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Abstract: Cell signaling is a fundamental process that enables cells to survive under various eco-
logical and environmental contexts and imparts tolerance towards stressful conditions. The basic
machinery for cell signaling includes a receptor molecule that senses and receives the signal. The
primary form of the signal might be a hormone, light, an antigen, an odorant, a neurotransmitter,
etc. Similarly, heterotrimeric G-proteins principally provide communication from the plasma mem-
brane G-protein-coupled receptors (GPCRs) to the inner compartments of the cells to control various
biochemical activities. G-protein-coupled signaling regulates different physiological functions in
the targeted cell types. This review article discusses G-proteins’ signaling and regulation functions
and their physiological relevance. In addition, we also elaborate on the role of G-proteins in several
cardiovascular diseases, such as myocardial ischemia, hypertension, atherosclerosis, restenosis, stroke,
and peripheral artery disease.

Keywords: G-proteins; G-protein-coupled receptors; signaling; cardiovascular diseases; heart
failure; atherosclerosis

1. Introduction

Cardiovascular diseases (CVDs) are the foremost cause of morbidity and mortality
among all diseases around the world. CVDs are a set of disorders of the heart or blood
vessels, or both, consisting of coronary heart disease (CHD), cerebrovascular disease,
peripheral arterial disease, myocardial infarction, congenital heart disease, and other
cardiac conditions [1–3]. CVDs are the primary cause of the socioeconomic burden in
the healthcare sector. CVDs were the fastest-growing chronic illness between 2005 and
2015, with a growth rate of 9.2% annually. The World Health Organization (WHO) reports
that 31% of all global deaths, i.e., approximately 17.9 million, occur due to CVDs every
year [4,5]. Thus, CVDs are significant contributors to reduced life quality and life span in
humans [6,7].

The complex pathophysiology of CVDs involves the induction and regulation of
various cellular processes governed by intrinsic and extrinsic factors, including mechanical
stress, cytokines, and growth factors. These factors are sensed by a wide array of receptors,
such as toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like
receptors (NLRs) [8]. The ligands (various regulatory molecules) bind to the receptors
on the cell membrane and activate the transmission process of the stimulatory signal
inside the cell via a cascade of kinases/phosphatases and second messengers [9]. The
interaction of ligands with their receptors, and the subsequent signaling processes, are
highly selective due to the specific structure of the receptors and their ligands (key and lock
mechanism). G-protein-coupled receptors (GPCRs) are a fundamental signal transduction
component associated with cardiovascular remodeling and disease progression [10]. This
review discusses the role of G-proteins, their receptors, and the transduction systems in
cardiovascular pathologies.
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2. G-Proteins

G-proteins are a family of specialized proteins that can bind to nucleotides, i.e., guano-
sine triphosphate (GTP) and guanosine diphosphate (GDP); thus, they are also known
as guanine nucleotide-binding proteins [11]. G-proteins are either composed of a single
subunit (monomeric) or multiple subunits (heterotrimeric). For example, Ras proteins
are monomeric, and G-proteins associated with G-protein-coupled receptors (GPCRs) are
heterotrimeric. The monomeric structures, known as small G-proteins/GTPases, consist of
an alpha subunit only (Gα), while the heterotrimeric subunit has three different subunits:
an alpha (α), a beta (β), and a gamma (γ) subunit. The β and γ subunits form a stable
dimeric complex called the βγ complex (Gβγ). The βγ complex is considered a single
functional unit and is attached to the plasma membrane by lipid anchors. Humans have
16 Gα, 5 Gβ, and 13 Gγ subunits. Different combinations of these subunits result in a wide
range of heterotrimeric G-proteins [12].

Structurally, G-proteins are mainly recognized by their Gα monomers. Based on their
sequences and similar activities, these Gα proteins have been classified into four groups,
Gαs (stimulatory), Gαi (inhibitory), Gαq, and Gα12/13 [13]. Gαs stimulates adenylyl
cyclase to produce cyclic adenosine monophosphate (cAMP), thus activating protein kinase
A (PKA) for the regulation of cellular responses [14]. Furthermore, the Gαs family has
been divided into two subfamilies, i.e., Gαs (stimulatory, mainly expressed in all types
of cells) and Gαolf (olfactory, expressed by sensory neurons). In contrast, Gαi inhibits
adenylyl cyclase and dampens intracellular cAMP. The Gαi family has been further divided
into seven groups, i.e., Gαi1 Gαi2, and Gαi3 (inhibition, expressed in most types of cells);
Gαo (expressed in neurons and transcribed in two spliced variants, GαoA and GαoB); Gαt
(transducin), transcribed in two isoforms, Gαt1(expressed in rod cells of the eye) and Gαt2
(expressed in cone cells of the eye); Gαg (gustducin, expressed in the taste receptor cells);
and Gαz (expressed in neuronal tissues and platelets). The Gαq family has been further
divided into four members, i.e., Gαq (expressed in most types of cells), Gα11(expressed
in most types of cells), Gα14 (expressed in lung, liver, and kidney), and Gα15 (expressed
in hematopoietic cells). The Gα12 family has been divided into two groups, i.e., Gα12
and Gα13, expressed in most types of cells. As described above, apart from these Gα

subunits, the heterotrimeric G-proteins also contain Gβγ protein subunits. Both human
and mouse genomes harbor 5 Gβ (Gβ1, Gβ2, Gβ3, Gβ4, and Gβ5) and 12 Gγ genes. Gγ

protein subunits are more varied, and their sequence homologies range from 20% to 80%.
Gγ protein subunits are widely distributed and expressed [15,16].

Functionally, the family of G-proteins act as molecular switches in the cells, which
transmits signals in response to stimuli. The protein becomes active or inactive depending
on the binding of the G-protein alpha subunit to either GTP or GDP. In the absence of
a signal, GDP attaches to the alpha subunit and forms a G-protein–GDP complex. This
arrangement further binds to the GPCR and leads to protein inactivation. Conversely, a
signaling molecule changes the conformation of the GPCR and activates the G-protein.
GDP is physically replaced by GTP in the activated protein. On GTP’s hydrolysis to GDP,
the protein becomes inactive again. G-proteins function by switching on or off via signal–
receptor interactions on the cell’s surface [17]. G-proteins possess intrinsic GTPase activity
and play dynamic roles in cellular processes such as cell growth, protein synthesis, and
membrane vesicle transport [18].

GPCRs are membrane-bound proteins or cell surface receptors in action with vari-
ous stimuli that include neurotransmitters, hormones, proteins, peptides, small-molecule
odorants, pheromones, light, extracellular calcium, protease activity, etc. [19,20]. Generally,
GPCRs are odorant/pheromone receptors; however, each mammalian species expresses
at least 400 non-odorant GPCRs. GPCR-biased agonism has significantly changed our
understanding of GPCR biology in recent years. Biased agonism refers to a condition when
a ligand induces a distinctive receptor conformation, culminating in differential coupling to
the signal transduction cascade and a different response. These biased GPCR ligands also
have important clinical implications, as selectively activating or inhibiting specific signaling
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cascades could result in more targeted drugs with fewer side effects [21]. Structural studies
have shown that GPCRs comprise a transmembrane protein arrangement of seven helices,
usually called a heptahelical domain (7TM), and functional extracellular and intracellular
loops [22]. This receptor superfamily displays 7TM helical domains linked by alternating
three intracellular and three extracellular loops, such as ICL1, ECL1, ICL2, ECL2, ICL3, and
ECL3. Five major families in the GPCR superfamily, namely the rhodopsin family, secretin
family, glutamate family, adhesion family, and frizzled/taste2 family, have been identi-
fied [23]. The heptahelical domain is the only structural similarity or common feature of
GPCRs. Receptor activation requires the movement of the transmembrane helices, leading
to cavity development on the cytoplasmic side of the receptor. GPCRs have been named
based on their ability to bind to G-proteins, which is described as the collision coupling
model. The GPCRs bind to Gα subunits in the absence of a ligand. This phenomenon
is known as receptor pre-coupling [24]. To date, extensive experimental work has been
performed to unravel the molecular aspects of G-proteins’ and GPCRs’ functions such that
GPCRs serve as targets for imported drugs to hinder the progression of diseases.

3. Regulation of G-Proteins
3.1. General Mechanism

In eukaryotes, G-proteins perform a crucial role in controlling multiple signaling
pathways. During the inactive phase, the GDP-bound Gα protein subunit is linked strongly
to the Gβγ heterodimer [11]. When an agonist binds, signal perception causes a conforma-
tional change in the GPCR, resulting in the activation of the GPCR. Upon activation, the
GPCR performs as a guanine nucleotide exchange factor (GEF) and increases the exchange
of GDP to GTP on the Gα subunit, which further leads to the dissociation of GTP-bound Gα

from the Gβγ dimer [25]. Both functional subunits, the GTP-bound Gα monomer and the
Gβγ dimer, interact with various effectors to transduce several different cellular signaling
pathways. Inactivation arises through the inherent GTPase activity that hydrolyzes the
bound GTP and reproduces the GDP-Gα state. GTPase-activating proteins (GAPs), e.g.,
RGS proteins, bind with the Gα monomer to accelerate GTPase activity. Furthermore,
the GDP-bound Gα monomer associates with the Gβγ dimer, thus re-establishing the
heterotrimeric complex. Due to the cyclic nature of G-protein signaling, both the activation
and inactivation steps have to be synchronized for effective and regular signaling [16]. The
entire process represents a G-protein cycle. The mechanism of G-protein signaling is shown
in Figure 1.
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Figure 1. G-proteins and their mechanism of activation. Upon ligand binding to G-protein-coupled 
receptors, the exchange of GDP for GTP takes place on the Gα subunit, leading to decreased binding 
affinity for Gβγ. The GTP-bound Gα interacts with several downstream effectors and leads to vari-
ous pathophysiological functions. Based on sequence homology and activity, Gα proteins are clas-
sified into four groups: G-alpha-s (stimulatory), Gαi (inhibitory), Gαq, and Gα12/13. Gαs is divided 
into Gαs, GαXL (extra-long), and Gαolf (olfactory). The G-alpha-i family is divided into Gαi (1-3), 
Gαo, Gαt, Gαz, and Gαgust. The Gαq family is divided into Gαq, Gα11, Gα14, and Gα15/16. The 
Gα12 family is divided into Gα12 and Gα13. RGS, regulator of G-protein signaling. 

3.1.1. G-Protein Post-Translational Modification 
The post-translational modifications (PTMs) of G-proteins have received relatively 

little attention, but recent studies have outlined the importance of post-translational mod-
ifications of G-protein in the pathogenesis of CVDs. Phosphorylation, ubiquitination, S-
nitrosylation, and palmitoylation are the most prevalent in CVDs. 
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Figure 1. G-proteins and their mechanism of activation. Upon ligand binding to G-protein-coupled
receptors, the exchange of GDP for GTP takes place on the Gα subunit, leading to decreased binding
affinity for Gβγ. The GTP-bound Gα interacts with several downstream effectors and leads to various
pathophysiological functions. Based on sequence homology and activity, Gα proteins are classified
into four groups: G-alpha-s (stimulatory), Gαi (inhibitory), Gαq, and Gα12/13. Gαs is divided into
Gαs, GαXL (extra-long), and Gαolf (olfactory). The G-alpha-i family is divided into Gαi (1-3), Gαo,
Gαt, Gαz, and Gαgust. The Gαq family is divided into Gαq, Gα11, Gα14, and Gα15/16. The Gα12
family is divided into Gα12 and Gα13. RGS, regulator of G-protein signaling.

3.1.1. G-Protein Post-Translational Modification

The post-translational modifications (PTMs) of G-proteins have received relatively
little attention, but recent studies have outlined the importance of post-translational mod-
ifications of G-protein in the pathogenesis of CVDs. Phosphorylation, ubiquitination,
S-nitrosylation, and palmitoylation are the most prevalent in CVDs.
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G-Protein Phosphorylation

G-protein phosphorylation occurs through kinase-catalyzed transfer and is primarily
mediated by receptor tyrosine kinases (RTKs), PKA, and PKC. The serine phosphorylation
of Gαq impairs GTP-binding/Gα activation, whereas tyrosine phosphorylation of Gαq
promotes Gαq and PLCβ3 activation. Similarly, the phosphorylation of various G-proteins
has a widespread application on various signaling pathways, which was discussed in detail
by Chakravorty and Assman [26].

G-Protein Ubiquitination

Ubiquitin degrades the target proteins via the 26S proteasome and the lysosome,
sequentially acting through three distinct enzymes, E1, E2, and E3. The Gα protein ubiq-
uitination regulates Gα subunit trafficking within the cell. The polyubiquitination of Gα

leads to its degradation by the proteasomal pathway, whereas its monoubiquitination helps
in its trafficking to lysosome [27]. Gαs protein ubiquitination controls epidermal growth
factor receptor (EGFR) endosomal sorting [28].

G-Protein S-Nitrosylation

S-nitrosylation is a covalent post-translational modification of a protein cysteine thiol
by a nitric oxide group. S-nitrosylation occurs in Gαi2 at Cysteine 66, alleviating diabetes-
accelerated atherosclerosis [29].

G-Protein Palmitoylation

G-protein palmitoylation occurs through palmitate attachment to cysteine residues
covalently. Palmitoylation of G-proteins occurs at the alpha and beta subunit, regulating
signal transduction [12].

3.1.2. GPCR Regulators

The critical physiological activity of G-proteins is to transduce the signals from GPCRs
that work as GEFs for G-proteins. Outer or inner ligand association stimulates GPCRs to en-
ter an active conformational phase that evokes the intracellular linking of G-protein/arrestin
proteins [30]. The GPCR-targeted ligands have been categorized into agonists, inverse
agonists, and antagonists. The association of agonists with GPCRs leads to an active con-
formation, thus enhancing the signaling effect. Conversely, inverse agonists impede basal
signaling activity via stabilizing inactive GPCR conformations. The neutral antagonists
are ineffective towards GPCR conformations; however, they prevent the association of
both agonists and inverse agonists [12]. Substantial evidence in the literature suggests that
G-proteins bind to ICL2 and ICL3 [13]. An agonist in the extracellular region stimulates
a structural rearrangement in the transmembrane’s core portion, which further causes a
conformational change in the cytoplasmic intracellular region.

In addition, GPCRs exist in the form of dimers or oligomers. These dimerization and
oligomerization forms are involved in the modulation of numerous GPCR activities, such
as cell surface targeting, cellular activation, G-protein coupling, and internalization [31,32].
For instance, the dimerization of two protomers for the class-C family of GPCRs is crucial
for its biological activity and G-protein stimulation [16].

3.1.3. Non-GPCR Regulators

In contrast to GPCRs, other non-GPCR proteins regulate the heterotrimeric G-proteins,
e.g., Ric-8 protein, GPR domains, GBA motif-containing proteins, and RGS proteins [33],
which are explained below.

Ric-8 Proteins

Mechanistically, the resistance to inhibitors of cholinesterase 8 (Ric-8) proteins inter-
acts with GDP-bound Gα and causes the release of GDP; it leads to the formation of a
nucleotide-free Gα intermediate complex and a stable Ric-8. When Gα binds to GTP, it dis-
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sociates from Ric-8, which is how the GDP–GTP exchange cycle on Gα is completed [34,35].
The genomic DNA of invertebrates encodes a single ancestral Ric-8 isoform, while the
genomes of vertebrates encode two isoforms: Ric-8A and Ric-8B. Each vertebrate isoform
controls a particular Gα subset, i.e., Ric-8A regulates Gαi/t, Gαq, and Gα12/13, and Ric-
8B regulates Gαs. Ric-8 proteins modulate G-protein signaling via the GEF activity of
Ric-8A and Ric-8B and ubiquitous chaperone activity [35,36]. According to estimates, the
heritability of the resting heart rate is between 20% and 60% [37,38]. Small variations in
RIC-8B expression affect basal cAMP signaling, affecting the resting heart rate. Recently,
genome-wide association studies have reported a relationship between a single-nucleotide
polymorphism in a region of the genome encoding the RIC-8B gene and heart rate [39]. The
RFX4 gene’s rs2067615 variant on chromosome 12 increased the heart rate by 0.3 beats per
minute per allele. A few genes are located within 500 kilobases of this locus including RFX4,
RIC-8B, C12orf23, MTERFD3, CRY1, POLR3B, and TCP11L2. RIC-8B, CRY-1, POLR3B, and
TCP11L2 are expressed in cardiac cells [40].

GPR Domains

The proteins containing G-protein regulator (GPR) domains are the second most
significant class of non-GPCR regulators. GPR domains comprise 25-amino-acid-long
stretches, also known as the GoLoco domain. GPR domains bind to the inactive state
of GDP-bound Gαi/o. These GPR proteins restrict the nucleotide exchange in Gα and
compete with Gβγ subunits for Gα binding. When Gα is bound to a GPR domain instead
of Gβγ subunits, Ric-8A stimulates Gα by promoting the exchange of GDP for GTP. In
addition, GPR-domain-containing proteins are harbored by some activators of G-protein
signaling (AGS) proteins. For example, AGS3 has four GPR domains associated with the
Gαi family [41].

GBA Motif

A structurally defined component connected to the activity of GEF has been elucidated
as the Gα binding and activating (GBA) motif [42,43]. The GBA motif contains 30 residues in
its sequence. It includes Gα-interacting-vesicle-associated protein (GIV or Girdin), DAPLE,
NUCB1, CALNUC, and NUCB2, which interact and stimulate Gαi member proteins [42].
GIV and DAPLE are well-characterized proteins, and despite their moderate GEF activity,
many in vitro experiments have confirmed that the GBA motif accelerates the nucleotide
exchange rate, which further activates the Gα subunit [44,45]. Moreover, GIV could not
be associated with Gα in the active Gα-GTP-bound form. This characteristic of GEFs
confirms that GIV only binds with the inactive Gα-GDP-bound form and consequently
stimulates Gα signaling. In a study, Garcia-Marcos et al. (2009) reported that GIV dissociates
Gβγ from the Gαi-βγ heterotrimer complex and accelerates Gβγ-dependent signaling in
cells [46]. However, it is yet to be confirmed whether GIV can directly stimulate a Gαi-
βγ heterotrimer. Overall, the GBA-motif-containing proteins impact cell behavior. Their
abnormal expression is associated with different diseases, such as tumors, liver fibrosis,
cancer, diabetes, and pathologic neovascularization [47]. The disruption of GIV and DAPLE
association with G-proteins is evolving as a promising therapeutic approach [48].

RGS Proteins

Regulators of G-protein signaling (RGS) proteins increase the GTPase activity and
deactivate the signal started by GPCRs. A large family of RGS proteins consists of 37 mem-
bers with a conserved RGS homology domain. RGS proteins play vital roles in many
physiological and pathological conditions [49]. Mechanistically, RGS proteins bind with
active Gα subunits in GTP-bound form to enhance GTP hydrolysis. RGS proteins accelerate
the GTP hydrolysis rate by up to 2000 times, changing the Gα–GTP complex conformation
and improving the GTPase efficiency of Gα. The transition state in GTP hydrolysis can be
imitated by the Gα–GDP–A1F4 complex. The GTPase-activating protein (GAP) activity
of RGS proteins may be involved in altering the affinity of RGS for Gα or stabilizing the
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catalytic conformation of Gα. While the typical mode of action of RGSs is to associate with
Gα subunits, some of them can also bind directly with effectors, such as the RGS2 protein,
which can inhibit type V adenylyl cyclase [50]. RGS proteins also regulate various critical
cardiac processes, and abnormal changes in their expression are frequently associated with
cardiovascular system dysfunction. For example, RGS2 deficiency increases angiotensin
II (AngII) type 1 (AT1) receptor signaling, leading to hypertension [51], and RGS2 and
RGS14 regulate cardiac remodeling [52,53]. Among other disorders, RGS proteins are also
involved in heart failure and drug-induced cardiac damage [54,55]. Cardiovascular disease
has been associated with changes in RGS expression levels, suggesting that aberrant RGS
protein expression may contribute to pathophysiology. RGS proteins and GPCRs work in a
bi-directional manner, with RGS regulating GPCR activity and GPCR activation changing
the expression of RGS proteins. For instance, the AT1 receptor controls the expression of
RGS2 [56], RGS10 [57], and RGS14 [53], all of which control the effects of the AT1 receptor.
Similar to this, isoproterenol, an agonist of the 1 and 2 adrenoceptors, increases the expres-
sion of RGS5 [58], and the activation of the lysophospholipid sphingosine 1-phosphate (S1P)
receptor controls the expression of RGS2 and RGS16 in vascular smooth muscle cells [59].

In the recent past, many genetic models have been developed, signifying the clinical
importance of G-proteins and GPCRs in different diseases, including diabetes, cardiovas-
cular disease, various types of cancer, and disorders of the central nervous system, which
may open up new research avenues for the development of novel drugs/inhibitors.

4. Role of G-Proteins in Cardiovascular Diseases

G-proteins and their receptors are extensively expressed in the cardiovascular system
and are involved in the pathophysiology of cardiovascular diseases, as summarized in
Table 1. Much of the G-protein signaling is mediated by several signaling effectors, such as
adenylyl cyclase (AC), Ras homology (Rho), cell division cycle 42 (cdc42), phospholipase C
(PLC), and SRC, which contribute to various diverse cellular processes (Figure 2).

Table 1. Different GPCRs, ligands, and their locations in the body.

GPCR Ligand Location Reference

Adrenergic receptor Norepinephrine Cardiomyocytes [60]
Angiotensin II receptor Angiotensin II Endothelial cells [61]

Endothelin receptor Endothelin I Blood vessel [62]
Adenosine receptor Adenosine Heart and brain [63]

LPA receptor Lysophosphatidic
acid Heart and brain [64]

Serotonin receptor Serotonin Cardiac cells [65]
Muscarinic receptors Acetylcholine Cardiac myocytes [66]
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C (PLC), which cleaves phosphatidylinositol-4,5-bisphosphate (PIP2) into diacyl glycerol (DAG) 
and inositol 1,4,5-trisphosphate (IP3), which leads to calcium mobilization and protein kinase C 
(PKC) activation. Furthermore, PKC activation induces Rho guanine nucleotide exchange factors 
(RhoGEFs) and mitogen-activated protein kinase (MAPK) signaling. Gαq also activates AKT-mTOR 
and NF-κB signaling pathways. Gαi activates SRC-PI3K-RAC-MEK-ERK and CDC42-PAK signal-
ing. Gα12/13 activate RhoGEFs-RHO-dependent p38 MAPK and ROCK signaling. AC, adenylyl 
cyclase; CDC42, cell division cycle 42; cAMP, cyclic AMP; ERK, extracellular signal-regulated ki-
nase; IKKs, IκB kinases; mTOR, mammalian target of rapamycin; p70S6K, ribosomal protein S6 ki-
nase; NF-κB, nuclear factor-κB; PKA, protein kinase A; PAK, p21/CDC42/RAC1-activated kinase; 
ROCK, Rho-associated coiled-coil containing protein kinase; Rho, RAS homology. 
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ated with structural or functional abnormalities caused by cardiomyocyte enlargement 
and hypertrophic growth. Several intrinsic and extrinsic stimuli, such as stress, cytokines, 
and growth factors, are sensed by cardiomyocyte receptors such as GPCRs, causing det-
rimental effects [17]. Inotropic and chronotropic hyporesponsiveness to adrenergic stim-
ulation, as well as a decrease in Gs-alpha proteins, or an increase in Gi-alpha proteins, 
lead to congestive heart failure [67]. In these conditions, there is strong sympathetic acti-
vation, which causes a decrease in beta-adrenergic activity. In terms of membrane recep-
tors, beta1 receptors are downregulated, and beta2 receptors are uncoupled. Even without 

Figure 2. G-protein-coupled signaling in cardiovascular diseases. Various G-proteins, Gαs, Gαi, Gαq,
and Gα12/13, activate several downstream diverse signal transduction pathways. Gαs proteins
stimulate AC-cAMP-mediated activation of ERK and PKA signaling. Gαq activates phospholipase
C (PLC), which cleaves phosphatidylinositol-4,5-bisphosphate (PIP2) into diacyl glycerol (DAG)
and inositol 1,4,5-trisphosphate (IP3), which leads to calcium mobilization and protein kinase C
(PKC) activation. Furthermore, PKC activation induces Rho guanine nucleotide exchange factors
(RhoGEFs) and mitogen-activated protein kinase (MAPK) signaling. Gαq also activates AKT-mTOR
and NF-κB signaling pathways. Gαi activates SRC-PI3K-RAC-MEK-ERK and CDC42-PAK signaling.
Gα12/13 activate RhoGEFs-RHO-dependent p38 MAPK and ROCK signaling. AC, adenylyl cyclase;
CDC42, cell division cycle 42; cAMP, cyclic AMP; ERK, extracellular signal-regulated kinase; IKKs,
IκB kinases; mTOR, mammalian target of rapamycin; p70S6K, ribosomal protein S6 kinase; NF-
κB, nuclear factor-κB; PKA, protein kinase A; PAK, p21/CDC42/RAC1-activated kinase; ROCK,
Rho-associated coiled-coil containing protein kinase; Rho, RAS homology.

4.1. Heart Failure

Heart failure (HF) is a medical condition that develops when the heart cannot pump
enough blood to meet the body’s needs. HF affects over 6.5 million American adults and
results in an annual healthcare burden of USD 30 billion [2]. Heart failure (HF) is a common
and serious condition with substantial morbidity and mortality rates. HF is associated
with structural or functional abnormalities caused by cardiomyocyte enlargement and
hypertrophic growth. Several intrinsic and extrinsic stimuli, such as stress, cytokines, and
growth factors, are sensed by cardiomyocyte receptors such as GPCRs, causing detrimental
effects [17]. Inotropic and chronotropic hyporesponsiveness to adrenergic stimulation,
as well as a decrease in Gs-alpha proteins, or an increase in Gi-alpha proteins, lead to
congestive heart failure [67]. In these conditions, there is strong sympathetic activation,



Bioengineering 2023, 10, 76 9 of 19

which causes a decrease in beta-adrenergic activity. In terms of membrane receptors,
beta1 receptors are downregulated, and beta2 receptors are uncoupled. Even without
beta-adrenergic receptor downregulation, an increase in Gi proteins can suppress adenylate
cyclase activity. These results demonstrate that the Gi protein desensitization of adenylate
cyclase can serve as an essential pathophysiological mechanism in the development of
compensated cardiac hypertrophy to HF, because cardiac hypertrophy is a major predictor
of HF [68]. Additionally, similar changes can be observed with aging [69].

Acetylcholine-dependent activation of cardiac potassium channels regulates heart rate.
G-protein beta signaling mediates the activated muscarinic receptor-induced stimulation
of cardiac potassium channels. The G-protein-coupled inwardly rectifying potassium
channels (GIRKs) encode cardiac potassium channels. GIRK1 and GIRK4 are two members
of the GIRK family located in the heart [70,71]. The cell membrane becomes hyperpolarized
due to an interaction between the activated G-protein subunits (G) released by GPCRs and
GIRK channels for potassium ion permeability. The neuron cannot fire action potentials
quickly when it is hyperpolarized, which slows the heartbeat [72]. It is also emphasized
that SUMOylation, O-GlcNAcylation, acetylation, and phosphorylation all play a role in
the pathogenesis of HF and cardiac remodeling [73].

GPCRs are essential in numerous physiological processes and therefore are targets of
pharmaceutical therapeutics. For instance, the activation of β-adrenergic receptors (βARs)
and Ang II type 1 receptors (AT1Rs) results in myocyte death and adverse cardiac remodel-
ing, as well as an increased heart workload [74]. To transmit signals, AT1Rs couple to Gαq,
Gβγ, and β-arrestin and form AT1R–β-arrestin complex. Experimental evidence in the
literature suggests that the activation of β-arrestin and blocking of G-proteins downstream
of AT1R may provide additional benefits compared to Ang II blockers alone. Therefore, re-
ceptor blockers such as β-blockers, Ang II receptor blockers, and ACE inhibitors are widely
used in the treatment of HF [17]. AT1R–β-arrestin-biased ligands, including TRV120027
and TRV120023, have demonstrated advantages over Ang II blockers in cardiac and renal
function. While TRV120023 inhibits Ang II-induced cardiac hypertrophy and supports
cardiomyocyte survival following ischemia injury, TRV120027 stimulates vasodilation by
blocking the G-protein pathway and improves cardiac contractility [17,75,76]. As a result,
these β-arrestin-biased ligands offer promising new HF therapies.

4.2. Myocardial Ischemia

Myocardial ischemia occurs after an imbalance between the oxygen supply and de-
mand in the myocardium. This imbalance is responsible for myocardial infarction, ar-
rhythmias, cardiac dysfunction, and sudden death. The obstruction of coronary blood
flow due to thrombosis, coronary stenosis, and the hypercontraction of epicardial and
coronary arteries lead to several clinical ischemic manifestations. Generally, GPCRs are
essential for normal cellular function; however, sustained signaling may cause damage to
the cardiac cells and functioning. The adrenergic receptor (AR) on the cardiomyocyte plays
an important role in myocardial ischemia. These receptors are the principal regulators
that activate adenylyl cyclase, enhancing cAMP and mediating cellular processes [77]. The
adrenergic receptors are of two types: β1 and β2. Under normal conditions, β1AR, the
most abundant in cardiomyocytes, comprises 80% of receptors, whereas β2AR comprises
approximately 20%. In a diseased state, the stoichiometry changes to 60:40. The underlying
mechanisms responsible for the loss of adenylyl cyclase functioning consist of reversible
and irreversible phases. In the reversible phase, uncoupling of G-protein receptors and
allosteric alteration of the catalytic subunit is observed. Meanwhile, in the irreversible step,
free radicals cause alterations in adenylyl cyclase, which last for more than 30 min in is-
chemia. This functional imbalance of G-proteins is commonly observed in acute myocardial
ischemia. β1 adrenergic receptor activate cardiac transduction pathways, leading to early
myocyte hypertrophy, cardiac hypertrophy, and interstitial fibrosis when overexpressed,
while β2AR signaling has cardioprotective effects. Therefore, beta-blocking agents are
effectively used to treat myocardial ischemia [78].
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Several modifications cause the ischemic myocardium’s loss of adenylate cyclase func-
tion. The reversible phase of this process is characterized by G-protein-receptor decoupling
and potential allosteric changes in the catalytic subunit, which elevate the calcium levels in
a compartment next to the enzymatic activity. Free radicals are assumed to be substantial,
if not entirely, responsible for the permanent modification of adenylate cyclase function
seen in ischemia lasting more than 30 min (global normothermic ischemia) [79]. Numerous
investigations have demonstrated that rather than decreasing, the density of β adrener-
gic receptors increase in the plasmatic membranes of ischemic hearts. Acute myocardial
ischemia causes the loss of high-energy phosphates, which stops beta-receptor coupling
and signal transduction. As a result, there are more beta receptors on the cellular surface
because exterior phenomena predominate over internal ones. During the early desensiti-
zation phase of the first pathophysiological stage of myocardial ischemia, the uncoupling
of G-protein receptors is entirely stopped. Exogenous catecholamine administration to
ischemic hearts cannot counteract this effect [80,81].

The activation of G-proteins by β adrenergic receptors increases enzymatic activity,
whereas the activation of Gi proteins by M2 muscarinic receptors and A1 adenosine re-
ceptors decreases enzymatic activity. Adenylate cyclase inhibition lowers both its basal
and stimulated activity. As a result, adenylate cyclase’s responsiveness to stimulating
hormones is reduced by a tonic rise in Gi protein inhibitory activity. The adenylate cyclase
system, on the other hand, becomes more responsive or sensitive when tonic inhibition
is lost. In many acute myocardial ischemia models, G-proteins have been demonstrated
to be functionally unbalanced. Gi protein levels rapidly lose functional activity following
ischemic damage, but Gs protein levels are stable for a considerable time. Further research
is necessary to understand the molecular mechanisms causing this functional impairment.
Many experimental models of acute myocardial infarction (AMI) showed a general de-
crease in adenylate cyclase activity as ischemia progressed. Adenylate cyclase activity is
independent of β adrenergic receptors and G-proteins, according to recent investigations on
the development of acute ischemia. This activity is linked to protein kinase activation [82].
The succinylation, phosphorylation, SUMOylation, acetylation, and glutathionylation of G-
proteins are all involved in the formation and progression of I/R injury and the regulation
of cardiac repair [73].

4.3. Hypertension

High blood pressure, sometimes known as hypertension, is a complicated multifacto-
rial condition. The force exerted by blood causes pathological changes in the arteries and
arterioles, resulting in severe conditions such as target organ damage, atherosclerosis, and
kidney diseases [83]. Hypertension is also considered a silent killer [84]. A delicate balance
between vasoconstrictors and vasodilators is essential for maintaining blood pressure [85].
GPCRs function in vasodilation and vasoconstriction. Beta-adrenergic impairment, with
alterations in receptor–G-protein interaction, is primarily responsible for the development
of hypertension [86]. Mechanistically, GPCR ligands such as angiotensin II, endothelin 1,
and vasopressin, via Gαq, stimulate the activity of phospholipase C-β to form inositol-
1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). The pathogenesis of hypertension is
also influenced by the acetylation, phosphorylation, O-GlcNAcylation, SUMOylation, and
S-glutathionylation of G-proteins [73].

The binding of IP3 to its respective receptor leads to calcium efflux, while DAG
promotes calcium influx by activating PKC [87]. These calcium levels increase myosin
light chain kinase (MLCK) activity. MLCK activity is counter-balanced by phosphorylated
MLC, thus acting in constriction. In addition, the activation of Rho kinase pathways also
regulates blood pressure [88]. Conversely, adrenaline acts as a vasodilator that binds to
its corresponding receptor to stimulate adenylyl cyclase via Gαs. The resulting cAMP
formation activates PKC. This crosstalk between calcium efflux and influx leads to myosin–
actin filament interactions for vascular smooth muscle cell contraction and relaxation. The
alteration in ligand–GPCR exchange impairs the vascular smooth muscle cell contraction



Bioengineering 2023, 10, 76 11 of 19

and relaxation processes, and altered adenylyl cyclase activity is responsible for high blood
pressure [89].

G-proteins regulate signal transduction systems such as adenylyl cyclase/cAMP and
phospholipase C (PLC)/phosphatidyl inositol turnover (PI), cardiovascular performance,
and functions, such as arterial tone and responsiveness. Reports in the literature have
shown that inhibitory G-proteins regulate the expression of G-proteins, stating Gi proteins
as an essential contributing factor to hypertension. It has been demonstrated that elevated
amounts of vasoactive peptides, such as angiotensin II (AngII), contribute to increased Gi
protein expression, adenylyl cyclase signaling, and elevated blood pressure. Furthermore,
increased oxidative stress in hypertension caused by Ang II may be responsible for the
increased expression of Gi proteins observed in hypertension [90].

Alpha-adrenergic receptors are crucial for controlling blood pressure. The α-adrenergic
receptor (αAR) family is composed of the α1AR (α1A, α1B, α1D) and α2AR (α2-adrenergic
receptor; α2A, α2B, α2C) subfamilies [91]. Catecholamines bind to and activate αARs,
similar to βARs. In subfamilies, α1ARs, expressed in the heart and cardiomyocyte, couple
to Gαq to activate PLC to generate second messengers to increase intracellular Ca2+ lev-
els [92]. The α1ARs also perform cardioprotective functions, such as hypertrophy, increased
contractility, and decreased apoptosis [93]. Thus, it is recommended to exercise caution
when using α1AR antagonists as drugs for the treatment of hypertension, as doxazosin and
prazosin drugs have been associated with an increased incidence of heart failure [94].

4.4. Atherosclerosis

Atherosclerosis is a progressive disease involving the hardening and thickening of the
mid- and large-sized arteries due to the accumulation of modified lipids in the arterial vessel
wall and the formation of atheromatous plaques [95]. The atheromatous plaque consists
of modified lipoproteins, foam cells, leukocytes, migrated vascular smooth muscle cells
(VSMCs), necrotic cores, and calcified regions [96]. In the disease condition, endothelial
dysfunction is the primary step, leading to endothelium impairment. An impairment in
endothelium-dependent vasoconstrictors such as endothelin (ET) and thromboxane (Tx)
and vasodilators can lead to abrogative coronary vascular tone [97]. ET binds to either of the
receptors, ETA or ETB. Among them, ETA receptors have significance in the cardiovascular
system. ETA receptors activate Gαq, resulting in the formation of IP3 and activation of
MAPK signaling.

Moreover, these ETA receptors may inhibit adenylyl cyclase via Gi coupling. Based
on this mechanism, ET receptor antagonists such as bosentan, sitaxentan, macitentan, or
ambrisentan have shown a cardioprotective role. Further, G-protein-coupled receptor 124
(GPR124), an orphan receptor, plays a significant role in the development and progression
of atherosclerosis by activating nitrosative stress and NLR family pyrin domain containing
3 (NLRP3) inflammasome signaling. In a study, Gong et al. (2018) suggested that GPR124
manipulation in the endothelium might lead to the delayed progression of atherosclero-
sis in an animal model [98]. This receptor can be used as a potential therapeutic target
for atherosclerotic pathologies. In a recent review, Zhou et al. (2019) discussed the role
of lysophosphatidic acid (LPA) and its receptors in the pathophysiology of atherosclero-
sis [99]. LPA is generated during the metabolism of lipids and accelerated by activated
platelets, an essential step in atherosclerotic initiation and development, respectively. The
extended role of GPCR transactivation of tyrosine and serine/threonine kinase growth
factor receptors have been recognized. For instance, LPA-enhanced monocyte chemotactic
protein-1 expression is mediated via a Gαi-RhoA-ROCK-NF-κB-dependent signaling path-
way [100]. Consequently, the LPA receptor might be a beneficial therapeutic agent to halt
the progression of atherosclerosis. GPCR agonists and antagonists are used to treat various
cardiovascular conditions, and the currently available drugs used for hypertension, heart
failure, and atherosclerosis are listed in Table 2.
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Table 2. GPCR-targeted drugs used for cardiovascular diseases.

Drug(s) Condition Target Reference

Irbesartan (Avapro) Hypertension Angiotensin II [101]

Losartan Hypertension Angiotensin II [102]

Vasomera (PB1046), vasoactive
intestinal peptide Hypertension VIP and PACAP receptor

family: VIPR1, VIPR2 [103]

Serelaxin Heart failure Relaxin receptor:
RXFP1, RXFP2 [103]

TRV120027 Heart failure Angiotensin II [104]

Plozalizumab Atherosclerosis CCR2 [105]

Alfuzosin,
Terazosin Hypertension Adrenoreceptor:

Alpha-1 [106]

Clonidine, Bisoprolol, Betaxolol Hypertension Adrenoreceptor:
Alpha-2 [106]

Metoprolol, Atenolol Hypertension Adrenoreceptor:
Beta-1 [106]

Atropine, Isoproterenol
Forskolin

Acetylcholine
Heart rate reduction

Muscarinic receptors:
Gαq (M1, M3, M5), Gαi

(M2, M4)
[17,107]

Gs and Gi protein changes are linked to coronary artery disease. However, the
relationship between Gs and Gi proteins needs to be clarified. Several studies have found
that patients with coronary artery disease have either decreased Gs proteins and normal
Gi proteins or increased Gi proteins and normal Gs proteins. It is critical to note that
higher Gi protein levels are associated with more severe coronary artery deterioration
than lower Gs protein levels [108]. Members of the Ras protein superfamily, such as Rho
proteins, play a role in the pathophysiology of atherosclerosis. The interaction of cytokines,
chemokines, and immune cells such as monocytes, macrophages, lipid droplets, and foam
cells causes atherosclerosis. The Rho GTPase regulates and acts as a molecular switch for
ROCK interaction and GTP-bound conformation in these atherosclerosis-related cells. On
the other hand, GTPase-activating proteins and guanine nucleotide dissociation inhibitors
inactivate Rho GTPase [109]. The acetylation, phosphorylation, nitrosylation, SUMOylation,
and S- glutathionylation of G-proteins contribute to atherosclerosis [73].

4.5. Stroke

Stroke, or cerebral ischemia, is a leading cause of global mortality. It occurs due to
ischemic insults and the blockage of a major cerebral artery due to the formation of a throm-
bus or an embolism. Loss of blood flow and tissue death occurs due to oxygen and glucose
deprivation [110,111]. Evidence in the literature suggests a substantial role of GPCRs in the
pathophysiology of stroke. More than 90% of GPCRs are expressed in the brain, and their
roles have been identified in several processes, including immune regulation, cognition,
synaptic transmission, and pain. GPCR ligands, such as oxytocin, serotonin, muscarinic
acetylcholine, and cholinergic, play a vital role in activating intracellular signaling path-
ways [112,113]. For instance, serotonin is a neurotransmitter with both a protective and
detrimental role in ischemic brain injury. All the serotonin receptors are coupled to Gαi/o,
Gαs, and Gαq/11 proteins [114]. Activated serotonin receptors stimulate Gi/Go proteins,
which leads to the inhibition of adenylyl cyclase, thereby reducing cAMP formation. This
process reduces the phosphorylation of ion channels and neuronal excitation [115]. Studies
have shown the neuroprotective benefits of serotonin agonists such as piclozotan and
repinotan against ischemic brain injury [116].

Another example is dopamine, a neurotransmitter in the brain that controls loco-
motor activity, learning, and memory processes, along with positive reinforcement [117].
Dopaminergic receptors are of five types: D1–D5. D1 and D5 are coupled to Gs proteins,
which further activate adenylyl cyclase and PKA, while other receptors are coupled to
Gi/o proteins and inhibit adenylyl cyclase and PKA [118,119]. Thus, some GPCR agonists
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and antagonists have neuroprotective benefits, and their receptors are considered drug
targets [120].

4.6. Peripheral Artery Disease

Peripheral artery disease (PAD) is the narrowing or blockage of vessels due to fatty
plaque build-up, i.e., an atherosclerotic disease that affects blood vessels in the arms and legs
and excludes coronary circulation [121]. The role of GPCRs in atherosclerosis is similar to
that of GPCRs in PAD. GPCRs, such as adenosine receptors, are expressed in human organs.
There are four significant subtypes of adenosine receptors: A1R, A2aR, A2bR, and A3R [122].
A1R and A3R function through Gi, whereas A2R couples to Gs. Stimulation of adenosine
receptors releases Gβγ subunits, which play an essential role in cell growth and vascular
remodeling. A1R interacts with PLC, influencing IP3 and calcium release. Thus, it is directly
or indirectly involved in modulating calcium potassium channels [17,123]. Therefore,
adenosine agonists and antagonists may have a cardioprotective role in therapeutics [124].

4.7. Restenosis

Restenosis is the re-narrowing of the arterial lumen following a vascular intervention
intended to treat lesions, such as direct repair (patch angioplasty, endarterectomy) and
intraluminal repair (balloon angioplasty, atherectomy, stent angioplasty). Restenosis also
results from thrombosis, elastic recoil, remodeling, and intimal hyperplasia [125,126]. In
restenosis, G-protein signaling is transient and followed by desensitization and receptor
internalization. Beta-arrestin (βarr) is abundantly expressed in cardiac muscles in two
isoforms: βarr1 and βarr2 (arrestin-2 and -3, respectively) [127].

β-arr binds to the receptor’s phosphorylated residues and at the intracellular core of
the heterotrimeric G-protein binding site. This results in the steric blocking of G-protein
binding to the receptor. Thus, β-arr recruitment leads to the uncoupling of G-proteins and
signaling desensitization. In addition, β-arr recruits clathrin-coated pit (CCP) proteins
such as clathrin heavy chain and the clathrin adapter protein-2 (AP2), which is followed by
desensitization and receptor internalization [128,129]. Besides this, GPCR agonists such as
angiotensin II and alpha-thrombin have also been implicated in restenosis [130].

In restenosis, heterotrimeric G-proteins such as Gβγ are involved in the activation
of mitogen-activated protein (MAP) kinases and proliferation of vascular smooth muscle
(VSM) cells. In addition, βarrestin (βarr)-1 and -2 (βarrs) are universal GPCRs expressed
abundantly in the myocardium and act as molecular switches for G-protein-dependent to
G-protein-independent signaling processes. βARs and AT1R have cardioprotective benefits
as these molecules attenuate apoptosis [131].

5. Conclusions

G-protein signaling regulates various pathological responses, widely expressed through-
out the body. Thus, they are considered significant in the physiological regulation of cardiac
function. G-proteins activate several signaling pathways that regulate various cellular
processes. Due to their role in cellular signal transduction, G-proteins and GPCRs are
considered major drug targets for treating cardiovascular disease. Advances in our under-
standing of G-proteins’ structure, functions, and signaling mechanisms have contributed
to developing a drug with enhanced specificity and efficacy. However, the reversible
and irreversible phases and the stimulation of Gs and Gi proteins with different receptor
sub-types, both GPCR agonists and antagonists, have therapeutic potential, which makes
this a controversial subject. Therefore, new GPCR ligands and mechanisms of action need
to be studied and discovered to obtain new therapeutic strategies and medicines.
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