell surface
engineering (Figure 4) [111]. The nitrogen source of food waste is primarily amino acids
derived from proteins; thus, amino acid oxidases, which can efficiently produce ammonia
from amino acids, are considered suitable for presentation to the cell surface and are efficient
in producing ammonia. Several studies have used yeast cell surface display systems [111].
For example, target proteins are presented on the cell surface by adding a signal for secretion
to the N-terminus and a cell wall anchor protein including a glycosylphosphatidylinositol
anchor attachment signal sequence to the C-terminus. Approximately 105–106 proteins
could be presented on the yeast cell surface, and yeast cells can be manipulated as a
whole-cell biocatalyst [111]. Furthermore, proteins immobilized on the cell surface can
stabilize and exhibit higher enzymatic activity than those in the free state. In addition,
the folding machinery of the eukaryote displays a variety of proteins [111]. Thus, given
these advantages, the yeast cell surface has been successfully manipulated to produce
ethanol from carbohydrates, woody biomass, and large algae with high efficiency [112,113].
Ammonia produced from soybean residues has been used in yeast cell surface engineering.
Amino acid catabolic enzymes such as deaminase, transaminase, oxidase, and ammonia
lyase are known to produce ammonia from amino acids. Ammonia lyases can be displayed
on the yeast cell surface because they do not require any cofactors to make holoenzymes. In
a study, glutamine ammonia lyase (YbaS) was displayed on the cell surface, and this yeast
successfully produced ammonia from a glutamine solution with high efficiency (83.2%) and
high concentration (3.34 g/L) [98]. Moreover, although 0.1% (v/v) ammonia-containing
medium inhibited yeast growth, no impairment of the function of this whole-cell catalyst
was observed [98,99]. Furthermore, YbaS-displaying yeast successfully produced ammonia
with high efficiency from a solution of enzymatically pretreated okara (soybean residues).
However, when producing ammonia using YbaS ammonia lyase, only glutamine was used
to produce ammonia among the 20 amino acids [114]. L-amino acid oxidase is known to
have broad substrate specificity, and it can produce ammonia from a wide variety of amino
acids [99]. For example, a L-amino acid oxidase from Aplysia californica is active against
L-arginine and L-lysine. In addition, a L-amino acid oxidase obtained from snakes such
as Bothrops atrox, Crotalus viridis helleri, and Daboia russelii has been well studied, and it is
inactive against amino acids such as L-glutamine and L-aspartic acid [115]. However, it
is active against hydrophobic amino acids such as L-leucine and hydrophilic amino acids
such as L-histidine and L-lysine. It is also inactive against aromatic amino acids such as
L-tyrosine and L-phenylalanine. Hebeloma cylindrosporum also contains enzymes with broad
specificity, as it has mycelia for the intracellular absorption of ammonia from amino acids
contained in soil. In the literature, an enzyme, namely, HcLAAO (L-amino acid oxidase
from H. cylindrosporum), can produce ammonia from more than 10 known amino acids [116].
Therefore, ammonia can be efficiently produced from food waste using yeast displaying
HcLAAO. The display of HcLAAO in budding yeast led to high ammonia production
efficiency (about 88%) under mild conditions (30 ◦C) from a pretreated okara solution [99].
In this study, no toxic effects of extracellular ammonia on catalytic activity were observed,
which is consistent with previous studies that used glutamine ammonia lyase. Although
these attempts to produce ammonia from food waste have been successful, these studies
are all laboratory-scale studies. Enzymes have also been developed as tools to produce
ammonia from amino acids, with the recent creation of enzymes that can produce ammonia
from 13 amino acids [117]. Therefore, industrial-scale attempts for social implementation
should be considered in the future.
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4. Conclusions

This review mainly focused on ammonia production using genetic engineering meth-
ods (Table 1). Energy production with low environmental burden is considered essential
for the formation of a sustainable society. In addition to studies in this review, for example,
anaerobic culture is also one of the methods currently in practical use for energy production
from food wastes [118]. These anaerobic cultures usually do not use genetic engineering
methods, such that this method has room for optimization by using genetic engineering
introduced in this review.

Table 1. Summary of biological methods for ammonia production.

Metabolic Engineering Cell Surface Engineering

Reaction Place • Inside of the cells • Outside of the cells

pH of reaction environment • Neutral condition (pH 7.2–7.8) • Depends on the reaction mixture

Effect on the enzyme • Nothing • Stable (fixed on the cell surface)

To achieve a sustainable society, we have to solve some problems other than the
development of biological methods such as the storage of food waste [119,120]. In addition,
consumption of ammonia is important for creating sustainable environment. For example,
ammonia is only 30–50% utilized for crop growth [121]. The remainder eutrophicates
the oceans, contaminates drinking water, and, in some areas, changes the composition of
vegetation and encourages the propagation of non-native species [122–125]. Ammonia
is converted to N2O by microorganisms in the environment, which is also a well-known
greenhouse gas, and its emission is also a problem [74,126].

Microorganisms such as E. coli and yeast contain nitrogen in their bodies, with about
20% of the total amount as proteins [127]. The nitrogen in cells comes from assimilation of
amino acids or proteins in a medium. Therefore, the amount of produced nitrogen must
be larger than the input nitrogen for effective biofuel production. To solve this problem,
cell surface engineered yeast could be repeatedly used for production because the enzyme
on the yeast cell surface is stable [128]. Recently, some studies attempted to estimate the
metabolism of microorganisms so that it might be possible to calculate the potential of
microorganisms to efficiently produce ammonia in the future [129–131].

Biorender.com
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In this review, we introduced various attempts to improve the Haber–Bosch process,
one of the sources of carbon dioxide generation, which uses the largest amount of fossil
fuels, in order to realize a sustainable society.

The use of genetically optimized microorganisms to produce ammonia instead of
the Haber–Bosch process is a potential and environmentally friendly approach to solve
the global ammonia demand problem and to develop a sustainable carbon-free society
(Table 2).

Table 2. Summary of ammonia production methods.

Chemical Method Bacterial Method Yeast Method

Resource
• Nitrogen in air
• Hydrogen

• Nitrogen in air
• Food waste • Food waste

Energy resource
• Fossil fuel (coal, oil, or

natural gas) • Not required • Not required

ReactionEnvironment

• High pressure
• (150–350 atm)
• High temperature
• (350–350 ◦C)

• Pressure (1 atm)
• Temperature (37 ◦C)

• Pressure (1 atm)
• Temperature (37 ◦C)

Point of improvement for
sustainable production

• Alternative energy
resource (solar, wind,
hydro, etc.)

• Novel catalyst to react
with ambient pressure
and temperature

• Heterologous expression
of nitrogenase

• Metabolic engineering to
improve ammonia
production from amino
acids contained in
food wastes

• Cell engineering
• (Cell surface

engineering) to improve
the production of
ammonia from
food wastes

Therefore, in the future, it may be possible to produce ammonia more efficiently by
using it concurrently with such methodologies.
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